EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD

Abstract

Sequential mannose trimming of N-glycan (Man9GlcNAc2 -> Man8GlcNAc2 -> Man7GlcNAc2) facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). Our gene knockout experiments in human HCT116 cells have revealed that EDEM2 is required for the first step. However, it was previously shown that purified EDEM2 exhibited no a1,2-mannosidase activity toward Man9GlcNAc2 in vitro. Here, we found that EDEM2 was stably disulfide-bonded to TXNDC11, an endoplasmic reticulum protein containing five thioredoxin (Trx)-like domains. C558 present outside of the mannosidase homology domain of EDEM2 was linked to C692 in Trx5, which solely contains the CXXC motif in TXNDC11. This covalent bonding was essential for mannose trimming and subsequent gpERAD in HCT116 cells. Furthermore, EDEM2-TXNDC11 complex purified from transfected HCT116 cells converted Man9GlcNAc2 to Man8GlcNAc2(isomerB) in vitro. Our results establish the role of EDEM2 as an initiator of gpERAD, and represent the first clear demonstration of in vitro mannosidase activity of EDEM family proteins.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Ginto George

    Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoshi Ninagawa

    Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hirokazu Yagi

    Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9296-0225
  4. Taiki Saito

    Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tokiro Ishikawa

    Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1718-6764
  6. Tetsushi Sakuma

    Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0396-1563
  7. Takashi Yamamoto

    Department of Mathematical and Life Sciences, Hiroshima University, Hiroshima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Koshi Imami

    Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Yasushi Ishihama

    Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Koichi Kato

    Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Tetsuya Okada

    Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
    For correspondence
    tokada@upr.biophys.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  12. Kazutoshi Mori

    Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
    For correspondence
    mori@upr.biophys.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7378-4019

Funding

Ministry of Education, Culture, Sports, Science, and Technology (18K06216)

  • Satoshi Ninagawa

Ministry of Education, Culture, Sports, Science, and Technology (17H06414)

  • Hirokazu Yagi

Ministry of Education, Culture, Sports, Science, and Technology (19K06658)

  • Tokiro Ishikawa

Ministry of Education, Culture, Sports, Science, and Technology (18K06110)

  • Tetsuya Okada

Ministry of Education, Culture, Sports, Science, and Technology (17H01432)

  • Kazutoshi Mori

Ministry of Education, Culture, Sports, Science, and Technology (17H06419)

  • Kazutoshi Mori

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, George et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,924
    views
  • 407
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ginto George
  2. Satoshi Ninagawa
  3. Hirokazu Yagi
  4. Taiki Saito
  5. Tokiro Ishikawa
  6. Tetsushi Sakuma
  7. Takashi Yamamoto
  8. Koshi Imami
  9. Yasushi Ishihama
  10. Koichi Kato
  11. Tetsuya Okada
  12. Kazutoshi Mori
(2020)
EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD
eLife 9:e53455.
https://doi.org/10.7554/eLife.53455

Share this article

https://doi.org/10.7554/eLife.53455

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ginto George, Satoshi Ninagawa ... Kazutoshi Mori
    Research Advance Updated

    Sequential mannose trimming of N-glycan, from M9 to M8B and then to oligosaccharides exposing the α1,6-linked mannosyl residue (M7A, M6, and M5), facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). We previously showed that EDEM2 stably disulfide-bonded to the thioredoxin domain-containing protein TXNDC11 is responsible for the first step (George et al., 2020). Here, we show that EDEM3 and EDEM1 are responsible for the second step. Incubation of pyridylamine-labeled M8B with purified EDEM3 alone produced M7 (M7A and M7C), M6, and M5. EDEM1 showed a similar tendency, although much lower amounts of M6 and M5 were produced. Thus, EDEM3 is a major α1,2-mannosidase for the second step from M8B. Both EDEM3 and EDEM1 trimmed M8B from a glycoprotein efficiently. Our confirmation of the Golgi localization of MAN1B indicates that no other α1,2-mannosidase is required for gpERAD. Accordingly, we have established the entire route of oligosaccharide processing and the enzymes responsible.

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.