1. Evolutionary Biology
  2. Genetics and Genomics
Download icon

Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome

  1. Andrew B Morgenthaler
  2. Wallis R Kinney
  3. Christopher C Ebmeier
  4. Corinne M Walsh
  5. Daniel J Snyder
  6. Vaughn S Cooper
  7. William M Old
  8. Shelley D Copley  Is a corresponding author
  1. University of Colorado, Boulder, United States
  2. University of Pittsburgh, United States
Research Article
  • Cited 4
  • Views 2,064
  • Annotations
Cite this article as: eLife 2019;8:e53535 doi: 10.7554/eLife.53535

Abstract

New enzymes often evolve by gene amplification and divergence. Previous experimental studies have followed the evolutionary trajectory of an amplified gene, but have not considered mutations elsewhere in the genome when fitness is limited by an evolving gene. We have evolved a strain of Escherichia coli in which a secondary promiscuous activity has been recruited to serve an essential function. The gene encoding the 'weak-link' enzyme amplified in all eight populations, but mutations improving the newly needed activity occurred in only one. Most adaptive mutations occurred elsewhere in the genome. Some mutations increase expression of the enzyme upstream of the weak-link enzyme, pushing material through the dysfunctional metabolic pathway. Others enhance production of a co-substrate for a downstream enzyme, thereby pulling material through the pathway. Most of these latter mutations are detrimental in wild-type E. coli, and thus would require reversion or compensation once a sufficient new activity has evolved.

Data availability

The genome sequence of E. coli strain AM187 used in this study has been deposited to NCBI GenBank under accession number CP037857.All other data generated or analyzed during this study are included in the manuscript and supporting files. Source code files have been provided for Figures 3 and 4 and Tables 2 and 3.

The following data sets were generated

Article and author information

Author details

  1. Andrew B Morgenthaler

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3822-0212
  2. Wallis R Kinney

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher C Ebmeier

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7940-6190
  4. Corinne M Walsh

    Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel J Snyder

    Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vaughn S Cooper

    Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7726-0765
  7. William M Old

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shelley D Copley

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    For correspondence
    Shelley.Copley@Colorado.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9727-7919

Funding

National Aeronautics and Space Administration (NNA15BB04A)

  • Shelley D Copley

National Aeronautics and Space Administration (NNA15BB04A)

  • Vaughn S Cooper

Department of Defense /Defense Advanced Research Projects Agency (13-34-RTA-FP-007)

  • William M Old

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul B Rainey, Max Planck Institute for Evolutionary Biology, Germany

Publication history

  1. Received: November 12, 2019
  2. Accepted: December 2, 2019
  3. Accepted Manuscript published: December 9, 2019 (version 1)
  4. Version of Record published: January 3, 2020 (version 2)

Copyright

© 2019, Morgenthaler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,064
    Page views
  • 249
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Physics of Living Systems
    Damián G Hernández et al.
    Research Article Updated

    Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Stephanie M Yan et al.
    Research Article

    Large genomic insertions and deletions are a potent source of functional variation, but are challenging to resolve with short-read sequencing, limiting knowledge of the role of such structural variants (SVs) in human evolution. Here, we used a graph-based method to genotype long-read-discovered SVs in short-read data from diverse human genomes. We then applied an admixture-aware method to identify 220 SVs exhibiting extreme patterns of frequency differentiation—a signature of local adaptation. The top two variants traced to the immunoglobulin heavy chain locus, tagging a haplotype that swept to near fixation in certain Southeast Asian populations, but is rare in other global populations. Further investigation revealed evidence that the haplotype traces to gene flow from Neanderthals, corroborating the role of immune-related genes as prominent targets of adaptive introgression. Our study demonstrates how recent technical advances can help resolve signatures of key evolutionary events that remained obscured within technically challenging regions of the genome.