Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome

  1. Andrew B Morgenthaler
  2. Wallis R Kinney
  3. Christopher C Ebmeier
  4. Corinne M Walsh
  5. Daniel J Snyder
  6. Vaughn S Cooper
  7. William M Old
  8. Shelley D Copley  Is a corresponding author
  1. University of Colorado, Boulder, United States
  2. University of Pittsburgh, United States

Abstract

New enzymes often evolve by gene amplification and divergence. Previous experimental studies have followed the evolutionary trajectory of an amplified gene, but have not considered mutations elsewhere in the genome when fitness is limited by an evolving gene. We have evolved a strain of Escherichia coli in which a secondary promiscuous activity has been recruited to serve an essential function. The gene encoding the 'weak-link' enzyme amplified in all eight populations, but mutations improving the newly needed activity occurred in only one. Most adaptive mutations occurred elsewhere in the genome. Some mutations increase expression of the enzyme upstream of the weak-link enzyme, pushing material through the dysfunctional metabolic pathway. Others enhance production of a co-substrate for a downstream enzyme, thereby pulling material through the pathway. Most of these latter mutations are detrimental in wild-type E. coli, and thus would require reversion or compensation once a sufficient new activity has evolved.

Data availability

The genome sequence of E. coli strain AM187 used in this study has been deposited to NCBI GenBank under accession number CP037857.All other data generated or analyzed during this study are included in the manuscript and supporting files. Source code files have been provided for Figures 3 and 4 and Tables 2 and 3.

The following data sets were generated

Article and author information

Author details

  1. Andrew B Morgenthaler

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3822-0212
  2. Wallis R Kinney

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher C Ebmeier

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7940-6190
  4. Corinne M Walsh

    Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel J Snyder

    Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vaughn S Cooper

    Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7726-0765
  7. William M Old

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shelley D Copley

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    For correspondence
    Shelley.Copley@Colorado.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9727-7919

Funding

National Aeronautics and Space Administration (NNA15BB04A)

  • Shelley D Copley

National Aeronautics and Space Administration (NNA15BB04A)

  • Vaughn S Cooper

Department of Defense /Defense Advanced Research Projects Agency (13-34-RTA-FP-007)

  • William M Old

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Morgenthaler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,978
    views
  • 332
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew B Morgenthaler
  2. Wallis R Kinney
  3. Christopher C Ebmeier
  4. Corinne M Walsh
  5. Daniel J Snyder
  6. Vaughn S Cooper
  7. William M Old
  8. Shelley D Copley
(2019)
Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome
eLife 8:e53535.
https://doi.org/10.7554/eLife.53535

Share this article

https://doi.org/10.7554/eLife.53535

Further reading

    1. Evolutionary Biology
    Kun-sheng Du, Jin Guo ... Ai-lin Chen
    Research Article

    Euarthropods are an extremely diverse phylum in the modern, and have been since their origination in the early Palaeozoic. They grow through moulting the exoskeleton (ecdysis) facilitated by breaking along lines of weakness (sutures). Artiopodans, a group that includes trilobites and their non-biomineralizing relatives, dominated arthropod diversity in benthic communities during the Palaeozoic. Most trilobites – a hyperdiverse group of tens of thousands of species - moult by breaking the exoskeleton along cephalic sutures, a strategy that has contributed to their high diversity during the Palaeozoic. However, the recent description of similar sutures in early diverging non-trilobite artiopodans means that it is unclear whether these sutures evolved deep within Artiopoda, or convergently appeared multiple times within the group. Here, we describe new well-preserved material of Acanthomeridion, a putative early diverging artiopodan, including hitherto unknown details of its ventral anatomy and appendages revealed through CT scanning, highlighting additional possible homologous features between the ventral plates of this taxon and trilobite free cheeks. We used three coding strategies treating ventral plates as homologous to trilobite-free cheeks, to trilobite cephalic doublure, or independently derived. If ventral plates are considered homologous to free cheeks, Acanthomeridion is recovered sister to trilobites, however, dorsal ecdysial sutures are still recovered at many places within Artiopoda. If ventral plates are considered homologous to doublure or non-homologous, then Acanthomeridion is not recovered as sister to trilobites, and thus the ventral plates represent a distinct feature to trilobite doublure/free cheeks.

    1. Evolutionary Biology
    2. Neuroscience
    Yujiang Wang, Karoline Leiberg ... Bruno Mota
    Research Article

    The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future.