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Abstract To analyse neuron data at scale, neuroscientists expend substantial effort reading

documentation, installing dependencies and moving between analysis and visualisation

environments. To facilitate this, we have developed a suite of interoperable open-source R

packages called the natverse. The natverse allows users to read local and remote data, perform

popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal

branching. Unlike most tools, the natverse enables comparison across many neurons of

morphology and connectivity after imaging or co-registration within a common template space.

The natverse also enables transformations between different template spaces and imaging

modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical

light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use

environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open

platform to create new code and packages to share with the community.

Introduction
Neuroanatomy has become a large-scale, digital and quantitative discipline. Improvements in sam-

ple preparation and imaging increasingly enable the collection of large 3D image volumes contain-

ing complete neuronal morphologies in the context of whole brains or brain regions.

Neuroscientists, therefore, need to tackle large amounts of morphological data, often writing cus-

tom code to enable repeated analysis using their specific requirements. They also need to analyse

neuronal morphology and connectivity in the context of whole nervous systems or sub-regions. How-

ever, it is desirable not to rewrite basic functionalities such as reading various types of data file, rep-

resenting neurons in different data structures, implementing spatial transforms between samples,

integrating popular datasets or performing popular analyses from scratch. Scaling up or developing

custom analysis strategies is simpler and more feasible for researchers if they can reuse existing

infrastructure. This has been amply demonstrated by flexible but open source platforms such as

ImageJ/Fiji for image analysis (Schindelin et al., 2012) or Bioconductor for bioinformatics

(Huber et al., 2015). One important consequence of these free and open-source tools is that they

aid collaboration and reproducibility, and reduce the overhead when switching between different

types of analysis. Together, these considerations have motivated us to create the NeuroAnatomy

Toolbox (nat) and its extensions, which we detail in this paper.

A number of software tools are already available to analyse neuronal data (Billeci et al., 2013;

Brown et al., 2005; Cuntz et al., 2010; Feng et al., 2015; Gensel et al., 2010; Glaser and Glaser,

1990; Ho et al., 2011; Katz and Plaza, 2019; Kim et al., 2015; Meijering et al., 2004;
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Myatt et al., 2012; Narro et al., 2007; Peng et al., 2014; Pool et al., 2008; Saalfeld et al., 2009;

Schmitz et al., 2011; Wearne et al., 2005). However, most focus on image processing and the mor-

phological analysis options available are fairly basic, such as examining arbour lengths or performing

Sholl analyses (Sholl, 1953). Of these, the trees toolbox (Cuntz et al., 2010), has particularly strong

support for morphological analysis of neurons but focuses on individual neurons in isolation rather

than neurons within the volume of the brain as a whole.

Recent technological advances have made acquiring large amounts of neuronal morphology data

in their whole-brain contexts feasible across phyla (Chiang et al., 2011; Cook et al., 2019;

Economo et al., 2016; Jenett et al., 2012; Kunst et al., 2019; Li et al., 2019; Oh et al., 2014;

Ohyama et al., 2015; Ryan et al., 2016; Winnubst et al., 2019; Zheng et al., 2018). Image data

are typically registered against a template space, allowing one to compare data from many brains

directly and quantitatively. This significantly aids the classification of neuronal cell types because it

allows type classification relative to the arbours of other neuronal types (Sümbül et al., 2014) and

anatomical subvolumes. However, while this enables the comparison of data within a given study,

template spaces are often different across studies or laboratories, hindering data integration.

This paper describes the Neuroanatomy Toolbox (nat), a general purpose open source R-based

package for quantitative neuroanatomy, and a suite of extension R packages that together we call

the natverse. A distinctive feature of the natverse, as compared with other available tools, is to

analyse neurons within and across template spaces and to simplify access to a wide range of data

sources. Neurons can be read from local files or from online repositories (Ascoli et al., 2007;

Chiang et al., 2011; Economo et al., 2016; Jenett et al., 2012; Kunst et al., 2019;

Winnubst et al., 2019) and web-based reconstruction environments (Katz and Plaza, 2019;

Saalfeld et al., 2009; Schneider-Mizell et al., 2016). The natverse can be installed in two lines of

code as described on the project website (https://natverse.org). Every function is documented with

a large number of examples based on bundled or publicly available data. Example pipeline code,

and code to generate the figures in this manuscript is available through https://github.com/nat-

verse/nat.examples. We provide online community support through our nat-user mailing list: https://

groups.google.com/forum/#!forum/nat-user.

The natverse has recently been employed for large-scale analysis of zebrafish data

(Kunst et al., 2019), and we provide examples across a range of invertebrate and vertebrate spe-

cies. We then give more specific examples focussing on cell type identification across Drosophila

datasets. Using the natverse, we have created bridging registrations that transform data from one

template to another along with mirroring registrations (e.g. left-to-right hemisphere) and made

these easily deployable. This unifies all publicly available Drosophila neuroanatomical datasets,

including those image data for genetic resources and whole brain connectomics.

We now give an overview of the natverse and showcase a number of common applications.

These applications include quantifying the anatomical features of neurons, clustering neurons by

morphology, analysing neuroanatomical data relative to subvolumes, in silico intersections of genetic

driver lines, matching light-level and EM-level neuronal reconstructions and registering and bridging

neuroanatomical data to and between template spaces.

Results

Software packages for neuroanatomy
We have opted to develop our software in R, a leading platform for bioinformatics and general data

analysis. R is free and open source, and is supported by high-quality integrated development envi-

ronments (e.g. Rstudio). It features a well-defined system for creating and distributing extension

packages that bundle code and documentation. These can easily be installed from high-quality

curated repositories (CRAN, Bioconductor) as well as via GitHub. R supports a range of reproducible

research strategies including reports and notebooks and integrates with the leading cross-platform

tools in this area (jupyter, binder).

The core package of the natverse is the Neuroanatomy Toolbox, nat. It supports 3D visualisa-

tion and analysis of neuroanatomical data (Figure 1a), especially tracings of single neurons

(Figure 1b). nat allows a user to read neuronal data from a variety of popular data formats pro-

duced by neuron reconstruction tools (Figure 1a). Typical image analysis pipelines include imaging
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Figure 1. The natverse. (a) R packages that constitute the natverse. Packages are coloured by whether they are general purpose, or cater specifically

for Mus musculus, Danio rerio or Drosophila melanogaster datasets. Coarse division into packages for fetching remote data, implementing registrations

and analysing data are shown. Data, as outputted by most reconstruction pipelines, can also be read by nat. (b) The natverse is designed to work

best in the RStudio environment (RStudio Team, 2015), by far the most popular environment in which to execute and write R code. 3D visualisation is

Figure 1 continued on next page
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neurons with confocal microscopy, reconstructing them using Fiji Simple Neurite Tracer

(Longair et al., 2011) then saving them as SWC files (Cannon et al., 1998); nat can read a collec-

tion of such files with a single command. In addition, a user can, for example, mark the boutons on

each neuron using Fiji’s point tool and export that as a CSV, load this into nat and then analyse the

placement of these synaptic boutons with respect to the originally traced neuron (Figure 1—figure

supplement 1).

We have extended nat by building the natverse as an ecosystem of interrelated R packages,

each with a discrete purpose (Figure 1a). The natverse is developed using modern software best

practices including revision control, code review, unit testing, continuous integration, and compre-

hensive code coverage. Developing sets of functions in separate packages helps compartmentalise

development, ease troubleshooting and divides the natverse into documented units that users can

search to find the more specific code examples or functions that they need. To the casual user, these

divisions may initially be of little consequence. We therefore provide a single wrapper package,

natverse; installing this results in the installation of all packages and their dependencies, immedi-

ately giving the user all the capabilities described in this paper (Figure 1a). Natverse packages

have already been used in recent publications from our lab (Cachero et al., 2010; Costa et al.,

2016; Dolan et al., 2019; Dolan et al., 2018a; Dolan et al., 2018b; Frechter et al., 2019;

Grosjean et al., 2011; Huoviala et al., 2018; Jefferis et al., 2007) and others (Clemens et al.,

2018; Clemens et al., 2015; Eichler et al., 2017; Felsenberg et al., 2018; Jeanne et al., 2018;

Kunst et al., 2019; Saumweber et al., 2018; Zheng et al., 2018), with the nat.nblast packaged

described in Costa et al., 2016. Confirmed stable versions of nat,Xnat.templatebrains,Xnat.

nblast,Xnat.utils and nabor can be downloaded from the centralised R package repository,

CRAN, with developmental versions available from our GitHub page (https://github.com/natverse/).

In brief, natverse packages can be thought of as belonging to four main groups (Figure 1a).

The first two support obtaining data, either by a) interacting with repositories and software primarily

used for neuron reconstructions from electron micrograph (EM) data, including CATMAID, NeuPrint

and DVID (Clements et al., 2020; Katz and Plaza, 2019; Saalfeld et al., 2009; Schneider-

Mizell et al., 2016) or b) interacting with reposi-

tories for light-level data, including MouseLight,

FlyCircuit, Virtual Fly Brain, NeuroMorpho, the

InsectBrainDB and the FishAtlas projects.

Figure 1 continued

based on the R package rgl (Murdoch, 2001), which is based on OpenGL and uses the XQuartz windowing system. It runs on Mac, Linux and Windows

platforms. (c) R functions can be called by other popular scientific programming languages, some example packages/libraries are shown. In particular,

there is support for bidirectional interaction with Python, with interactive use supported by Jupyter or R Markdown notebooks. One of us (P. Schlegel)

has developed Python code inspired by the natverse for analysing neuron morphology, NAVIS (https://github.com/schlegelp/navis), and talking to

the CATMAID API, PyMaid (https://github.com/schlegelp/pyMaid). These python libraries transform natverse-specific R objects into Python data

types and can call natverse R functions like nblast.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A basic analysis pipeline.

Video 1. Short tutorial videos. Short tutorial on how to

use basic natverse functionality in RStudio, for

example, loading and installing the natverse, plotting

neurons and volumes, bridging between template

brains, using NBLAST and comparing EM and LM data.

https://elifesciences.org/articles/53350#video1

Video 2. Installing the natverse.

https://elifesciences.org/articles/53350#video2
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Additional R packages help with c) manipulating and deploying registrations to move data between

brainspaces, and d) data analysis and visualisation (see Materials and methods for additional details).

In order to see how one can use the natverse in RStudio to visualise and analyse neurons, please

see Videos 1–5.

Manipulating neuroanatomical data
Neuron skeleton data
Raw 3D images enable true to life visualisation but simplified representations are usually required

for data analysis. For example, neurons can be traced to generate a compact 3D skeleton consisting

of 3D vertices joined by edges. A more accurate representation would be a detailed mesh describ-

ing a 3D neuron, but it is often easier and quicker to work with skeleton representations.

The natverse provides functions for morphological and graph-theoretic analyses of neurons,

collections of neurons, neurons as vector clouds and neurons as tree graphs (Figure 2a). The nat-

verse mainly operates with skeleton data, but the geometry of neuron mesh data can be analysed

using the more general R packages Rvcg and Morpho (Schlager, 2017). The natverse represents

skeletonised neurons as neuron objects, with the neuron’s geometry in the standard SWC format

where each node in the skeleton has its own integer identifier. There are additional data fields (Fig-

ure 2—figure supplement 2), the treenode IDs for branch points, the location of its synapses in 3D

space and their polarity, including the source file, leaf nodes and series of IDs that belong to contin-

uous non-branching segments of the neuron (Figure 2—figure supplement 2).

Neurons have tree like structures that are critical to their function (Cuntz et al., 2010). ngraph

data objects represent a neuron as a tree graph originating at a root (usually the soma) with directed

edges linking each of the neuron’s tree nodes (Figure 2a). This representation provides a bridge to

the rich and efficient graph theory analysis provided by the igraph package (Csardi and Nepusz,

2006).

Objects of class neuron are lists of data objects, like data.frames, describing properties such

as the 3D position and interconnectivity of points in a neuron. Objects of class neuronlist are lists

of neuron objects, representing one or more neurons, with some attached metadata. This attached

metadata can give information like a neuron’s name, some unique identifier, its cell type, etc (Fig-

ure 2—figure supplement 2). An ngraph, neuron or neuronlist can be passed to many func-

tions in the natverse, and also to other functions familiar to R users for which we have written

specific methods. For example, users can call subset on a neuronlist to select only those neu-

rons with a certain entry in their corresponding metadata, for example all amacrine cells. Methods

passed to plot3d enable a neuronlist to be coloured by its metadata entries when it is plotted

(Figure 2b), in this case connectomic data from the inner plexiform layer of the mouse retina is

shown (Helmstaedter et al., 2013). Many functions are built to work with neuron objects but will

also have a method that allows them to be applied to every neuron in a given neuronlist via the

nat function nlapply. R users will be familiar with this logic from using the base R function

lapply.

Basic analysis
A useful function with methods for neuron

objects and neuronlist objects is summary.

This gives the user counts for tree nodes, branch

points, leaf nodes and the total combined cable

length of a neuron (Figure 2—figure supple-

ment 1a). We can further use the natverse to

identify points on a neuron that have particular

properties based on the neuron’s skeleton struc-

ture (Figure 2c–e) or because we have some

other data that identifies the position of some

biological feature (Figure 2f–g), or both

(Figure 2h). Branching can be assessed by

branching density, for example a Sholl analysis

(sholl_analysis) (Figure 2—figure

Video 3. Bridging neuron data.

https://elifesciences.org/articles/53350#video3
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supplement 1b), or decomposed by branching complexity, for example Strahler order (Figure 2—

figure supplement 1c). Geodesic distances, that is within-skeleton distances, can be calculated

between any tree node in the graph (Figure 2—figure supplement 1c) with the help of functions

from the R package igraph (Csardi and Nepusz, 2006), and Euclidean distances can be calculated

using our R package nabor.

Some reconstruction environments allow tree nodes to be tagged with extra information,

for example CATMAID. This can include neurite diameter, microtubules (Figure 2e) and pre- and

postsynapses (Figure 2f). This information is fetched when the catmaid package reads a neuron. It

can be used by a graph theoretic algorithm (Schneider-Mizell et al., 2016; Figure 2g, inset) to

divide a neuron into its dendrites, axon and intervening cable (Figure 2h). We put this information

together in the example in Figure 2—figure supplement 1c, which shows the geodesic distribution

of pre- and postsynapses along three neurons arbors, split by axon and dendrite, then further by

Strahler order, then further by presence or absence of microtubule. Here, for our three exemplar

neurons, presynapses only exist on microtubular backbones, and are laid in high number except at

the highest Strahler orders while postsynapses are mainly on twigs, and at Strahler order 1–2. We

can also identify connected neurons using catmaid functions, and see that the dendrites of these

cells only receive particular inputs.

Neuroanatomical volumes
The natverse also helps users to analyse neuronal skeletons with respect to volume objects that

might represent neuroanatomical structures on a scale from whole neural tissues to neuropil subvo-

lumes. 3D objects from diverse sources can be visualised and analysed with nat, and we can calcu-

late their volumes (Figure 3a). By using the nat function make_model, a user can interactively

create their own 3D objects from, for example, 3D points from a neuron’s cable or its synapses

(Figure 3b); points can easily be retrieved by giving the function a labelled data.frame,Xmatrix,

Xneuron,Xneuronlist,Xhxsurf or mesh3d object (Figure 2—figure supplement 2). The result-

ing volume could be, for example, the envelope around a dendrite, which may correlate with other

features of a neuron (Figure 3b). Using the nat function prune_in_volume, a skeleton can be cut

to include or exclude the cable within a given volume, while the function pointsinside can tell a

user which synapses lie within a standard neuropil segmentation (Figure 3c).

Advanced analysis
Because the natverse is a flexible platform that allows users to easily write their own R code to

support intricate procedures, very specific analyses can be performed. For example, we might be

interested in using skeletons to define anatomical subvolumes and analysing the projections

between such subvolumes. For Figure 3—figure supplement 1, we developed custom code on top

of natverse functionality to examine light-level D. melanogaster olfactory projections to, and tar-

get neurons with dendrites in a subregion of the brain called the lateral horn (Chiang et al., 2011;

Frechter et al., 2019; Grosjean et al., 2011). We voxelised the lateral horn as well as its target

regions into overlapping kernel density estimates based on agglomerating similarly shaped sub-

branches for projection neuron axons. This analysis reveals substructure in a neuropil, and the 3D

locations that are likely to receive input from these new subregions (Figure 3—figure supplement

1d). The natverse contains other functions to infer connectivity from light-level data, including

potential_synapses, an implementation of a synapse prediction algorithm that makes use of

spatial proximity and approach angle (Stepanyants and Chklovskii, 2005), and overlap, a simpler

algorithm that measures the putative overlap in Euclidean space between neuron pairs

(Frechter et al., 2019).

Cell typing neurons
Neuronal cell type is a useful classification in neuroscience (Bates et al., 2019). Neuronal cell typing

can be done by expert examination (Helmstaedter et al., 2013), purely by morphological clustering

(Jeanne and Wilson, 2015), or a combination of both (Frechter et al., 2019). Many neurogeometric

algorithms for assessing similarity exist. Some are invariant to the 3D embedding space (Li et al.,

2017; Sholl, 1953; Wan et al., 2015), but those that are dependent on neurons’ relative positioning

in a template space have typically met with greater success (Li et al., 2017; Zhao and Plaza, 2014).
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NBLAST (Costa et al., 2016) is a recent morpho-

logical similarity algorithm (Frechter et al., 2019;

Jeanne et al., 2018; Kohl et al., 2013;

Kunst et al., 2019; Masse et al., 2012;

Strutz et al., 2014; Zheng et al., 2018). NBLAST

is included in the natverse in our nat.nblast

package (Costa et al., 2016).

In many parts of mammalian nervous systems,

morphologically similar neurons are repeated in

space, and so aligning neurons to one another,

without a specified template space, is sufficient

for quantitative comparison (Figure 4a). NBLAST

scores can be hierarchically clustered in R, plot-

ted as a dendrogram, and used to visualize mor-

phological groups at a defined group number or

cut height (Figure 4a). Often, this forms a good starting point for cell typing, but might not be in

exact agreement with manually defined cell types (Figure 4b). This can be due to neuron reconstruc-

tions being differently severed by the field of view or size of the tissue sample collected

(Helmstaedter et al., 2013), or due to registration offsets between registered neuronal skeletons

(Chiang et al., 2011; Kunst et al., 2019). The natverse includes interactive functions, such as

nlscan, that allow users to visually scan neurons and identify mis-assignments (Figure 4c), or find.

neuron and find.soma, that allow users to select a neuron of interest from a 3D window

(Figure 4c).

In smaller brains, like insect central brains or larval fish central brains, the overlap of both axons

and dendrites in 3D space is an excellent starting point for defining a neuronal type, since neurite

apposition is suggestive of synaptic connectivity (Rees et al., 2017) and neurites are highly stereo-

typed (Jenett et al., 2012; Pascual et al., 2004). If they have been registered to whole brain tem-

plates (Chiang et al., 2011; Costa et al., 2016; Kunst et al., 2019), it is desirable to choose a

canonical brain hemisphere and standardise such that all neurons are mapped onto this side to

approximately double the neurons available for clustering and assign the same cell types on both

hemispheres (Figure 4—figure supplement 1, Figure 4—figure supplement 2).

Comparing disparate datasets
Template brains in D. melanogaster
It is highly desirable to compare neurons between datasets within a singular template space. Consid-

ering just the case of D. melanogaster, separate template brains ‘contain’ many large and useful but

disparate datasets (Table 1):~23,000 single light-level neuronal morphologies, hundreds of neuronal

tracings from dye fills, a collection of ~11,000 genetic driver lines, ~100 neuroblast clones, and con-

nectomic data, including a brainwide draft connectome on the horizon (Scheffer and Meinertzha-

gen, 2019; Zheng et al., 2018). Because of the wealth of data available for D. melanogaster, we

focus on its brain for our registration examples.

Two approaches have been taken in specify-

ing template spaces: a) choosing a single brain

avoids any potential artifacts generated by the

averaging procedure, but b) an average brain

can reduce the impact of biological variation

across individuals and deformations introduced

during sample preparation, thus increasing the

likelihood of successful and accurate registration

(Bogovic et al., 2018). Quantitative neuroana-

tomical work requires images to be spatially cali-

brated (i.e. with an accurate voxel size), but such

calibrations are not present in all template

brains.

Video 4. Morphological clustering.

https://elifesciences.org/articles/53350#video4

Video 5. Comparing different datasets.

https://elifesciences.org/articles/53350#video5
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Figure 2. Neurons in nat. (a) Data classes defined by nat. A D. melanogaster DA1 olfactory projection neuron (Costa et al., 2016) is shown as part of

four different data types, useful for different sorts of analyses: as a neuron object (left), as part of a larger neuronlist of multiple olfactory projection

neurons (middle), as a vector-cloud dotprops object (right, upper) and a ngraph object (right, lower). In grey, the FCWB template brain, a hxsurf

object from the package nat.flybrains, is shown. Generic code for visualizing these data types shown. (b) Visualisation, with generic sample code,

Figure 2 continued on next page
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Table 2 lists the template brains for D. melanogaster considered in this work and details the

resources available for each; some are shown in Figure 6. Initially, only raw unregistered data were

publicly available for FlyCircuit (Chiang et al., 2011). Subsequently data registered to one of two

template brains (one for each sex). The FlyLight project provides only raw image data (Jenett et al.,

2012).

Template brains and registered data are publicly available for the Vienna Tiles GAL4 libraries

(Tirian and Dickson, 2017) but are not distributed in bulk form. We created an intersex reference

brain for the FlyCircuit dataset and added spatial calibrations and re-registered data to our new tem-

plate brains as necessary (see Materials and methods) before constructing bridging registrations.

We have deposited all template brain images, in NRRD format (http://teem.sourceforge.net/nrrd/)

at http://zenodo.org to ensure long-term availability. Two spatial transforms are most useful when

considering template brains - a) mirroring data left-right, so that neurons reconstructed or registered

to either hemisphere may be compared, and b) bridging between these templates, to cross-com-

pare data.

Mirroring data in D. melanogaster
Whilst the Drosophila brain is highly symmetric it is not perfectly so and the physical handling of

brains during sample preparation introduces further non-biological asymmetries. A simple 180˚ flip

about the medio-lateral axis is therefore insufficient (Figure 5—figure supplement 1a). To counter

this, we have constructed non-rigid warping registrations for a number of template spaces that intro-

duce the small displacements required to fix the mapping from one hemisphere to the other (Fig-

ure 5—figure supplement 1, see Materials and methods).

Our mirroring registrations can be deployed using the function mirror_brain. Our mirroring

registrations can be used to counter non-biological asymmetries, allowing the investigation of rele-

vant similarities and differences in morphology between the two sides of the brain (Figure 5—figure

supplement 1a). Our mirroring procedure (see Materials and methods) does not introduce any sys-

tematic errors into neuron morphology.

NBLAST was used to calculate morphologically determined similarity scores between DL2d pro-

jection neurons taken from the same side of the brain and compare them with those calculated

between DL2d projection neurons taken from alternate sides of the brain (Figure 5b). We do not

find the distributions of scores (Figure 5c) to be significantly different (D = 0.025, p=0.094, two-sam-

ple Kolmogorov-Smirnov test). Extending this, we have used these scores to classify neurons based

Figure 2 continued

of connectomic data from a dense reconstruction inner plexiform layer of the mouse retina is shown, coloured by the cell class and then cell type

annotations given by their reconstructors (Helmstaedter et al., 2013). Because this dataset contains many neuron fragments that have been severely

transected, we only consider skeletons of a total cable length greater than 500 mm using functions summary and subset. Somata are shown as

spheres. (c) A synaptic-resolution neuron reconstruction for a D. melanogaster lateral horn neuron (Dolan et al., 2018a) has been read from a live

CATMAID project hosted by Virtual Fly Brain (https://fafb.catmaid.virtualflybrain.org/) using catmaid, and plotted as a neuron object. It is rooted at

the soma, consistent with the convention. (d) Boxed, Strahler order is a measure of branching complexity for which high Strahler order branches are

more central to a neuron’s tree structure, and the lower order ones more peripheral, such that branches with leaf nodes are all Strahler order 1. Main,

the same neuron which has had its lower Strahler order branches (see inset) progressively pruned away. (e) We can extract the longest path through a

neuron, its ‘spine’, purple, a method that could help define the tracts that a neuron might traverse. (f) Boxed, in insect neurons, the main structure of

the neuron is supported by a microtubular backbone. As it branches its more tortuous, smaller caliber neurites loose the microtubule, and make more

postsynapses (Schneider-Mizell et al., 2016). Main, in CATMAID users can tagged the tree nodes that mark the position where neurite loses its

microtubular backbone, so an R user can use prune family functions to remove, add or differentially colour microtubular backbone versus twigs. (g)

Both presynapses and postsynapses can been manually annotated in CATMAID, and be visualised in R. Because neurons from CATMAID have synaptic

data, they are treated as a slightly different class by the natverse, called catmaidneuron. A neuronlist can also comprise many catmaidneuron

objects. (h) Right, using synaptic information, it is possible to use a graph theoretic approach which divides the neuron at the point of maximum ‘flow’ -

the region in the neuron at which there are the most parallel paths - having ‘drawn’ a path between each input synapse and each output synapse that

pass through every node on the skeleton (Schneider-Mizell et al., 2016). This helps divide a neuron into its dendrites, axon, intervening cable

(maximum flow, the primary dendrite) and its cell body fiber (no flow). In insects, the cell body lies outside the neuropil and is connected to its arbour

by a single fiber. Main, axon-dendrite split shown for exemplary neuron using seesplit3d.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Neurogeometry and skeleton annotations with nat.

Figure supplement 2. Neuron data structure.
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Figure 3. Neuroanatomical models with nat. (a) We accessed the InsectBrainDB.org via insectbrainr to obtain template brains for different species

of insect (Brandt et al., 2005; de Vries et al., 2017; El Jundi et al., 2018; Heinze and Reppert (2012); Kurylas et al. (2008); Løfaldli et al. (2010);

Stone et al. (2017); Zhao et al., 2014). The package insectbrainr converts retrieved OBJ files into hxsurf objects, which contain one set of 3D

points for each whole brain, and then different sets of edges between these points to form 3D neuropil subvolumes. These subvolumes were already

Figure 3 continued on next page
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on their bilateral symmetry. Figure 5d shows 12 example neurons, taken from the bilateral subset of

the FlyCircuit dataset, spanning the range of similarity scores from most asymmetric (A) to most

bilaterally symmetric (L). Interestingly, the distribution of scores suggest that most bilateral neurons

are reasonably symmetric.

It is also possible to use our mirroring registrations to test the degree of symmetry for sections of

neurons. We take segments of a neuron and use our similarity metric to compute a score between

the segment and the corresponding segment in the mirrored version of the neuron. This allows dif-

ferences in innervation and axonal path between the two hemispheres to be clearly seen

(Figure 5e).

Bridging template spaces in D. melanogaster
Simply rescaling a sample image to match a reference brain usually fails due to differences in posi-

tion and rotation (Figure 6—figure supplement 1a). An affine transformation can account for these

differences, but not for differences in shape that may be of biological or experimental origin. To cor-

rect for these, we use a full non-rigid warping deformation, as described previously (Jefferis et al.,

2007; Rohlfing and Maurer, 2003; Rueckert et al., 1999), see our Materials and methods. Briefly, a

regular lattice of control points is created in the reference brain and corresponding control points in

the sample brain are moved around to specify the deformations required to take the sample data

into the reference space (Figure 6c–g). Deformations between control points are interpolated using

B-splines, which define a smooth deformation of sample to reference (Figure 6f). The use of a

mutual information metric based on image intensity avoids the requirement for landmarks to be

added to each image – a time-consuming task that can often introduce significant inaccuracies. Our

approach allows for the unsupervised registration of images and the independent nature of each

registration allows the process to be parallelised across CPU cores. By utilizing a high-performance

computational cluster, we re-registered, with high accuracy, the entire FlyCircuit dataset within a

day.

Our bridging registrations can be deployed on any 3D natverse-compatible data using the func-

tion xform_brain. A successful and accurate bridging registration will result in the neuropil stains

of two template spaces being well co-localised (Figure 6). After visually inspecting co-localised tem-

plate spaces to check for any obvious defects, we find it helpful to map a standard neuropil segmen-

tation (Ito et al., 2014) into the space of the new brain to check for more subtle defects (Figure 6—

figure supplement 2b). If the registration passes these checks it can then be used to combine data

from multiple datasets.

The creation of a bridge between a GAL4 expression library, such as the GMR collection

(Jenett et al., 2012), and images of single neurons, such as those of FlyCircuit (Chiang et al., 2011),

facilitates the decomposition of an expression pattern into its constituent neurons, allowing the cor-

rect assessment of innervation density on, for example, ipsilateral and contralateral sides (Figure 6—

figure supplement 2c). Similarly, correspondences between neuroblast clones can be identified with

co-visualisation. We bridge Fru+ clones (Cachero et al., 2010) from IS2 space into the JFRC2 space

of elav clones (Ito et al., 2013) and hence determine subset relations (Figure 6—figure supplement

2b). Furthermore, we can bridge the single neuron FlyCircuit data (Chiang et al., 2011) from the

Figure 3 continued

defined by expert annotators. Their volume are compared across insect brain, normalised by total brain size. Insect template brain data curated by: S.

Heinze, M. Younger, J. Rybak, G. Pfuhl, B. Berg, B. el Jundi, J. Groothuis and U. Homberg. (b) We can create our own subvolumes by pulling synaptic

neuron reconstructions (Berck et al., 2016) from a first-instar larva EM dataset (Ohyama et al., 2015) (a public CATMAID instance hosted by Virtual Fly

Brain), extracting dendritic post synapses from olfactory projections neurons, and using synapse clouds from neurons of the same cell type, to define

glomerular volumes by creating a bounding volume, i.e an a-shape or convex hull. Their volumes can then be calculated, and correlated with the

number of presynapses the same neurons make in two higher-order brain regions, the lateral horn and the mushroom body calyx. (c) Volumes can be

used to analyse skeleton data. In (c) we look again at olfactory projection neurons, this time from an adult fly EM dataset (Zheng et al., 2018) and use

the nat function pointsinside with standard neuropil volumes (Ito et al., 2014) to find the numbers of presynapses GABAergic and cholinergic

olfactory projection neurons from the antennal lobe make in different neuropils. These neuropils exist as a hxsurf object in our R package nat.

flybrains.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Superxovel analysis with nat.
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Figure 4. Cell typing with nat. (a) Neurons from a dense reconstruction from EM data of the mouse retina inner plexiform layer (Helmstaedter et al.,

2013) can either be NBLAST-ed in situ (upper) or after alignment by their principal axes in 3D space (lower) in order to make a first pass at defining,

finding or discovering morphological neuronal cell types using NBLAST. (b) A tSNE plot visualising the results of an aligned NBLAST of neurons in A,

Figure 4 continued on next page

Bates et al. eLife 2020;9:e53350. DOI: https://doi.org/10.7554/eLife.53350 12 of 35

Tools and resources Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.53350


FCWB space into the IS2 space of the Fru+ clones and use the known sexual dimorphisms of Fru

clones to predict which neurons may be sexually dimorphic (Figure 6—figure supplement 2c).

The ability to bridge segmentations from one space to another is useful for checking innervation

across datasets. While FlyCircuit single neurons (Chiang et al., 2011) were provided along with

information on innervation density based on their own neuropil segmentation, this segmentation is

not the same as the canonical one (Ito et al., 2014). We have bridged the latter segmentation into

FCWB space and recalculated innervation for all the FlyCircuit neurons, providing a more standar-

dised measure (Figure 6—figure supplement 2g). Further, we can compare neurons from FlyCircuit

with those for which we have electrophysiological data (Frechter et al., 2019; Kohl et al., 2013),

enabling us to suggest a functional role for unrecorded neurons based on their morphological simi-

larity to recorded neurons (Figure 6—figure supplement 2h).

Both the FlyLight (Jenett et al., 2012) and Vienna Tiles libraries (Tirian and Dickson, 2017) con-

tain a wealth of GAL4 lines amenable to intersectional strategies (Luan et al., 2006). However, as

the two libraries are registered to different template spaces, it is difficult to predict which combina-

tions of a FlyLight GMR line with a Vienna Tiles line would produce a good intersection (split-GAL4,

targeting one cell type present in both parent lines) from the raw images provided by both. Bridging

one library into the space of another (Figure 6—figure supplement 2i) enables direct co-visualisa-

tion (see also Otsuna et al. (2018) for an independent bridging output). This could be used manu-

ally or computationally to identify combinations that could potentially yield useful intersectional

expression patterns (Venken et al., 2011).

It is also possible to warp 3D neuropils and neuron skeletons onto some target, without using

landmark pairs. For this, Deformetrica (Bône et al., 2018; Durrleman et al., 2014) can be used to

compute many pairwise registrations at once for different kinds of 3D objects to produce a single

deformation of ambient 3D space describing a registration (Figure 6—figure supplement 3). This is

a generic method that does not require landmark correspondences to be manually assigned. We

give a simple example in Figure 6—figure supplement 3a, symmetrising a distorted brain and mak-

ing a LM-EM bridge for first-instar larva, for which there is a nascent connectome (Berck et al.,

2016; Eichler et al., 2017; Ohyama et al., 2015; Schneider-Mizell et al., 2016). With such a

method it should be possible to bridge EM or LM data between developmental stages for a nervous

system to make comparisons or identify neurons.

EM to LM and back again
Finding neurons of the same cell type between a high-resolution EM dataset and light-level images

of neurons (Figure 7a) is an essential step in identifying neurons and their genetic resources. So

doing links connectivity and detailed morphology information acquired at the nanometer resolution

to other forms of data. This can most easily be done by finding corresponding landmarks in EM data

and a LM template space to build a registration (Figure 6—figure supplement 1).

In Figure 7 and Figure 8, we give the general pipeline we used in recent publications

(Dolan et al., 2019; Dolan et al., 2018a; Frechter et al., 2019; Li et al., 2019) to connect neurons

sparsely labeled in a split-GAL4 line (registered to the template space JFRC2) to sparsely recon-

structed neurons from an EM dataset (FAFB14). Neurons can be manually reconstructed (Schneider-

Mizell et al., 2016) or, more recently, partially reconstructed by machine learning methods

(Januszewski et al., 2018) as segments that can be manually concatenated (Li et al., 2019). A thin

plate spline bridging registration between JFRC2 and FAFB14 was built by finding ~100 correspond-

ing landmarks between the two brainspaces, for example the location of turns in significant tracts,

the boundaries of neuropils, the location of easily identifiable single neurons (Zheng et al., 2018).

This registration can be deployed using xform_brain and our elmr package.

Figure 4 continued

coloured by the manually annotated cells types seen in Figure 2c, with shapes indicating the cell class. (c) Manual sorting using the interactive nat

functions nlscan and find.soma or find.neuron can help identify misclassifications and make assignments.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cell typing zebrafish neurons with nat.

Figure supplement 2. Cell typing vinegar fly neurons with nat.
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Table 1. Neuron morphology resources currently available for the adult D. melanogaster brain.

Dataset Type Count Citations

FlyCircuit Single neuron
morphologies
stochastically
labeled from dense
transmitter-related lines

~23,000 neurons (Chiang et al., 2011; Shih et al., 2015)

FlyLight GMR
collection

Collection of genetic
driver lines, driven by
orthogonal transcription
factors GAL4
(Brand and Perrimon,
1993) or
(Lai and Lee, 2006) LexA

~3500 GAL4 lines
~1500 LexA lines

(Jenett et al., 2012; Pfeiffer et al., 2008)

Vienna Tiles
collection

Collection of genetic
driver lines, driven by
orthogonal transcription
factors GAL4 or LexA

~8000 GAL4 lines
~3000 LexA lines

(Kvon et al., 2014; Tirian and Dickson, 2017)

FlyLight split-
GAL4 collection

Genetic driver lines
labelling small
constellations of neurons
using the split-GAL4
system

~400 sparse lines
covering the mushroom
body, lobula plate and
columns, visual
projection neurons,
ellipsoid body,
descending
neurons, central
complex, olfactory
projection
neurons (Y. Aso,
personal
communication,
2019) and lateral horn.

(Aso et al., 2014; Aso and Rubin, 2016; Dolan et al., 2019; Klapoetke et al.,
2017; Namiki et al., 2018; Robie et al., 2017; Wolff and Rubin, 2018;
Wu et al., 2016)

K. Ito, T. Lee and
V. Hartenstein

Neuroblast clones for the
central brain larval-
born neurons, generated
using the MARCM
method (Lee and Luo,
2001)

~100 neuroblast clones (Ito et al., 2013; Wong et al., 2013; Yu et al., 2013)

FlyEM and
Harvard Medical
School

Volume-restricted
connectomes

Hundreds of neurons
from the mushroom
body
alpha lobe, two antennal
lobe glomeruli and
several columns of the
optic medulla

(Horne et al., 2018; Takemura et al., 2015, Takemura et al., 2013,
Takemura et al., 2017; Tobin et al., 2017)

FAFB project Serial section
transmission electron
microscopy data for a
single, whole adult
female fly brain
(Zheng et al., 2018), that
has a
partial automatic
segmentation available
(Li et al., 2019)

Raw image data
for ~ 150,000 neurons of
which
several hundred have
been partially
reconstructed in recent
publications, 7
thousand more
unpublished; an
estimated ~ 5% of
neurons have some level
of reconstruction.

(Dolan et al., 2019; Dolan et al., 2018b; Felsenberg et al., 2018;
Frechter et al., 2019; Huoviala et al., 2018; Sayin et al., 2019; Zheng et al.,
2018)

Various
laboratories

Single neuron
morphologies extracted
from
dye-filling (e.g. with
biocytin) neurons

Hundreds across a range
of studies,
some cited here

(Frechter et al., 2019; Grosjean et al., 2011; Jeanne et al., 2018;
Jefferis et al., 2007)
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By bridging multiple other light-level datasets into JFRC2 (Figure 6), candidate neurons from the

EM brainspace can be co-visualised (Figure 8c) and NBLAST-ed against light-level datasets in order

to confirm their cell type identity and consider results from different studies (Chiang et al., 2011;

Dolan et al., 2019; Frechter et al., 2019; Jeanne et al., 2018; Figure 8d). However, FAFB14 con-

tains unannotated image data for ~150,000 neurons (Bates et al., 2019), each requiring hours of

manual reconstruction time, and person-power is limited. To find specific neurons in this volume, we

can use the R package elmr to select a distinctive anatomical locus, for example the cell body fiber

tract (Frechter et al., 2019) from 3D plotted neurons, and jump to its approximate coordinates in

FAFB14 in a supported CATMAID instance using the generated URL (Figure 7b). Reconstruction

efforts can then be focused at this location, being aware that the jump is not always completely

accurate despite a good bridging registration as some light-level datasets can be ill-registered

(Figure 7b). In the absence of an extant light-level reconstruction, candidate neurons can be found

by identifying distinctive anatomical loci in the EM volume that correspond to the anatomy of the

cell type in question (Figure 7d).

A user may also want to work the opposite way and connect an interesting EM reconstruction to

light-level data, for example to identify a genetic resource that targets that neuron. In this situation,

a similar pipeline can be used. For D. melanogaster, a reconstruction can be bridged into JFRC2 and

NBLAST-ed against GAL4 lines (Jenett et al., 2012; Tirian and Dickson, 2017) read from image

data and represented as vector clouds (Costa et al., 2016). Alternatively, image matching tools can

be used, such as the recent colour depth MIP mask search (Otsuna et al., 2018), which operates as

an ImageJ plug-in (Figure 7c).

Further, because close light-level matches for in-progress EM reconstructions reveal the likely

morphology of non-reconstructed branches (Figure 7c) this process can help human annotators

reconstruct neurons accurately and in a targeted manner, which may be desirable given how time

intensive the task is. In order to further reduce this burden, we combined the natverse with a

recent automatic segmentation of neurites in FAFB14 using a flood filling approach (Li et al., 2019),

Table 2. Exemplar Drosophila template brains.

Template
Brain Description Resources DOI Citation

Wuerzburg Single nc82-stained female brain - - (Rein et al., 2002)

TEFOR Averaged brain generated from
Rein
et al. dataset (22, 22)

- - (Arganda-Carreras et al.,
2018)

JRC2018F A symmetrised high-quality
template using brp-SNAP

- 10.6084/m9.figshare.
6825923

(Bogovic et al., 2018)

Cell07 Partial intersex nc82-stained
averaged brain (14, 2)

~240 lateral horn projection
neuron tracings

10.5281/zenodo.10570 (Jefferis et al., 2007)

T1 Intersex nc82-stained
averaged brain

The Vienna Tiles collection 10.5281/zenodo.10590 (Yu et al., 2010)

IS2 Intersex nc82-stained
averaged brain

1018 3D confocal images of
fruitless neurons

10.5281/zenodo.10595 (Cachero et al., 2010)

FCWB Intersex Dlg-stained averaged
brain (17, 9)

Good for FlyCircuit data,
~16,000 neurons re-registered

10.5281/zenodo.10568 (Costa et al., 2016)

JFRC Single nc82-stained female brain The FlyLight collection - (Jenett et al., 2012)

JFRC2 Spatially calibrated copy of JFRC The FlyLight collection 10.5281/zenodo.10567 This study

IBN Tri-labelled half brain, with
n-syb-GFP

Neuropil and tract
segmentations (half-brain)

- (Ito et al., 2014)

IBNWB Synthetic whole-brain version
of IBN

Neuropil and tract
segmentations (whole-brain)

10.5281/zenodo.10569 This study

FAFBV14 An aligned volume for a single
whole female fly brain from EM data

Thousands of single neuron partial
manual reconstructions and
fragmented automatic
segmentation
(Li et al., 2019)

- (Zheng et al., 2018)
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Figure 5. Sample applications of mirroring registrations. (a) Three FlyCircuit neurons along with mirrored versions; a visual projection neuron, OA-

VUMa2 (Busch et al., 2009) and the CSD interneuron (Dacks et al., 2006). Co-visualisation facilitates the detection of differences in innervation, such

as the higher density of innervation for the CSD interneuron in the lateral horn on the contralateral side compared to the ipsilateral lateral horn. (b)

Neurons from the same side of the brain and alternate side of brain are compared and a similarity score generated. (c) Distributions of similarity scores

Figure 5 continued on next page
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which produces volumetric fragments of neurites, where segments may be fairly large, ~100 mm in

cable length.

Our fafbseg package includes functions to implement improved up-/downstream sampling of

neurons based on these segments, which we have recently discussed elsewhere (Li et al., 2019). We

can also generate volumetric reconstructions of manually traced neurons by mapping them onto vol-

umetric data (Figure 8—figure supplement 1b), hosted by a brainmaps server and visible through a

Neuroglancer instance (Figure 8—figure supplement 1a). Currently, ~500 such segments will map

onto one accurately manually traced neuron but only ~20 segments may constitute the highest Strah-

ler order branches meaning that manual concatenation of these fragments speeds up discovery of

coarse morphologies by ~10 x (Li et al., 2019). These fragments can be used to identify the neuron

in question by NBLAST-ing against light-level data. Twigs and small-calibre, lower Strahler order

branches are more difficult to automatically segment (Figure 8—figure supplement 1d). Neverthe-

less, matching tracings to segmentations allows us to estimate the volume of neurons that we have

previously manually reconstructed (Dolan et al., 2019; Dolan et al., 2018a) by only tracing the neu-

rites’ midline (i.e. skeletonisation). We can therefore observe that superior brain neurons’ axons are

slightly thicker than their dendrites and their total cable length correlates strongly with neurite vol-

umes (Figure 8—figure supplement 1e).

A densely reconstructed connectome, with ~35% of synapses connected up for just under half of

the central fly brain has recently been made available by the FlyEM team at Janelia Research Cam-

pus (Scheffer and Meinertzhagen, 2019; Shan Xu et al., 2020). Neurons from this ‘hemibrain’ vol-

ume can be transformed to the JRC2018F light level template brain via a bridging registration

constructed using the strategy described by Bogovic et al. (2018). We have already wrapped this

bridging registration within the natverse framework, thereby connecting it to the full network of fly

template brains, datasets and analysis tools already described in this paper. We will release these

tools when the hemibrain project makes its transforms publicly available.

Discussion
The shape of a neuron is of major functional significance. Morphology is driven by and constrains

connectivity. It is also the primary means by which neuroscientists have historically identified neuron

classes. There have been three main drivers behind the recent emphasis on quantitative neuroanat-

omy: a) the ever increasing scale of new approaches for acquiring image data and reconstructing

neurons, b) a drive to formalise descriptions of the spatial properties of neurons and networks at var-

ious scales, and c) a desire to intuit the organisational principles behind different nervous tissues and

correlate these findings with dynamic data on neuron activity.

With the natverse, a suite of R packages for neuroanatomy with well-documented code and

detailed installation instructions and tutorials available online, we aim to expedite analysis of these

data in a flexible programming environment. The natverse allows a user to read data from local or

remote sources into R, and leverage both natverse functions and the >10,000 R packages on

CRAN (and more on Bioconductor, Neuroconductor, GitHub, etc.) to aid their data analysis. Users

may also call natverse R functions from other languages such as Python, Julia, MATLAB. We have

provided detailed examples to analyse skeleton and volume data from various sources and have

made both R and Python code available at https://github.com/natverse/nat.examples. These exam-

ples demonstrate how to obtain skeleton and volume data, calculate basic metrics for neurons,

examine synapses and other tagged biological features like microtubules, analyse morphology as a

graph or through Strahler order and NBLAST searches, prune neurons, semi-manually cell type neu-

rons, spatially transform neurons and create subvolumes using neurons. We have also given an

Figure 5 continued

for comparisons within the same brain hemisphere and across brain hemispheres. These scores are similar, because the mirroring registration is good.

(d) Sequence of 12 example neurons (black) with mirrored counterparts (grey), having equally spaced similarity scores. Below, full distribution of scores

for all neurons in FlyCircuit dataset. (e) Segment-by-segment measures of neuron similarity. Redder shades correspond to low degrees of symmetricity,

bluer shades higher. Flipped version of neuron in gray.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Mirroring procedure.
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Figure 6 continued on next page
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example of building a more complex analysis, based on natverse tools but making use of other

available R packages.

We hope that the natverse becomes a collaborative platform for which users can contribute to

existing R packages or link to their own. We note that the natverse is an actively developing proj-

ect and also anticipate a) an increasing interest in dealing with neurons as volumes as automatic seg-

mentation of datasets becomes commonplace, b) expanding our bridging tools to support a wider

range of species, and to map between similar species and developmental stages, c) writing libraries

to facilitate the use of the natverse in other programming languages and toolboxes besides

Python, and d) expanding the range of neurogeometric analysis algorithms readily available in the

natverse.

In addition to general purpose natverse tools, we have generated some specific R packages to

support ongoing projects in the D. melanogaster brain. We have constructed high-quality registra-

tions for the bridging of data from one template space to another, along with registrations for mir-

roring data across brain hemispheres. In two of the largest cases, only raw unregistered data were

available, so we began by registration to an appropriate template space. This has allowed us to

deposit ~20,000 co-registered images from different sources in the virtualflybrain.org project. Aver-

aged intersex template spaces can form high-quality registration templates for both sexes and we

recommend the use of averaged brains to reduce the effects of sample-to-sample variation. We pro-

pose using a small number of template spaces, particularly those that are already associated with

the most data (JFRC2) or of highest quality (Bogovic et al., 2018), as a hub. High-quality bridging

registrations would be created between new template spaces and brains in the hub, ensuring that

any template could be bridged to any other via appropriate concatenations and inversions of these

registrations.

Using these resources, it is now possible to co-visualise and analyse more than 23,000 single neu-

ron images (Chiang et al., 2011), expression patterns of >9500 GAL4 lines (Jenett et al., 2012;

Kvon et al., 2014; Tirian and Dickson, 2017) and a near complete set of ~100 adult neuroblast

clone lineage data (Ito et al., 2013; Yu et al., 2013) and easily combine these data with the stan-

dard insect brain name nomenclature system (Ito et al., 2014). For example we have calculated the

neuropil overlap between single neurons in the FlyCircuit data, which we have deposited with virtual-

flybrain.org so they can be queried online. It will soon be possible to identify split-GAL4 lines, a syn-

aptic EM reconstruction and the developmental clone of origin for any given neuron or neuronal cell

type for D. melanogaster. We anticipate such mappings to become publicly available and easy to

use via resources such as https://v2.virtualflybrain.org/. Significantly, if an experimenter is able to

register their functional imaging data to a template brain space (Mann et al., 2017; Pacheco et al.,

2019), or alternatively identify neuroanatomical features in that data that can be used to build a

landmark-based affine or thin-plate spline registration (e.g. using Morpho Schlager, 2017), they may

be able to directly link it to cell types discovered in other datasets, including EM datasets.

The near future will see generation of EM data for multiple whole adult Dipteran brains and larval

zebrafish, possibly from different sexes and species, as well as quality automatic segmentations for

such data’s neurites (Funke et al., 2019; Januszewski et al., 2018) and synapses (Heinrich et al.,

2018), even from anisotropic serial section transmission EM data (Li et al., 2019). Interpreting high-

resolution EM connectomic data will be accelerated and enriched by making links to light level data

(Schlegel et al., 2017). Furthermore, it is possible that connectomes and transcriptomes may be

Figure 6 continued

space names indicate current space of image. (d) Neuropil segmentation from JFRC2 space alongside FCWB reformatted version. (e) CSD interneuron

from FlyCircuit (red) and FlyLight, GMR GAL4 expression pattern (cyan). (f) Neuropil segmentation from JFRC2 (Ito et al., 2014) space that has been

bridged into FCWB space, so it can be seen along with selected neurons from FlyCircuit. (g) A traced neuron in FCWB space alongside

morphologically similar neuron from FlyCircuit. (h) Expression pattern of Vienna Tiles line superimposed on expression pattern of FlyLight line. (Since

we made our bridging publically available in April 2014, Otsuna et al., 2018 have also, separately, bridged these two datasets.).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Bridging procedure.

Figure supplement 2. Bridging examples.

Figure supplement 3. Warping registration without point-point correspondence.
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Figure 7. Finding specific neurons in EM and LM data. (a) Pipeline for acquiring EM neuron data. Serial section transmission EM at high speed with a

TEM camera array (Bock et al., 2011) produced several micrographs per section at 4 � 4 nm resolution, ~40 nm thick. These were, per section, stitched

into mosaics which were, across sections, registered to create the female adult fly brain v.14 template space (FAFB14, grey) (Zheng et al., 2018).

Corresponding landmarks between FAFB14 and JFRC2 can be found and used to build a bridge. (b) The R package elmr can be used to select an

Figure 7 continued on next page
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linked on a cell type basis, using neuron morphology as a bridge (Bates et al., 2019). The natverse

provides extensible functionality for easily combining and analysing all these data.

Materials and methods

R packages for neuroanatomy
The R programming language (R Development Core Team, 2011) is perhaps the premier environ-

ment for statistical data analysis, is well supported by the integrated development environment

RStudio and is a strong choice for data visualisation (Wickham, 2016). It already hosts a wealth of

packages for general morphometric and graph theoretic analysis (Csardi and Nepusz, 2006;

Duong, 2007; Lafarge et al., 2014; Schlager, 2017). An R package is a bundle of functions, docu-

mentation, data, tests and example code (Wickham, 2015). R packages are discrete, standardised

and highly shareable units of code. They are primarily installed either from the Comprehensive R

Archive Network (CRAN, >14,000 packages, curated), Bioconductor (>1700 packages, curated) or

GitHub (larger, uncurated), using just one or two function calls and an Internet connection. Con-

firmed stable versions of nat, nat.templatebrains, nat.nblast, nat.utils and nabor can be downloaded

from the centralised R package repository, CRAN. The natmanager package provides a streamlined

installation procedure and will advise the user if a GitHub account is required for the full natverse

install (see http://natverse.org/install).

install.packages(‘natmanager’)

# install core packages to try out the core natverse

natmanager::install(‘core’)

# Full ‘batteries included’ installation with all packages

# You need a GitHub account and personal access token (PAT) for this

natmanager::install(‘natverse’)

The R packages behind the natverse can be divided into four groups (Figure 1A):

Working with synaptic resolution data in nat
Group a) obtains synaptic-level data required for connectomes and includes catmaid,Xneu-

printr,Xdrvid and fafbseg. The package catmaid provides application programming interface

(API) access to the CATMAID web image annotation tool (Saalfeld et al., 2009; Schneider-

Mizell et al., 2016). CATMAID is a common choice for communities using terabyte-scale EM data to

manually reconstruct neuron morphologies and annotate synaptic locations (Berck et al., 2016;

Dolan et al., 2018a; Eichler et al., 2017; Frechter et al., 2019; Ohyama et al., 2015; Zheng et al.,

2018). Users can use catmaid to read CATMAID neurons into R including the locations and associa-

tions of their synapses, and other tags that might identify biological entities such as somata, microtu-

bules or gap junctions. Users can also leverage CATMAID’s infrastructure of flexible hierarchical

Figure 7 continued

anatomical locus, here the PD2 primary neurite tract (Frechter et al., 2019), from 3D plotted light-level neurons, taken from FlyCircuit, and generate a

URL that specifies its correct coordinates in a FAFB14 CATMAID instance. Candidates (185) may then be coarsely traced out until they deviate from the

expected light-level morphologies (178 pink dotted profiles, often a few minutes to an hour of manual reconstruction time to rule out neurons of

dissimilar cell types sharing a given tract, similar cell types are more subtly different and might need to be near completely reconstructed). Those that

remain largely consistent were fully reconstructed (green profiles, ~7–12 person-hours per neuron) (Li et al., 2019). (c) Close matches reveal likely

morphology of non-reconstructed branches (orange arrow) but also contain off-target expression (yellow arrow). Identification of multiple candidate

lines enables split-GAL4 line generation aimed at retaining common neurons in two GAL4 patterns. MultiColor FlpOut (MCFO) (Nern et al., 2015) of

resultant splits can be compared with the EM morphology. Here, a candidate GAL4 line is found for AL-lALT-PN3 (Frechter et al., 2019; Tanaka et al.,

2012) using NBLAST and a MIP search (Otsuna et al., 2018). (d) A recent dense, but volume-restricted reconstruction of the mushroom body a-lobe

discovered a ‘new’ mushroom body output neuron type (MBON-a2sp) (Takemura et al., 2017). By bridging from the correct mushroom-body

compartment using a mushroom body mesh (Ito et al., 2014) visualised in R Studio, to the FAFB14 EM data’s equivalent space in CATMAID using the

R package elmr, an experienced tracer can easily identify dendrites and find MBON-a2sp. By doing so, we found its previously unreported axon-

morphology. We then imported the skeleton into R studio, bridged MBON-a2sp into the JFRC2 template space where it could be NBLAST-ed against

GMR GAL4 lines to identify candidate lines containing the MBON.
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Figure 8. Bridging EM and LM data. (a) Sparse EM reconstruction providing a database of non-comprehensive, partial morphologies that can be

searched using NBLAST. Candidate neurons from the EM brainspace can be NBLAST-ed against MCFO (Nern et al., 2015) data and other light-level

datasets in order to connect them to cell-type-specific information, such as odour responses and functional connectivity (Chiang et al., 2011;

Dolan et al., 2019; Frechter et al., 2019; Jeanne et al., 2018), by bridging these datasets into the same brainspace. (b) An all-by-all NBLAST of all

Figure 8 continued on next page
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semantic annotations to make queries for neurons for example in a brain region of interest. Further

catmaid can edit CATMAID databases directly, for example by adding annotations, uploading neu-

rons, synapses and meshes. Some CATMAID instances are kept private by a community before data

publication. In this case, catmaid can enable a user to send authenticated requests to a CATMAID

server, that is data can be kept private but still be read into R over an Internet connection. The pack-

ages neuprintr and drvid are very similar, except that they interact with API endpoints for differ-

ent distributed annotation tools, the NeuPrint connectome analysis service (Clements et al., 2020;

https://github.com/connectome-neuprint/neuPrint) and DVID (Katz and Plaza, 2019) and can

retrieve neurons as volumes as well as skeletons. The package fafbseg aims to make use of the

results of automatic segmentation attempts for large, dense brain volumes. It includes support for

working with Google’s BrainMaps and NeuroGlancer (https://github.com/google/neuroglancer).

Automatic segmentation of EM data is a rapidly-developing field and this package is currently in

active development; at present it only supports auto-segmentation (Li et al., 2019) of a single

female adult fly brain (FAFB) dataset (Zheng et al., 2018).

Working with light-resolution data projects in nat
Group b) is targeted at light microscopy and cellular resolution atlases, or mesoscale projectomes.

Its packages, neuromorphr,Xflycircuit,Xvfbr,Xmouselight,Xinsectbrainr and fishat-

las can read from large repositories of neuron morphology data, many of which are co-registered

in a standard brain space. neuromorphr provides an R client for the NeuroMorpho.org API

(Ascoli et al., 2007; Halavi et al., 2008; Nanda et al., 2015), a curated inventory of reconstructed

neurons (n = 107395, 60 different species) that is updated as new reconstructions are collected and

published. Since its neurons derive from many different systems and species, there is no ’standard’

orientation, and so they are oriented by placing the soma at the origin and aligning neurons by their

principal components in Euclidean space. insectbrainr can retrieve neurons and brain region sur-

face models from InsectBrainDB.org (n = 139 neurons, 14 species). Similarly flycircuit interacts

with the flycircuit.tw project (Chiang et al., 2011; Shih et al., 2015), which contains >23,000 regis-

tered and skeletonised D. melanogaster neurons. The vfbr package can pull image data from Virtual-

FlyBrain.org, which hosts registered stacks of central nervous system image data for D.

melanogaster, including image stacks for the major GAL4 genetic driver line collections

(Jenett et al., 2012), neuroblast clones (Ito et al., 2013; Yu et al., 2013) and FlyCircuit’s stochasti-

cally labelled neurons (Chiang et al., 2011). This non-skeleton data can be read into R as point

clouds. The fishatlas package interacts with FishAtlas.neuro.mpg.de, which contains 1709 regis-

tered neurons from the larval Danio rerio (Kunst et al., 2019), while mouselightr does the same

for the MouseLight project at Janelia Research Campus (Economo et al., 2016), which has gener-

ated >1000 morphologies. In both cases, investigators have acquired sub-micron single neuron

reconstructions from datasets of whole brains using confocal (Kunst et al., 2019) or two-photon

microscopy (Economo et al., 2016), modified tissue clearing techniques (Treweek et al., 2015), and

generated a template brain with defined subvolumes.

Working with registrations in nat
Group c) helps users make use of registration and bridging tools. The package nat.ants wraps the

R package ANTsRCore (Kandel et al., 2019) with a small number of functions to enable nat func-

tions to use Advanced Normalisation Tools (ANTs) registrations (Avants et al., 2009). The R pack-

age deformetricar does the same for the non-image (e.g. mesh or line data) based registration

software Deformetrica (Bône et al., 2018; Durrleman et al., 2014) without the need for landmark

correspondences. The nat package already contains functions to support CMTK registrations

(Rohlfing and Maurer, 2003). The nat.templatebrains package extends nat to explicitly include

Figure 8 continued

neurons in the PD2 primary neurite cluster (Frechter et al., 2019) in multiple datasets can be shown as a tSNE plot. EM cell type matches can easily be

found, as well as other correspondences between the light level datasets.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Using partial automatic segmentation of EM data.
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the notion of each neuron belonging to a certain template space, as well as functions to deploy

bridging and mirroring registrations. Additionally, nat.flybrains contains mesh data describing

commonly used template spaces for D. melanogaster as well as CMTK bridging and mirror deforma-

tions discussed in the latter half of the results section.

Analysing data in nat
Group d) contains functions that help users to easily analyse neuron data as both skeletons and vol-

umes. Its biggest contributor is nat.Xnat.nblast allows users to deploy the NBLAST neuron simi-

larity algorithm (Costa et al., 2016), by pairwise comparison of vector clouds describing these

neurons in R. Our nabor package is a wrapper for libnabo (Elseberg et al., 2012), a k-nearest

neighbour library which is optimised for low dimensional (e.g. 3D) spaces. The package elmr is

another fly focused package that has been born out of a specific use case. Currently, ~22 laborato-

ries and ~100 active users worldwide are engaged with reconstructing D. melanogaster neurons

from EM data (Zheng et al., 2018) using CATMAID (Saalfeld et al., 2009; Schneider-Mizell et al.,

2016) in order to build a draft, sparse connectome. The package elmr allows users to read neurons

from this environment, transform them into a template space where they can be compared with

light-level neurons for which the community may have some other information (e.g. gene expression,

functional characterisation, presence in genetic drive lines, etc.), then visualised and/or NBLAST-ed;

all with only a few lines of code. This process enables CATMAID users to perform interim analyses as

they reconstruct neurons, helping them to choose interesting targets for reconstruction and identify

manually traced or automatically reconstructed neuron fragments (Dolan et al., 2019) or anatomical

landmarks such as fiber tracts (Frechter et al., 2019), and so improve the efficiency of their targeted

circuit reconstructions (Dolan et al., 2018a; Felsenberg et al., 2018; Huoviala et al., 2018).

Building mirroring registrations
A simple 180˚ flip about the medio-lateral axis is insufficient to generate a left-right mirror for most

neuroanatomical volumes; after flipping, the brain will not be perfectly centered in the image. It is

first necessary to apply an affine registration to roughly match the flipped brain to the same location

as the original. This results in a flipped brain with the correct gross structure (i.e. large structures

such as neuropils align) but with mismatched fine details (e.g. bilaterally symmetric neurons may

appear to innervate slightly different regions on either side (Figure 5a). For example, for the JFRC2

template space we found that points are, on average, displaced by 4.8 mm from their correct posi-

tion, equivalent to 7–8 voxels of the original confocal image. The largest displacements, of the order

of 10–15 mm, are found around the esophageal region (Figure 5—figure supplement 1b) and are

likely due to specimen handling when the gut is removed during dissection. An ideal mirroring regis-

tration would result in zero total displacement after two applications of the mirroring procedure,

that is a point would be mapped back to exactly the same location in the original brain hemisphere.

Our constructed mirroring registrations have, on average, a round-trip displacement of less than a

quarter of a micron — that is about the diffraction limit resolution of an optical microscope and less

than half of the sample spacing of the original confocal image (Figure 5—figure supplement 1c).

Building bridging registrations
Given a bridging registration A 7! B, an attempt to produce the registration B 7! A can be made via

numerical inversion of the original registration. This is a computationally intensive process but we

find it to be useful for neuroanatomical work as the inaccuracies are set by numerical error, which is

much smaller than registration error. As the registration A 7! B may be injective (i.e. points within

brain A may map to a subset of the points within brain B), there may be some points in B, particu-

larly near the boundaries of the brain, for which this inversion will not map them into A. To counter

this we have, for some brains, constructed a new registration B 7! A by explicitly registering B onto

A, rather than relying on numerical inversion. Full details of the building of bridging registrations

and their directions are shown in Figure 6—figure supplement 1. Here, the arrows indicate the

direction of the forward transformation but, due to the ability to numerically invert the transforma-

tions, it is possible to travel ‘backwards’ along an arrow to transform in the opposite direction. While

the inversion takes an appreciable time to calculate, the resulting errors are extremely small, far

below the resolution of the original images, and only exist due to the finite precision with which the
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floating-point numbers are manipulated. By inverting and concatenating bridging registrations as

appropriate, it is possible to transform data registered to any of the template spaces to any of the

other template spaces.

Creating accurate registrations
Full, non-rigid warping registrations were computed using the Computational Morphometry Toolkit

(CMTK), as described previously (Jefferis et al., 2007). An initial rigid affine registration with twelve

degrees of freedom (translation, rotation and scaling of each axis) was followed by a non-rigid regis-

tration that allows different brain regions to move somewhat independently, subject to a smooth-

ness penalty (Rueckert et al., 1999). In the non-rigid step, deformations between the independently

moving control points are interpolated using B-splines, with image similarity being computed

through the use of a normalised mutual information metric (Studholme et al., 1999). The task of

finding an accurate registration is treated as an optimisation problem of the mutual information met-

ric that, due to its complex nature, has many local optima in which the algorithm can become stuck.

To help avoid this, a constraint is imposed to ensure the deformation field is spatially smooth across

the brain, as is biological reasonable. Full details of the parameters passed to the CMTK tools are

provided in the ’settings’ file that accompanies each registration. To create mirroring registrations,

images were first flipped horizontally in Fiji before being registered to the original template spaces

using CMTK. For convenience, we also encoded the horizontal flip as a CMTK-compatible affine

transformation, meaning that the entire process of mirroring a sample image can be carried in single

step with CMTK.

Construction of new template spaces
The template space provided by the FlyLight project (JFRC) is not spatially calibrated and so we

added spatial calibration to a copy named JFRC2. Similarly, FlyCircuit images are registered to male

and female template spaces and so we created an intersex template space from 17 female and 9

male brains to bring all FlyCircuit neurons into a common space, irrespective of sex. The IS2, Cell07

and T1 template spaces were left unaltered.

As the neuropil and tract masks provided by the Insect Brain Name working group (Ito et al.,

2014) only cover half a brain (IBN), we extended the IBN template space into a new whole brain

template (named IBNWB) to improve the quality of the bridging registration between the IBN files

and the other whole brain templates. The green channel (n-syb-GFP) of the tricolour confocal data

provided was taken, duplicated and flipped about the medio-lateral axis using Fiji (Schindelin et al.,

2012). The Fiji plugin ‘Pairwise stitching’ (Preibisch et al., 2009) was used to stitch the two stacks

together with an offset of 392 pixels. This offset was chosen by eye as the one from the range of off-

sets 385–400 pixels that produced the most anatomically correct result. The overlapping region’s

intensity was set using the ‘linear blend’ method. We attempted improving on this alignment using

the Fourier phase correlation method that the plugin also implements, but this gave poor results –

the algorithm favoured overlapping the optic lobes, with a half central brain being present on each

of the left and right sides.

As the template space is synthesised from an affine transformation of the original IBN template,

we only considered an affine bridging registration between IBN and IBNWB. The n-syb-GFP labelling

used in the IBN template strongly labels a large collection of cell bodies close to the cortex, poste-

rior of the superior lateral protocerebrum and lateral horn, that are not labelled by nc82 or Dlg and

hence the warping registrations from IBNWB to the other whole brain templates are less accurate in

this region.

Construction of averaged template spaces
CMTK’s avg_adm tool was used to iteratively produce new averaged seed brains given a set of tem-

plate spaces and an initial seed brain drawn from the set. In each round, template spaces are regis-

tered to the seed brain and averaged to produce a new seed brain. After all rounds are complete, a

final affine registration between the latest seed brain and a flipped version is calculated and then

halved, resulting in a final brain that is centered in the middle of the image. The FCWB template was

produced in this manner using 17 female and 9 male brains. We have developed documented tools

to help users make average templates, here: https://github.com/jefferislab/MakeAverageBrain.
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Application of registrations to images, traced neurons and surface data
CMTK provides two commands, reformatx and streamxform that will use a registration to refor-

mat images and transform points, respectively. The R package nat wraps these commands and can

use them to transform neuroanatomical data, stored as objects in the R session, between template

spaces. A 3D surface model of the standard neuropil segmentation (Ito et al., 2014) was generated

from the labelled image stack, using Amira, read into R using nat, transformed into the different

template template spaces, via JFRC2, and saved as new 3D surfaces. These can then be used to seg-

ment neurons in their original space, providing interesting volumetric data for a neuron such as the

relative density of neuropil innervation.

Flies
Wild-type (Canton S, Bloomington Stock Center, Indiana University) and transgenic strains were kept

on standard yeast/agar medium at 25˚C. Transgenics were a GH146-lexA line and the dFasciculin-II-

GFP protein trap line (courtesy of M. Landgraf). Lines were balanced with CyO, Dfd-GMR-YFP or

TM6b, Sb, Dfd-GMR-YFP balancer chromosomes (Bloomington Stock Center, Indiana University).

Larval dissection, immunohistochemistry and imaging
Flies were mated a day before dissection and laid eggs on apple-juice based media with a spot of

yeast paste overnight at 250C. Adults and large hatched larvae were subsequently removed, and

small embryos (approx. the length of an egg) were dissected in Sorensen’s saline (pH 7.2, 0.075 M).

A hypodermic needle (30 ½ G; Microlance) was used to sever the mouth hooks of each larva, at

which point the CNS extruded along with viscera, and was gently separated and stuck to a cover

glass that has been coated with poly-L-lysine (Sigma-Aldrich) in a bubble of solution. The CNS’ were

then fixed in 4% formaldehyde (Fisher Scientific) in Sorensen’s saline for 15 min at room tempera-

ture, and subsequently permeabilised in PBT (phosphate buffer with 0.3% Triton-X-100, SigmaAl-

drich). Incubated overnight in primary antibodies at 4˚C and, after washes in PBT, in secondary

antibodies for 2 hr at room temperature. Washes took place in either a bubble of fluid or shallow

dish filled with solution to prevent collapse of brain lobes into the VNC. For this reason also, confo-

cal stacks were acquired with a 40x dipping lens on a Zeiss LSM 710, voxel resolution 0.2 � 0.2�0.5

microns. Primary antibodies used were Chicken anti-GFP (Invitrogen), 1: 10,000, mouse IgG1 anti-

FasciclinII (DSHB), 1:10, rat N-Cadherin (DSHB) and mouse IgG1 Discs large-1, 1:50. Secondaries

used were goat anti-mouse CF568, 1:600, goat anti-Chicken Alexa488, goat anti-mouse CF647,

1:600. Some antibodies and dissection training were kindly supplied by M. Landgraf.

Visualisation
The majority of images shown in this manuscript were generated in R Studio. 3D images were plot-

ted with natverse functions that depend on the R package rgl (Murdoch, 2001), 2D plots were

generated using ggplot2 (Wickham, 2016). 3D images of confocal data were visualised using

Amira 6.0, and Paraview. Figures were generated using Adobe Illustrator.

Data availability
The bridging and mirroring registrations are deposited in two version controlled repositories at

http://github.com with revisions uniquely identified by the SHA-1 hash function. As some template

spaces may have multiple versions, we identify each version by its SHA-1 hash as this is uniquely

dependent on the data contained in each file. Since we use the distributed version control system,

git, any user can clone a complete, versioned history of these repositories. We have also taken a

repository snapshot at the time of the release of this paper on the publicly funded http://zenodo.

org site, which associates the data with a permanent digital object identifiers (DOIs).To simplify data

access for colleagues, we have provided spatially calibrated template spaces for the main template

spaces in use by the Drosophila community in a single standard format, NRRD. These brain images

have permanent DOIs listed in Table 2. We have also generated registrations for the entire FlyCircuit

single neuron and FlyLight datasets. The registered images have been deposited at http://virtualfly-

brain.org. The R packages nat.flybrains and elmr in the natverse also contain easy-to-use

functions for deploying these registrations. The complete software toolchain for the construction

and application of registrations consists exclusively of open source code released under the GNU

Bates et al. eLife 2020;9:e53350. DOI: https://doi.org/10.7554/eLife.53350 26 of 35

Tools and resources Computational and Systems Biology Neuroscience

http://github.com
http://zenodo.org
http://zenodo.org
http://virtualflybrain.org
http://virtualflybrain.org
https://doi.org/10.7554/eLife.53350


Public License and released on http://github.com and http://sourceforge.net. A full listing of these

resources is available at http://jefferislab.org/si/bridging. All these steps will ensure that these

resources will be available for many years to come (as has been recommended Ito, 2010).
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Bône A, Louis M, Martin B, Durrleman S. 2018. Deformetrica 4: an Open-Source software for statistical shape
Analysis. In: Shape in Medical Imaging. Springer International Publishing. p. 3–13. DOI: https://doi.org/10.
1007/978-3-030-04747-4_1

Brand AH, Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and generating
dominant phenotypes. Development 118:401–415. PMID: 8223268

Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R. 2005. Three-dimensional
average-shape atlas of the honeybee brain and its applications. The Journal of Comparative Neurology 492:1–
19. DOI: https://doi.org/10.1002/cne.20644, PMID: 16175557

Brown KM, Donohue DE, D’Alessandro G, Ascoli GA. 2005. A cross-platform freeware tool for digital
reconstruction of neuronal arborizations from image stacks. Neuroinformatics 3:343–360. DOI: https://doi.org/
10.1385/NI:3:4:343, PMID: 16284416

Busch S, Selcho M, Ito K, Tanimoto H. 2009. A map of octopaminergic neurons in the Drosophila brain. The
Journal of Comparative Neurology 513:643–667. DOI: https://doi.org/10.1002/cne.21966, PMID: 19235225

Cachero S, Ostrovsky AD, Yu JY, Dickson BJ, Jefferis GSXE. 2010. Sexual dimorphism in the fly brain. Current
Biology 20:1589–1601. DOI: https://doi.org/10.1016/j.cub.2010.07.045, PMID: 20832311

Cannon RC, Turner DA, Pyapali GK, Wheal HV. 1998. An on-line archive of reconstructed hippocampal neurons.
Journal of Neuroscience Methods 84:49–54. DOI: https://doi.org/10.1016/S0165-0270(98)00091-0, PMID:
9821633

Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, Shih CT, Wu JJ, Wang GT, Chen YC, Wu CC,
Chen GY, Ching YT, Lee PC, Lin CY, Lin HH, Wu CC, Hsu HW, Huang YA, Chen JY, et al. 2011. Three-
dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current
Biology 21:1–11. DOI: https://doi.org/10.1016/j.cub.2010.11.056, PMID: 21129968

Clemens J, Girardin CC, Coen P, Guan XJ, Dickson BJ, Murthy M. 2015. Connecting neural codes with behavior
in the auditory system of Drosophila. Neuron 87:1332–1343. DOI: https://doi.org/10.1016/j.neuron.2015.08.
014, PMID: 26365767

Clemens J, Coen P, Roemschied FA, Pereira TD, Mazumder D, Aldarondo DE, Pacheco DA, Murthy M. 2018.
Discovery of a new song mode in Drosophila reveals hidden structure in the sensory and neural drivers of
behavior. Current Biology 28:2400–2412. DOI: https://doi.org/10.1016/j.cub.2018.06.011, PMID: 30057309

Clements J, Dolafi T, Umayam L, Neubarth NL, Berg S, Scheffer LK, Plaza SM. 2020. neuPrint: analysis tools for
EM connectomics. bioRxiv. DOI: https://doi.org/10.1101/2020.01.16.909465

Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, Nguyen KCQ, Tang LT, Bayer EA, Duerr JS,
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