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Abstract After the presentation of a visual stimulus, neural processing cascades from low-level

sensory areas to increasingly abstract representations in higher-level areas. It is often hypothesised

that a reversal in neural processing underlies the generation of mental images as abstract

representations are used to construct sensory representations in the absence of sensory input.

According to predictive processing theories, such reversed processing also plays a central role in

later stages of perception. Direct experimental evidence of reversals in neural information flow has

been missing. Here, we used a combination of machine learning and magnetoencephalography to

characterise neural dynamics in humans. We provide direct evidence for a reversal of the

perceptual feed-forward cascade during imagery and show that, during perception, such reversals

alternate with feed-forward processing in an 11 Hz oscillatory pattern. Together, these results show

how common feedback processes support both veridical perception and mental imagery.

Introduction
When light hits the retina, a complex cascade of neural processing is triggered. Light waves are

transformed into electrical signals that travel via the lateral geniculate nucleus of the thalamus to the

visual cortex (Card and Moore, 1989; Reid and Alonso, 1995) (but see [Bullier, 2001] for other

routes). First, low-level visual features such as orientation and spatial frequency are processed in pri-

mary, posterior visual areas (Hubel and Wiesel, 1968) after which activation spreads forward

towards secondary, more anterior visual areas where high-level features such as shape and eventu-

ally semantic category are processed (Maunsell and Newsome, 1987; Thorpe and Fabre-Thorpe,

2001; Vogels and Orban, 1996). This initial feed-forward flow through the visual hierarchy is com-

pleted within 150 ms (Seeliger et al., 2018; Thorpe et al., 1996) after which feedback processes

are assumed to further sharpen representations over time until a stable percept is achieved

(Cauchoix et al., 2014; Kok et al., 2012).

Activation in visual areas can also be triggered internally, in the absence of external sensory sig-

nals. During mental imagery, information from memory is used to generate rich visual representa-

tions. Neural representations activated during imagery are highly similar to those activated during

perception (Dijkstra et al., 2019). Imagining an object activates similar object representations in

high-level visual cortex (Dijkstra et al., 2017; Ishai et al., 2000; Lee et al., 2012; Reddy et al.,

2010) and generating a mental image with simple visual features such as oriented gratings or letters

is associated with perception-like activation of low-level visual areas (Albers et al., 2013;

Pearson et al., 2008; Senden et al., 2019).

In contrast, the temporal dynamics underlying the activation within the visual system during per-

ception and mental imagery are presumably very different. The neural dynamics of the early stages

of perception have been extensively characterised with intracranial electrophysiological recordings

Dijkstra et al. eLife 2020;9:e53588. DOI: https://doi.org/10.7554/eLife.53588 1 of 19

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.53588
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


in primates (Thorpe et al., 1996; Thorpe and Fabre-Thorpe, 2001; Hubel and Wiesel, 1968). How-

ever, the neural dynamics of imagery, i.e. how activation travels through the brain during internally

generated visual experience, remain unclear. Researchers from various fields have proposed that the

direction of information flow during internally generated visual experience is reversed compared to

perception (Ahissar and Hochstein, 2004; Hochstein and Ahissar, 2002; Kosslyn et al., 2001;

Pearson and Keogh, 2019). In line with this idea, a recent study showed that during memory recall,

high-level, semantic representations were active before low-level, perceptual representations (Linde-

Domingo et al., 2019). However, the localisation of activation in this study was ambiguous such that

it is possible that all processing happened within high-level visual cortex but that only the dimension

to which the neurons were sensitive changed from abstract features to perceptual features over time

(for an example of dynamic neural tuning, see Spaak et al., 2017. Moreover, memory recall was not

directly compared with memory encoding. Therefore, it remains unclear whether the same percep-

tual cascade of neural activation is reactivated in reverse order during internally generated visual

experience.

According to predictive processing (PP) theories, reversals of information flow also play an impor-

tant role during perception. PP states that the brain deals with the inherent ambiguity of incoming

sensory signals by incorporating prior knowledge about the world (Helmholtz, 1925). This knowl-

edge is used to generate top-down sensory predictions which are compared to the bottom-up sen-

sory input. Perceptual inference is then accomplished by iteratively updating the model of the world

until the difference between prediction and input is minimised (Friston, 2005; Knill and Pouget,

2004). Therefore, the neural dynamics of stimulus information during perception should be charac-

terised by an interplay between feed-forward and feedback sweeps. Simulations based on PP mod-

els predict that these recurrent dynamics are dominated by slow-wave oscillations (Bastos et al.,

2012; Lozano-Soldevilla and VanRullen, 2019).

In this study, we used magnetoencephalography (MEG) and machine learning to characterise the

spatio-temporal dynamics of information flow during mental imagery and perception. We first char-

acterised neural activity during the initial perceptual feed-forward sweep using multivariate classifiers

at different time points which served as proxies for representations in different visual areas. That is,

decoding at early perception time points was taken to reflect stimulus representations in low-level,

posterior visual areas while decoding at later time points was taken to reflect high-level, anterior

visual representations. Then, we estimated when these feed-forward perception models were reacti-

vated during imagery and later stages of perception to infer the neural dynamics of information

processing.

Results
Twenty-five participants executed a retro-cue task while MEG was measured. During the task, two

consecutive stimuli were presented, a face and a house or a house and a face, followed by a cue

indicating whether participants had to imagine the first or the second stimulus. They then imagined

the cued stimulus as vividly as possible and indicated their experienced imagery vividness. There

were eight exemplars per stimulus category which were chosen to be highly similar to minimise vari-

ation in low-level details within categories and to maximise between-category differences. To ensure

that participants were generating detailed mental images, we included catch trials during which par-

ticipants had to indicate which of four highly similar exemplars they had just imagined. An accuracy

of 89.9% (SD = 5.4%) indicated that participants did indeed imagine the stimuli with a high degree

of visual detail.

Inferring information flow using perceptual feed-forward classifier
models
Classifier models representing neural representations at different time points during perception

were obtained using linear discriminant analysis (LDA). An LDA classifier was trained to decode the

stimulus class (’face’ vs ’house’) from sensor level activity at each time point, giving different percep-

tion models for different time points (Figure 1A). We decided to only focus on the time period

between 70 ms and 130 ms after stimulus onset, which, with a sampling rate of 300 Hz, contained 19

perception models. Perceptual content could be decoded significantly better than chance level at

70 ms after stimulus onset (Dijkstra et al., 2018). This is in line with intracranial and MEG studies
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which showed that visual information is detectable in early visual cortex from 50 ms onwards

(Thorpe and Fabre-Thorpe, 2001; Ramkumar et al., 2013). Furthermore, both intracranial as well

as scalp electrophysiology has shown that around 130 ms, high-level object representations first get

activated (Isik et al., 2014; Maunsell and Newsome, 1987; Seeliger et al., 2018; Vogels and

Orban, 1996). Therefore, this early time window is representative of the feed-forward sweep during

perception. In line with this, source reconstruction of the sensor-level activation patterns at different

time points shows that stimulus information (i.e. the difference in activation between faces and

houses [Haufe et al., 2014] spreads from low-level visual areas towards higher-level visual areas dur-

ing this period (Figure 1A). Furthermore, cross-correlation between the information flow in early

visual cortex (EVC) and inferior temporal cortex (IT; Figure 1B) confirms that stimulus information is

available in low-level EVC 26.3 ms (CI = 13.1 to 32.9 ms) before it reaches high-level IT.

To identify when these representations were reactivated during imagery, we tested the percep-

tion models on imagery to obtain the distances to the classifier hyperplanes per trial (Figure 1C–E).

The distance to the hyperplane indicates the amount of classifier evidence present in the data. Dis-

tance measures have previously been used as a measure of model activation (Kerrén et al., 2018;

Linde-Domingo et al., 2019) and have been linked to reaction time measurements

(Grootswagers et al., 2018). For each perception model and for each imagery trial, we identified

the time of the absolute peak distance (Linde-Domingo et al., 2019). This resulted in a trial-by-trial

estimate of the reactivation timing for the different perception models. If processing happens in a

Figure 1. Inferring information flow using perceptual feed-forward classifier models. (A–B) Perception models. At each point in time between 70 and

130 ms after stimulus onset, a perception model (classifier) was estimated using Linear Discriminant Analysis (LDA) on the activation patterns over

sensors. (A) The source-reconstructed difference in activation between faces and houses (i.e. decoding weights or stimulus information) is shown for

different time points during perception. (B) Stimulus information standardised over time is shown for low-level early visual cortex (EVC: blue) and high-

level inferior temporal cortex (IT: green). These data confirm a feed-forward flow during the initial stages of perception. (C) Imagery reactivation. For

each trial and time point during imagery, the distance to the perceptual hyperplane of each perception model is calculated. (D) To remove high-

frequency noise, a low-pass filter is applied to the distance measured. (E) The timing of the reactivation of each perception model during imagery is

determined by finding the peak distance for each trial. (F) Hypothesised results. This procedure results in a measure of the imagery reactivation time for

each trial, for each perception model time point. If perception models are reactivated in the same order during imagery, there would be a positive

relation between reactivation imagery time and perception model time. If instead, perception models are reactivated in reverse order, there would be a

negative relation. Source data associated with this figure can be found in the Figure 1—source data 1 and 2.

The online version of this article includes the following source data for figure 1:

Source data 1. Source data for panel A.

Source data 2. Source data for panel B.
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similar order during imagery as during perception, we would expect that during imagery, early per-

ception models are reactivated earlier in time than late perception models (Figure 1F). This would

result in a positive relation between perception model time and imagery reactivation time. If instead,

processing happens in reverse order, with late, high-level models being active before earlier models,

we would see a negative relation between perception model time and imagery model time.

We tested whether this analysis approach was indeed able to infer the order of reactivation of

neural representations using simulations (see Methods; Simulations). The perceptual feedforward

sweep was simulated as the sequential activation of five neural representations, operationalised as

pseudorandom sensor projections (Figure 2A). We then tested whether distance measures could

successfully identify the order of reactivation in a testing (i.e. imagery) set with either small temporal

jitter (SD of the onset between trials = 0.1 s) or large temporal jitter (SD = 0.5 s). First the cross-

decoding accuracy is plotted for each combination of training and testing time point, computed by

averaging classifier performance over trials per time point (Figure 2B–D; top panels). For small

amounts of temporal jitter, the temporal profile of the decoding accuracy clearly differentiates

between same or reversed order of reactivation (compare top-left panel of Figure 2B and

Figure 2C). However, for larger temporal jitter, which is supposedly the case during mental imagery

(Dijkstra et al., 2018), the temporal profile of the decoding accuracy smears out over the testing

time axis, completely obscuring the order of reactivations. In contrast, the reactivation time defined

as the peak distance time point per trial accurately indicates the direction of the relationship with

the training sequence, irrespective of the amount of temporal jitter.

Our approach has a close relationship with temporal generalisation decoding analysis (King and

Dehaene, 2014). Temporal generalisation characterises the stability of neural representations over

time by training and testing a classifier on different time points of either the same or different condi-

tions, resulting in a time by time decoding accuracy matrix. Above chance accuracy between two dif-

ferent time points indicates that the neural representation of the stimulus at those time points is

similar, whereas chance decoding indicates that the representation between two time points is not

similar and has therefore changed over time. In our approach we also train and test classifiers at dif-

ferent time points. However, instead of computing the accuracy between different training and test-

ing time-points by averaging over trials per time point, we determine per training time point and

Figure 2. Simulations reactivation analysis. (A) Five different neural representations, activated sequentially over time, were modelled as separate sensor

activation patterns. Stimulus information is defined as the difference in activation between the two classes (i.e. what is picked up by the classifier).

Results on a testing data-set in which the order of activation was either the same (B) or reversed (C). Top panels: cross-decoding accuracy obtained by

averaging over trials. Bottom panels: reactivation times inferred per trial. Source data associated with this figure can be found in the Figure 2—source

data 1.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data from the simulations.
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per trial, which testing time point is most similar to the training time point, indicated by the time

point with the maximum LDA distance in favour of the correct class (Linde-Domingo et al., 2019;

Kerrén et al., 2018; Grootswagers et al., 2018). In other words, our method was targeted at the

ordering of the representations, and, critically, did not assume a consistent timing between trials,

which has been shown to be a limitation of the temporal generalisation decoding scheme

(Vidaurre et al., 2019). When applied to different time epochs, our method revealed whether the

order of activation of neural representations is the same or reversed while at the same time allowing

for variation in the exact onset of reactivation between trials. We re-emphasise that this is especially

important in the current context given that the timing of imagery likely substantially differs between

trials, which means that the temporal dynamics will be obscured when computing accuracy by aver-

aging over trials per time point (Dijkstra et al., 2018).

Perceptual feed-forward sweep is reversed during imagery
The reactivation time during imagery for the different perception models is shown in Figure 3A. To

test whether there was a significant ordering in the reactivation, we ran a linear mixed-effects model

(LMM) with the reactivation time during imagery as dependent variable, the perception model time

as fixed predictor, and subject and trial as random variables. Five models with different combina-

tions of random effects were estimated and the model with the highest Schwarz Bayesian Informa-

tion Criterion (BIC) was used to ensure best-fit with minimum number of predictors

(Supplementary file 1a). The winning model contained a random effect for the intercept of each

subject and trial. This means that this model allowed the reactivation of the perception sequence to

start at different time points per trial and per subject, which is in line with the idea that there is a

large variation in timing of imagery between trials and subjects (Dijkstra et al., 2018).

The model showed a significant main effect of perception time (t(98160) = �5.403, p=6.58e-8)

with a negative slope (b0 = 2.05, SD = 0.28; b1 = �1.17,SD = 0.22) indicating that models of later

perception time points were associated with earlier imagery reactivation times. The fact that the

absolute slope is so close to one suggests that reactivation during imagery of the perception model

sequence happens at a similar speed as the original activation during perception.

Next, we reconstructed the imagery activation by realigning the trials based on the identified

peak time points for each perception model time point. The imagery time line was inferred using the

linear equation obtained from the LMM. The temporal dynamics of high-level IT and low-level EVC

(Figure 3B) confirm the conclusion that during imagery, information flows from high-level to low-

level visual areas. Cross-correlation between these realigned signals shows that information in IT pre-

cedes information in EVC by 11.2 ms (CI = 0 to 29.9 ms). Furthermore, before realignment, time-

locked decoding during imagery only revealed a small amount of information in high-level visual cor-

tex (Figure 3D). In contrast, after realignment, stimulus information was also clearly present in EVC.

This emphasises how time-locked analyses obscure neural processing during complex cognitive pro-

cesses such as mental imagery.

To ensure that these results were not due to confounds in the structure of the data irrelevant to

reactivation of stimulus representations, we performed the same analysis after permuting the class-

labels of the trials, erasing stimulus information while keeping the temporal structure of the data

unaltered. Specifically, we trained the perception models using random class assignments and then

again calculated the reactivations during imagery. The results are shown in Figure 3B. The sequen-

tial reactivation disappeared when using shuffled classifiers as perception time did not significantly

predict imagery reactivation time anymore (t(98160) = �0.762, p=0.446). Furthermore, for the main

analysis, we removed high frequency noise from the imagery distance traces. To check whether this

filter somehow altered the results, we ran the same analysis without the low-pass filter, which gave

highly similar results (see Figure 3—figure supplement 1). Without the filter, there was still a signifi-

cant main effect of perception time (t(98160) = �4.153, p=0.0000328) where models of later percep-

tion time points were associated with earlier imagery reactivation times (b=�0.8942, SD = 0.2153)

and the results of the shuffled classifier remained non-significant. Finally, because we used cross-vali-

dation within subjects to calculate reactivation timing, there is a dependence between trials of the

same subject, violating the independence assumption of first-order statistical tests. As a sanity

check, we performed a second test that did not require splitting trials: we used LMM models with

reactivation times averaged over trials within subjects, and only ’subject’ as a random variable. In

this case, the model containing both a random effect of intercept as well as slope per subject best
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explained the data (see Supplementary file 1c). This between-subject model still showed a signifi-

cant main effect of perception time (t(24) = �3.24, p=0.003) with a negative slope (b0 = 2.05,

SD = 0.03, b1 = �1.19, SD = 0.37) confirming that the effect was not dependent on between-trial

statistics.

Reactivation during imagery reveals recurrent processing during later
stages of perception
In the previous analysis, we focused on the first 150 ms after stimulus presentation because this

period reflects the initial perceptual feed-forward sweep. A negative relationship with imagery

Figure 3. Imagery reactivation results. (A) Reactivation time during imagery for every perception model averaged over trials. The shaded area

represents the 95% confidence interval. The linear equation shows how imagery reactivation time (I) can be calculated using perception model time (P)

in seconds. (B) Same results after removing stimulus information by permuting the class-labels (C–D) Stimulus information during imagery was

estimated by realigning the trials based on the reactivation time points and using the linear equation to estimate the imagery time axis. (C) Stimulus

information standardised over time for low-level early visual cortex (EVC) and high-level inferior temporal cortex (IT). (D) Stimulus information in EVC

and IT averaged over time before and after realignment. Stimulus information below 0 indicates that the amount of information did not exceed the

permutation distribution. Source data associated with this figure can be found in the Figure 2—source data 1–6.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Contains the reactivation time per perception model and per trial, the subject ID (’S’).

Source data 2. Contains the source-reconstructed stimulus information as subject x source parcel x time points as well as the corresponding time vec-

tor and source-parcel names for the realigned data.

Source data 3. Contains the source-reconstructed stimulus information as subject x source parcel x time points as well as the corresponding time vec-

tor and source-parcel names for the unaligned data.

Source data 4. Contains the reactivation time per perception model and per trial, the subject ID (’S’) for the permuted classifier.

Source data 5. Contains the reactivation time per perception model and per trial, the subject ID (’S’) for the unfiltered data.

Source data 6. Contains the reactivation time per perception model and per trial, the subject ID (’S’) for the unfiltered and permuted data.

Figure supplement 1. Imagery reactivation results without the low-pass filter.
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reactivation time therefore indicated feedback processing during imagery (Figure 1). However, feed-

back processes are assumed to play a fundamental role in later stages of perception (Lamme and

Roelfsema, 2000; Pennartz et al., 2019). For these later stages of perception, we would therefore

expect a positive relation with imagery reactivation, indicating that information flows in the same

direction. To investigate this, we next calculated the imagery reactivation time for all time points

during perception (Figure 4). The results between 70 ms and 130 ms are equivalent to Figure 3A.

Interestingly, during the first 400 ms of perception, there seems to be an oscillatory pattern in the

relationship between perception time and imagery reactivation time, where positive and negative

slopes alternate. This suggests that during perception, the direction of information flow alternates.

This pattern repeats four times in 400 ms, roughly reflecting an alpha oscillation. To investigate this

further, we quantified 10 Hz power over time using a Morlet decomposition (Figure 4B left, purple

curve) and compared the results with the permuted classifier (Figure 4B left, grey curve). There was

a significant increase in 10 Hz power between 80 and 315 ms after stimulus onset during perception

(all FDR corrected p-values below 0.003). Furthermore, a Fast Fourier Transform over the first 400

Figure 4. Reactivation timing during imagery for classifiers trained at all perception time points. (A) Imagery reactivation time for perception models

trained on all time points. On the x-axis the training time point during perception is shown and on the y-axis the reactivation time during imagery is

shown. The dots represent the mean over trials for individual time points and the shaded area represents the 95% confidence interval. (B) Left: time-

frequency decomposition using a Morlet wavelet at 10 Hz. Right: power at different frequencies using a Fast Fourier Transformation. The purple line

represents the true data and the grey line represents the results from the shuffled classifier. Shaded areas represent 95% confidence intervals over trials.

Red lines indicate time points for which the true and shuffled curve differed significantly (FDR corrected). (C) Intrinsic mode function and its extrema

derived from the reactivation traces using empirical model decomposition. (D) Coherence between reactivation trace and raw signal. Left coherence

values, right log10 p values. Source data associated with this figure can be found in the Figure 4—source data 1–3.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Contains the identified reactivation trace extrema based on EMD of the empirical traces.

Source data 2. Contains the reactivation traces as reactivation sample point per trial x perception model time for the unpermuted classifiers.

Source data 3. Contains the reactivation traces as reactivation sample point per trial x perception model time for the permuted classifiers.

Figure supplement 1. Reactivation timing during imagery for all perception time points without low-pass filter.

Figure supplement 2. Dynamics of the raw signal during perception for occipital channels.

Figure supplement 3. Imagery reactivation traces for the full perception period separately for each subject.
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ms revealed that the difference in power was limited to the 11.2 Hz frequency (Figure 4B right,

p=0.001).

These results indicate that, during perception, stimulus information travels up and down the visual

hierarchy aligned to the alpha frequency. To make sure this effect was not due to the low-pass filter-

ing, we applied the same analysis on the unfiltered data, giving almost identical results (see Fig-

ure 4—figure supplement 1). We next aimed to parse the signal into feed-forward and feedback

sweeps. To this end, we used empirical mode decomposition (EMD) over the first 400 ms to sepa-

rate the signal in intrinsic mode functions (IMFs). We selected identified increasing and decreasing

phases by selecting the period between two subsequent extrema (Figure 4C) and calculated the

slope for each phase (single estimated slopes are shown in Figure 4A). The average decreasing

(feed-forward) slope was �0.69 (CI = �2.05 to �0.35) and the average increasing (feedback) slope

was 1.02 (CI = �0.31 to 2.14; Figure 4D). There was no significant difference in the absolute slope

value between increasing and decreasing phases (Mdiff = 0.33, CI: �1.80 to 1.74), revealing no evi-

dence for a difference in processing speed for feed-forward and feedback sweeps.

It might be possible that the oscillation in the reactivation trace is caused by evoked alpha oscilla-

tions in the raw signal which modulates signal-to-noise ratio via its amplitude. As can be seen in Fig-

ure 4—figure supplement 2, there is indeed a clear evoked alpha oscillation present in the raw

signal. To investigate whether the oscillation of the reactivation trace was related to the oscillation in

the raw signal, we calculated the spectral coherence at the peak frequency (Figure 4B) between the

reactivation trace and the raw signal at each sensor. We then compared the coherence between the

raw data and the true activation reactivation with the coherence between the raw data and the reac-

tivation of the shuffled classifier using a permutation test with 10000 permutations. None of the sen-

sors showed a significant difference in coherence between the true and permuted classifier (FDR

corrected; Figure 4D), even though the reactivation was only present for the true classifier (

Figure 4B). Furthermore, the topography of the coherence values appears very unstructured

(Figure 4D). Together, this suggests that the oscillatory pattern in the reactivated trace does not

merely reflect evoked alpha in the raw signal. However, future research is necessary to fully charac-

terise the relationship between the reactivation dynamics and the raw signal dynamics.

Stimulus representations are iteratively updated during perception
If there is indeed a recurrent information flow up and down the visual hierarchy during perception,

we should also be able to demonstrate this within perception. The previous results suggest specific

time windows of feed-forward and feedback phases during perception. To test whether these differ-

ent phases indeed reflected reversals of information flow, we applied the reactivation analysis previ-

ously used for imagery (Figure 1) to the different perception phases identified in the previous

analysis (Figure 4). We predicted that perception classifiers trained during a decreasing (feed-for-

ward) phase would be reactivated in reverse order during an increasing (feedback) phase and vice

versa, showing a negative relationship between training time and reactivation time. In contrast, clas-

sifiers trained and tested on the same type of phase (both decreasing or both increasing), should

show a positive relationship (see Figure 5B, for hypothesised results).

The reactivation traces for the different test phases are shown in Figure 5A. Blue traces represent

reactivations during feed-forward phases and pink traces represent reactivations during feedback

phases. Grey traces show the results for a permuted classifier. In line with the previous findings, for

most phases, there is a clear oscillatory pattern between training time and reactivation time within

perception. For each phase, the training time corresponding to that testing phase is highlighted in

bold. This time period should always show a positive slope, indicating that classifiers trained and

tested on time points belonging to the same phase are reactivated in the same order.

The slopes between the training time and the reactivation time of the different phases are shown

below the hypothesised results in Figure 5B. As expected, the diagonal, reflecting training and test-

ing on the same phase, was always positive. In contrast, training and testing on different phases

tended to be associated with negative slopes. Note that for all decoding analyses, cross-validation

was used, which means that these results cannot be due to overfitting but reflect true representa-

tional overlap between phases. To quantify the effect, we calculated a Recurrence Index (RI) which

was defined as the dot-product between the vectorised hypothesis-matrix and the empirical-matrix.

The RI is positive if the data show the hypothesised oscillatory pattern of slope reversals, zero if

there is no clear oscillatory pattern and negative if the data show the opposite pattern. The RI was
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significantly larger than zero for the true data (RI = 1.83, CI = 1.71 to 1.94, p < 0.0001) but not for

the permuted data (RI = �0.008, CI = �0.12 to 0.10, p=0.548). This confirms that during perception,

stimulus information flows up and down the visual hierarchy in feedback and feed-forward phases.

The phases that we used here were identified based on the IMF of the oscillation in the imagery

reactivation trace (Figure 4), leading to phases of different lengths. Next, we investigated whether

we could observe the same pattern if we specified the phases based on fixed evoked oscillations at

different frequencies. For example, a 10 Hz oscillation resulted in four feed-forward and four feed-

back phases of 50 ms each within our 400 millisecond time window. The RI for the different frequen-

cies is plotted in Figure 5C. Whereas the RI was significantly above zero for several low frequencies,

the oscillatory pattern was clearest for the IMF based phases and for the 10 Hz oscillation,

Figure 5. Reactivation timing for different perception phases. (A) The reactivation traces for each testing phase. Blue traces reflect feed-forward phases,

pink traces reflect feedback phases (Figure 4A) and grey traces reflect reactivation traces for permuted classifiers. Shaded area represents the 95%

confidence interval over trials. (B) Hypothesised (top) and empirical (bottom) slopes between the training and testing phases. The hypothesised matrix

assumes recurrent processing such that subsequent phases show a reversal in the direction of information flow. Recurrence index reflects the amount of

recurrent processing in the data, which is quantified as the dot product between the vectorised hypothesis matrix and empirical matrix. (C) Recurrence

index for the permuted classifier, phase specification based on the IMF of the imagery reactivation trace (Figure 4C) and phase specification on evoked

oscillations at various frequencies. (D) Slope matrix for phase specification defined at 10 Hz over the entire stimulus period. Source data associated with

this figure can be found in the Figure 5—source data 1–8.

The online version of this article includes the following source data for figure 5:

Source data 1. Contains, for the segmentation of 3 Hz, Cfg = a configuration structure with the analysis options.

Source data 2. Contains, for the segmentation of 5 Hz, Cfg = a configuration structure with the analysis options.

Source data 3. Contains, for the segmentation of 10 Hz, Cfg = a configuration structure with the analysis options.

Source data 4. Contains, for the segmentation of 25 Hz, Cfg = a configuration structure with the analysis options.

Source data 5. Contains, for the segmentation of 30 Hz, Cfg = a configuration structure with the analysis options.

Source data 6. Contains, for the segmentation of 37.5 Hz, Cfg = a configuration structure with the analysis options.

Source data 7. Contains, for the segmentation of 50 Hz, Cfg = a configuration structure with the analysis options.

Source data 8. Contains, for the segmentation of 75 Hz, Cfg = a configuration structure with the analysis options.
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confirming that the perceptual recurrence is most strongly aligned to the alpha frequency. Further-

more, to investigate whether this pattern of recurrence was indeed specific to the 400 millisecond

time window identified previously, we also applied the 10 Hz recurrence analysis to the entire stimu-

lus period (Figure 5D). The results show that the recurrence pattern is indeed restricted the first 400

ms after stimulus onset.

An interesting observation is that the recurrence pattern seems to be restricted to around the

testing phase, such that only classifiers trained on phases close to the testing phase show a clear

positive or negative relation with reactivation time. This is what causes the ’traveling wave’ pattern

between the rows in Figure 5A. An intriguing explanation for this observation is that stimulus repre-

sentations change over subsequent cycles, such that representations only show a reactivation rela-

tion with neighbouring phases, but that the representations during later phases are too dissimilar to

result in reliable reactivations. We tested whether recurrence was indeed specific to phases around

the testing phase by comparing the normalised RI of slopes next to the diagonal in the slope matrix

with the other slopes. Neighbouring phases indeed show a significantly higher RI (M = 0.073,

CI = 0.069 to 0.076) than other phases (M = 0.002, CI = �0.0004 to 0.005, p < 0.0001), confirming

that recurrence was restricted to a small number of cycles.

Discussion
In this study, we investigated how stimulus representations flow through the visual system during

mental imagery and perception. Our results reveal an asymmetry in information processing between

perception and imagery. First, we showed that early perception processes are reactivated in reverse

order during imagery, demonstrating that during imagery, activation flows from high-level visual

areas down to low-level areas over time. Second, for later stages of perception, we found an oscil-

latory pattern of alternating positive and negative relations with imagery reactivation, indicating

recurrent stimulus processing up and down the visual hierarchy aligned to an 11 Hz oscillation.

Finally, by focusing on the identified feed-forward and feedback phases, we showed that recurrence

during perception was restricted to neighbouring phases, suggesting that the format of neural stim-

ulus representations changed with subsequent cycles of recurrent processing. Together, these find-

ings indicate that during imagery, stimulus representations are activated via feedback processing

whereas during perception, stimulus representations are iteratively updated through cycles of recur-

rent processing.

Our results are neatly in line with predictive processing (PP) theories. According to PP, recurrent

processing during perception reflects dynamic hypothesis testing (Bastos et al., 2012; Fris-

ton, 2005; Kersten et al., 2004; Knill and Pouget, 2004). Specifically, perceptual inference is

assumed to be accomplished via an interplay between top-down prediction signals encoding per-

ceptual hypotheses and bottom-up prediction errors encoding the sensory signal unexplained by

these hypotheses. Inferring the cause of sensory input is done by iteratively updating the perceptual

hypothesis until the prediction error is minimised, in line with the dynamically changing representa-

tions observed here. Importantly, recurrent processing is assumed to happen hierarchically such that

each level is activated by both bottom-up evidence as well as top-down predictions (Friston, 2005).

This is in line with our observation that feed-forward and feedback sweeps proceeded at the same

speed. Also in line with the current findings, PP predicts that these recurrent dynamics are domi-

nated by slow-wave oscillations (Bastos et al., 2012). To our knowledge, the current study is the first

to show these perceptual updating cycles empirically in humans. Furthermore, our results suggest

that in the current task context, the perceptual inference process was completed in approximately

four updating cycles. An exciting avenue for future research is to investigate whether the number of

cycles needed can be modulated by task variables such as attention and stimulus noise.

Whereas perception was characterised by dynamically changing representations updated through

recurrent cycles, we only found evidence for a single feedback flow during imagery. Specifically, all

perceptual feed-forward sweeps showed a negative relationship with the same imagery time window

and all perceptual feedback sweeps showed a negative relationship with that same imagery time

window. This suggests that the imagery feedback flow contained the complete stimulus representa-

tion that was inferred via recurrent cycles during perception. This result fits with the idea that imag-

ery uses the same predictive processes that underlie perceptual inference to run off-line simulations

of sensory representations under different hypotheses (Dijkstra et al., 2019; Gershman, 2019;
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Grush, 2004; Hobson and Friston, 2012; Moulton and Kosslyn, 2009). In contrast to perception,

during imagery, there is no bottom-up sensory input prompting hypothesis updating. Instead, the

perceptual cause is given and feedback connections are used to generate the corresponding low-

level sensory representation based on the mapping that was learned during perception. Recurrent

processing within the visual system might become important when imagining a more dynamic stimu-

lus in which sensory representations change over time. However, it is also possible that recurrent

dynamics were actually present during imagery in this task but that we were unable to reveal them

due to signal-to-noise issues. Future research should focus on developing more sensitive techniques

to further characterise information flow during imagery. Another interesting question for future

research is whether reactivation during mental imagery has to always fully progress down the visual

hierarchy. In this study, participants were instructed to generate highly detailed mental images and

catch trials were used to ensure that they indeed focused on low-level visual details. It might be the

case that if less detail is needed for the task, earlier perception processes are not reactivated and

mental simulations stop at a higher level (Kosslyn and Thompson, 2003; Pearson and Keogh,

2019).

Central to this predictive processing interpretation of bottom-up and top-down sweeps is that

increasingly abstract stimulus features are processed in higher-level brain areas. This is indeed what

has generally been observed in the literature (Hubel and Wiesel, 1968; Thorpe and Fabre-Thorpe,

2001; Vogels and Orban, 1996). However, because we have not directly assessed which stimulus

features were captured by the classifiers in this study, we cannot be certain that the sweeps through

the visual hierarchy observed here genuinely reflect processing of stimulus information at different

levels of abstraction. For example, it is possible for the classifier to be driven by other features of

the signal irrelevant to processing of visual information such as general amplification of signal due to

differences in attentional capture between the two stimuli, which might have also given rise to

sweeps through the visual hierarchy (Michalareas et al., 2016). It is likely that such high-level cogni-

tive mechanisms have influenced processing during later stages of perception. However, a recent

study showed that the initial feedforward sweep during perception does not seem to be influenced

by attention (Alilović et al., 2019). Moreover, modelling work using Convolutional Neural Networks

(CCNs) has shown that the MEG signal during perception does reflect activation of hierarchically

increasing complex features over time (Seeliger et al., 2018). Further research using explicit encod-

ing models of stimulus features at different levels of abstraction would be necessary to completely

address this point. Furthermore, the current study used a number of non-traditional analysis steps.

While we aimed to demonstrate the validity of this approach via simulations, it is worth noting that

simulations are not a perfect control since simulated data cannot account for all the features present

in real data, and might be blind to other issues. Therefore, to fully ensure that this analysis approach

does not suffer from any overlooked confounds, future validation studies are needed.

In conclusion, by using a novel multivariate decoding approach which allowed us to infer the

order in which representations were reactivated, we show that, while similar neural representations

are activated during imagery and perception, the neural dynamics underlying this activation are dif-

ferent. Whereas perception is characterised by recurrent processing, imagery is dominated by top-

down feedback processing. These results are in line with the idea that during perception, high-level

causes of sensory input are inferred whereas during imagery, this inferred mapping is reversed to

generate sensory representations given these causes. This highlights a fundamental asymmetry in

information processing between perception and imagery and sets the stage for exciting new ave-

nues for future research.

Materials and methods

Participants
We assumed a medium effect size (d = 0.6) which, to reach a power of 0.8, required twenty four par-

ticipants. To take into account drop-out, thirty human volunteers with normal or corrected-to-normal

vision gave written informed consent and participated in the study. Five participants were excluded:

two because of movement in the scanner (movement exceeded 15 mm), two due to incorrect execu-

tion of the task (less than 50% correct on the catch trials, as described below) and one due to techni-

cal problems. Twenty-five participants (mean age 28.6, SD = 7.62) remained for the final analysis.
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The study was approved by the local ethics committee and conducted according to the correspond-

ing ethical guidelines (CMO Arnhem-Nijmegen). An initial analysis of these data has been published

previously (Dijkstra et al., 2018).

Experimental design
We adapted a retro-cue paradigm in which the cue was orthogonalised with respect to the stimulus

identity (Harrison and Tong, 2009). Participants were shown two images after each other followed

by a retro-cue indicating which of the images had to be imagined. After the cue, a frame was shown

in which the participants had to imagine the cued stimulus as vividly as possible. Next, they had to

indicate their experienced imagery vividness by moving a bar on a continuous scale. To ensure that

participants were imagining the stimuli with great visual detail, both categories contained eight

exemplars, and on 7% of the trials the participants had to indicate which of four exemplars they

imagined. The exemplars were chosen to be highly similar in terms of low-level features to minimise

within-class variability and increase between-class classification performance. We instructed partici-

pants to focus on vividness and not on correctness of the stimulus, to motivate them to generate a

mental image including all visual features of the stimulus. The stimuli encompassed 2.7 � 2.7 visual

degrees. A fixation bull’s-eye with a diameter of 0.1 visual degree remained on screen throughout

the trial, except during the vividness rating.

MEG recording and preprocessing
Data were recorded at 1200 Hz using a 275-channel MEG system with axial gradiometers (VSM/CTF

Systems, Coquitlam, BC, Canada). For technical reasons, data from five sensors (MRF66, MLC11,

MLC32, MLF62, MLO33) were not recorded. Subjects were seated upright in a magnetically shielded

room. Head position was measured using three coils: one in each ear and one on the nasion.

Throughout the experiment head motion was monitored using a real-time head localiser

(Stolk et al., 2013). If necessary, the experimenter instructed the participant back to the initial head

position during the breaks. This way, head movement was kept below 8 mm in most participants.

Furthermore, both horizontal and vertical electro-oculograms (EOGs), as well as an electrocardio-

gram (ECG) were recorded for subsequent offline removal of eye- and heart-related artefacts. Eye

position and pupil size were also measured for control analyses using an Eye Link 1000 Eye tracker

(SR Research). Data were analysed with MATLAB version R2018a and FieldTrip (Oostenveld et al.,

2011) (RRID:SCR_004849). Per trial, three events were defined. The first event was defined as 200

ms prior to onset of the first image until 200 ms after the offset of the first image. The second event

was defined similarly for the second image. Further analyses focused only on the first event, because

the neural response to the second image is contaminated by the neural response to the first image.

Finally, the third event was defined as 200 ms prior to the onset of the retro-cue until 500 ms after

the offset of the imagery frame. As a baseline correction, for each event, the activity during 300 ms

from the onset of the initial fixation of that trial was averaged per channel and subtracted from the

corresponding signals. The data were down-sampled to 300 Hz to reduce memory and CPU load.

Line noise at 50 Hz was removed from the data using a DFT notch filter. To identify artefacts, the

variance of each trial was calculated. Trials with high variance were visually inspected and removed if

they contained excessive artefacts. After artefact rejection, on average 108 perception face trials,

107 perception house trials, 105 imagery face trials and 106 imagery house trials remained for analy-

sis. To remove eye movement and heart rate artefacts, independent components of the MEG data

were calculated and correlated with the EOG and ECG signals. Components with high correlations

were manually inspected before removal. The eye tracker data were cleaned separately by inspect-

ing trials with high variance and removing them if they contained blinks or other excessive artefacts.

Reactivation timing analysis
To estimate when neural representations at different perception time points got reactivated during

imagery, we trained classifiers on several time points during perception and applied them to imag-

ery. Specifically, to decode the stimulus category per perception time point, we used a linear dis-

criminant analysis (LDA) classifier with the activity from the 270 MEG sensors as features and a

shrinkage regularisation parameter of 0.05 (see [Mostert et al., 2016] for more details). To prevent

a potential bias in the classifier, the number of trials per class was balanced per fold by randomly
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removing trials from the class with the most trials until the trial numbers were equal between the

classes. In our design, the perception and imagery epochs happened in the same general ’trial’. If

the imagery epochs on which the classifier was tested came from the same trials as the perception

epochs on which it was trained, auto-correlations in the signal could inflate decoding accuracy. To

circumvent this, a five-fold cross-validation procedure was implemented where for each fold the clas-

sifier was trained on 80% of the trials and tested on the other 20%.

Because the amplitude of the signal is usually smaller during imagery than during perception

(Kosslyn et al., 2001; Pearson and Keogh, 2019), we demeaned the data by subtracting the mean

over trials per time point and per sensor. This forced the classifier to leverage relative changes in the

multivariate signal while avoiding the confounding effect of having global changes in amplitude.

This resulted in a decision value for each perception model, for each imagery trial and time point.

The sign of this value indicates in which category the trial has been classified and the value indicates

the distance to the hyperplane. In order to obtain the confidence of the classifier in the correct class,

the sign of the distance values in one category was inverted. This means that increasing positive dis-

tance values now always reflected increasingly confident classification. To obtain the specific

moment within each imagery trial that a given perception model became active, we identified the

time point with the highest distance (Linde-Domingo et al., 2019; Figure 1).

Identifying the order of reactivation of neural representations was then done by performing a lin-

ear regression with the training time points as predictor and the inferred reactivation times points as

dependent variable. A positive relationship indicates that reactivations happened in the same order,

whereas a negative relationship indicates a reversal in the order of reactivations.

After discovering the oscillatory pattern between later perception time points and imagery reacti-

vation, we also ran this reactivation analysis within perception by training on all perception time

points and testing on specific perception time windows reflecting the identified feed-forward and

feedback phases (Figure 4). This identified, per phase, reversals in information flow.

For the imagery generalisation, the time window used to obtain the peak distance extended from

the cue onset until the vividness instruction onset, covering the entire 4 s during which participants

were instructed to imagine the stimulus. For this data, we removed high frequency noise using a

low-pass filter of 30 Hz (for the results using the raw data, see Figure 3—figure supplement 1). For

the within-perception tests we did not use a low-pass filter because we used smaller testing time

windows and were also interested in possible high-frequency effects.

To ensure that the observed effects were due to dynamics in activation of neural stimulus repre-

sentations, and not due to dynamics of the raw signals, for each analysis, we performed the same

analysis after permuting the class-labels, thereby removing stimulus information from the data with-

out altering the temporal structure of the data.

Simulations
We tested the validity of our approach on a relatively realistic synthetic dataset. Specifically, we

tested whether the trial-by-trial LDA distance measures could successfully be used to infer the order

of reactivation of neural representations, even when the timing of these reactivations differed

between trials. The true neural model consisted of 5 neural representations activated in a partially

overlapping sequence over the course of 60 milliseconds, with a sampling rate of 300 Hz, modelled

as pseudo random activation of 20 sensors for two classes (Figure 2A). Stimulus information is

defined as the difference between the two classes. The training set was generated as 100 trials per

class of the true neural model activation. Testing sets were generated as 100 trials per class of the

true neural model activation in the same order or in reversed order as the training set and slowed

down by a factor of 10. Furthermore, temporal uncertainty between trials was introduced by ran-

domly sampling the onset of the reactivation in each trial from a standard normal distribution with

mean 0.8 s and a standard deviation of 0.1 or 0.5. Testing set trials were 2 s long with a sampling

frequency of 300 Hz. This stimulus-specific activity was added on top of some generated ongoing

activity, which we simulated as realistic 1/f noise. In order to do that, we fitted a multivariate autore-

gressive model of order 1 to the real data, and then sampled from it trial by trial (Vidaurre et al.,

2019). We simulated 10 subjects and performed LDA cross-decoding analysis as described above in

each subject separately resulting in distance measures per testing trial and time point. Decoding

accuracy was computed for each combination of training and testing time point as the number of tri-

als in which the distance was highest for the correct class divided by the total number of trials (i.e.
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proportion of correctly classified trials). Reactivation time was computed for each training time point

and for each trial as the testing time with the peak distance in favour of the correct class (Linde-

Domingo et al., 2019).

Realignment
To confirm that the order of activation of low and high-visual areas was reversed during imagery

compared to perception, we realigned the imagery activation based on the identified distance

peaks. This was done by selecting the peak imagery time point for every trial for every perception

model time point to create a realigned imagery data set. The time axis for this new data set was

inferred using the linear relationship between perception model time and imagery reactivation time

established in the main imagery reactivation analysis. Source activation was then calculated using the

same procedure as was used for the un-realigned perception and imagery data (more details below

under Source localisation).

Frequency analysis
For the time frequency analysis, we used a Morlet Wavelet at 10 Hz defined as:

MW ¼ expð
�t

2

2s2
þ iwtÞ

where t is a time vector from �0.5 to 0.5 in steps of 1/fs, w¼ 2p10, s¼ c2p
w

and c is the number of

cycles, this case 1. We only used 200 samples in the centre of the wavelet and convolved this with

the mean reactivation trace to obtain the time frequency representation. To calculate power at dif-

ferent frequencies we used the Fast Fourier Transform (FFT). To prevent edge effects, we first multi-

plied the mean signal with a Hanning taper from �0.2 to 0.6 s prior to performing the FFT. Of the

resulting complex numbers, the absolute value was taken and the result was normalised by the

length of the signal.

Within reactivation traces, positive slopes represented reactivation in a similar order whereas neg-

ative slopes represented reactivation in reverse order. We wanted to divide the signal into phases of

positive and negative slopes because these represented feed-forward and feedback phases. In order

to do this, we used empirical mode decomposition (EMD) which separates the signal into intrinsic

mode functions (IMF) based on local and global extrema; that is, peaks and troughs (Huang et al.,

1998; Rilling et al., 2003; Wang et al., 2010). This technique identifies oscillations without assum-

ing that these oscillations should be sinusoidal. For a 10 Hz frequency we would expect eight

extrema in 400 ms, reflecting four full cycles. Therefore, to identify the different phases, we selected

the IMF with the number of extrema closest to eight. Decreasing and increasing phases were

defined as periods between subsequent extrema (Figure 4C). Slopes between periods were calcu-

lated using linear regression and slopes for decreasing and increasing periods were averaged to

reflect the speed of feed-forward and feedback processing respectively. To determine the uncer-

tainty of these slopes, for every bootstrapping sample the mean reactivation trace and the corre-

sponding EMD separation was recalculated.

Statistics
To test whether there was a significant linear relationship between perception training model time

and imagery reactivation time, we used a generalised linear mixed model (GLMM) with the single

trial classifier distance peaks as dependent variable and perception model time during the feed-for-

ward sweep as independent variable. We chose GLMMs because they make fewer assumptions than

more commonly used GLMs and because we expected large differences in the onset of reactivation

between trials and subjects and, in contrast to GLMs, GLMMs allow for random effects on trials and

subjects.

To obtain 95% confidence intervals for reactivation times, time-frequency and frequency plots,

we performed bootstrapping analyses with 10000 bootstrapping samples. For pair-wise compari-

sons, we obtained p-values by bootstrapping the difference between the two conditions. Source

traces represented the mean difference between the stimulus classes which cannot be computed

per trial. Therefore, uncertainty in the mean of these values was represented as the standard error of

the mean (SEM) over subjects.
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Source localisation
To identify brain areas that represented information about the stimuli during perception and imag-

ery, we performed source reconstruction. For LDA classification, the spatial pattern that underlies

the classification (i.e. the decoding weights or ’stimulus information’), reduces to the difference in

magnetic fields between the two conditions (Haufe et al., 2014). Therefore, the difference ERF

between faces and houses reflects the contributing brain areas. For the sensor-level activation plots,

we calculated the planar gradient for each participant prior to averaging over participants. For the

source-level plots, we performed source reconstruction on the axial difference ERF.

T1-weighted structural MRI images were acquired in separate sessions using a Siemens 3T MRI

scanner. Vitamin E markers in both ears indicated the location of the head coils during the MEG

measurements, allowing for realignment between the two. The location of the fiducial at the nasion

was estimated based on anatomy. The volume conduction model was created based on a single

shell model of the inner surface of the skull. The source model was based on a reconstruction of the

cortical surface created for each participant using FreeSurfer’s anatomical volumetric processing

pipeline (RRID:SCR_001847,(Fischl, 2012). MNE-suite (Version 2.7.0; https://mne.tools/, RRID:SCR_

005972, (Gramfort et al., 2014) was subsequently used to infer the subject-specific source locations

from the surface reconstruction. The resulting head model and source locations were co-registered

to the MEG sensors.

The lead fields were rank reduced for each grid point by removing the sensitivity to the direction

perpendicular to the surface of the volume conduction model. Source activity was obtained by esti-

mating linearly constrained minimum variance (LCMV) spatial filters (Van Veen et al., 1997). The

data covariance was calculated over the interval of 50 ms to 1 s after stimulus onset for perception

and over the entire segment for imagery. The data covariance was subsequently regularised using

shrinkage with a regularisation parameter of 0.01 (as described in Manahova et al., 2018). These fil-

ters were then applied to the sensor MEG data, resulting in an estimated two-dimensional dipole

moment for each grid point over time.

To facilitate interpretation and visualisation, we reduced the two-dimensional dipole moments to

a scalar value by taking the norm of the vector. This value reflects the degree to which a given

source location contributes to activity measured at the sensor level. However, the norm is always a

positive value and will therefore, due to noise, suffer from a positivity bias. To counter this bias, we

employed a permutation procedure in order to estimate this bias. Specifically, in each permutation,

the sign of half of the trials were flipped before averaging and projecting to source space. This way,

we cancelled out the systematic stimulus-related part of the signal, leaving only the noise. Reducing

this value by taking the norm thus provides an estimate of the positivity bias. This procedure was

repeated 1000 times, resulting in a distribution of the noise. We took the mean of this distribution

as providing the most likely estimate of the noise and subtracted this from the true, squared source

signal. Furthermore, this estimate provides a direct estimate of the artificial amplification factor due

to the depth bias. Hence, we also divided the data by the noise estimate to obtain a quantity that

allowed visualisation across cortical topography, leading to an unbiased estimate of the amount of

stimulus information present in each cortical area. Values below zero therefore reflected no detect-

able signal compared to noise. For full details, see Manahova et al., 2018.

To perform group averaging, for each subject, the surface-based source points were divided into

74 atlas regions as extracted by FreeSurfer on the basis of the subject-specific anatomy

(Destrieux et al., 2010). Next, the activation per atlas region was averaged over grid points for

each participant. Group-level activations were then calculated by averaging the activity over partici-

pants per atlas region (van de Nieuwenhuijzen et al., 2016). The early visual cortex ROI (EVC) cor-

responded to the ’occipital pole’ parcels from the Destrieux atlas and the inferior temporal ROI (IT)

was a combination of the ’temporal lateral fusiform’, ’temporal lateral’ and ’temporal lateral and lin-

gual’ parcels. Activation in the IT ROI was calculated by applying PCA to the three parcels and tak-

ing the first principal component. Because data are z-scored over time during PCA, to ensure that

the activation in the EVC ROI was comparable to activation in IT, we also z-scored these data.
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imagery reactivation time with perception model time. (b) BIC for linear mixed-effects model

explaining imagery reactivation time with perception model time after permuting the stimulus-class

labels. (c) BIC for linear mixed-effects model explaining imagery reactivation time averaged over tri-

als within subject with perception model time.

. Transparent reporting form

Data availability

The data used in this paper is available at http://hdl.handle.net/11633/di.dcc.DSC_2017.00072_245

and the analysis code is available at https://github.com/NadineDijkstra/IMAREV.git (copy archived at

https://github.com/elifesciences-publications/IMAREV).
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00072_245
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Seeliger K, Fritsche M, Güçlü U, Schoenmakers S, Schoffelen JM, Bosch SE, van Gerven MAJ. 2018.
Convolutional neural network-based encoding and decoding of visual object recognition in space and time.
NeuroImage 180:253–266. DOI: https://doi.org/10.1016/j.neuroimage.2017.07.018, PMID: 28723578

Dijkstra et al. eLife 2020;9:e53588. DOI: https://doi.org/10.7554/eLife.53588 18 of 19

Research article Neuroscience

https://doi.org/10.1016/S0896-6273(00)00168-9
http://www.ncbi.nlm.nih.gov/pubmed/11163281
https://doi.org/10.1152/jn.00394.2013
http://www.ncbi.nlm.nih.gov/pubmed/24089402
https://doi.org/10.1016/j.cub.2018.08.065
http://www.ncbi.nlm.nih.gov/pubmed/30344116
https://doi.org/10.1146/annurev.psych.55.090902.142005
http://www.ncbi.nlm.nih.gov/pubmed/14744217
https://doi.org/10.1016/j.tics.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24593982
http://www.ncbi.nlm.nih.gov/pubmed/24593982
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.neuron.2012.04.034
http://www.ncbi.nlm.nih.gov/pubmed/22841311
https://doi.org/10.1038/35090055
http://www.ncbi.nlm.nih.gov/pubmed/11533731
https://doi.org/10.1037/0033-2909.129.5.723
http://www.ncbi.nlm.nih.gov/pubmed/12956541
https://doi.org/10.1016/S0166-2236(00)01657-X
https://doi.org/10.1016/j.neuroimage.2011.10.055
https://doi.org/10.1038/s41467-018-08080-2
https://doi.org/10.1016/j.celrep.2018.12.058
https://doi.org/10.1016/j.celrep.2018.12.058
http://www.ncbi.nlm.nih.gov/pubmed/30625320
https://doi.org/10.1162/jocn_a_01281
http://www.ncbi.nlm.nih.gov/pubmed/29762101
https://doi.org/10.1146/annurev.ne.10.030187.002051
http://www.ncbi.nlm.nih.gov/pubmed/3105414
https://doi.org/10.1016/j.neuron.2015.12.018
http://www.ncbi.nlm.nih.gov/pubmed/26777277
https://doi.org/10.1038/srep18253
https://doi.org/10.1098/rstb.2008.0314
https://doi.org/10.1098/rstb.2008.0314
https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
https://doi.org/10.1016/j.cub.2008.05.048
http://www.ncbi.nlm.nih.gov/pubmed/18583132
https://doi.org/10.1177/0963721419835210
https://doi.org/10.1016/j.tins.2019.07.005
https://doi.org/10.1016/j.tins.2019.07.005
https://doi.org/10.1523/JNEUROSCI.3905-12.2013
https://doi.org/10.1523/JNEUROSCI.3905-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23637162
https://doi.org/10.1016/j.neuroimage.2009.11.084
https://doi.org/10.1038/378281a0
http://www.ncbi.nlm.nih.gov/pubmed/7477347
https://doi.org/10.1016/j.neuroimage.2017.07.018
http://www.ncbi.nlm.nih.gov/pubmed/28723578
https://doi.org/10.7554/eLife.53588


Senden M, Emmerling TC, van Hoof R, Frost MA, Goebel R. 2019. Reconstructing imagined letters from early
visual cortex reveals tight topographic correspondence between visual mental imagery and perception. Brain
Structure and Function 224:1167–1183. DOI: https://doi.org/10.1007/s00429-019-01828-6

Spaak E, Watanabe K, Funahashi S, Stokes MG. 2017. Stable and dynamic coding for working memory in primate
prefrontal cortex. The Journal of Neuroscience 37:6503–6516. DOI: https://doi.org/10.1523/JNEUROSCI.3364-
16.2017, PMID: 28559375

Stolk A, Todorovic A, Schoffelen JM, Oostenveld R. 2013. Online and offline tools for head movement
compensation in MEG. NeuroImage 68:39–48. DOI: https://doi.org/10.1016/j.neuroimage.2012.11.047,
PMID: 23246857

Thorpe S, Fize D, Marlot C. 1996. Speed of processing in the human visual system. Nature 381:520–522.
DOI: https://doi.org/10.1038/381520a0, PMID: 8632824

Thorpe S, Fabre-Thorpe M. 2001. Seeking categories in the brain. Science 291:260–263. DOI: https://doi.org/10.
1126/science.1058249

van de Nieuwenhuijzen ME, van den Borne EW, Jensen O, van Gerven MA. 2016. Spatiotemporal dynamics of
cortical representations during and after stimulus presentation. Frontiers in Systems Neuroscience 10:42.
DOI: https://doi.org/10.3389/fnsys.2016.00042, PMID: 27242453

Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. 1997. Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering 44:867–880.
DOI: https://doi.org/10.1109/10.623056, PMID: 9282479

Vidaurre D, Myers NE, Stokes M, Nobre AC, Woolrich MW. 2019. Temporally unconstrained decoding reveals
consistent but Time-Varying stages of stimulus processing. Cerebral Cortex 29:863–874. DOI: https://doi.org/
10.1093/cercor/bhy290, PMID: 30535141

Vogels R, Orban GA. 1996. Coding of stimulus invariances by inferior temporal neurons. Progress in Brain
Research 112:195–211. DOI: https://doi.org/10.1016/s0079-6123(08)63330-0, PMID: 8979830

Wang G, Chen X-Y, Qiao F-LI, Wu Z, Huang NE. 2010. On intrinsic mode function. Advances in Adaptive Data
Analysis 02:277–293. DOI: https://doi.org/10.1142/S1793536910000549

Dijkstra et al. eLife 2020;9:e53588. DOI: https://doi.org/10.7554/eLife.53588 19 of 19

Research article Neuroscience

https://doi.org/10.1007/s00429-019-01828-6
https://doi.org/10.1523/JNEUROSCI.3364-16.2017
https://doi.org/10.1523/JNEUROSCI.3364-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28559375
https://doi.org/10.1016/j.neuroimage.2012.11.047
http://www.ncbi.nlm.nih.gov/pubmed/23246857
https://doi.org/10.1038/381520a0
http://www.ncbi.nlm.nih.gov/pubmed/8632824
https://doi.org/10.1126/science.1058249
https://doi.org/10.1126/science.1058249
https://doi.org/10.3389/fnsys.2016.00042
http://www.ncbi.nlm.nih.gov/pubmed/27242453
https://doi.org/10.1109/10.623056
http://www.ncbi.nlm.nih.gov/pubmed/9282479
https://doi.org/10.1093/cercor/bhy290
https://doi.org/10.1093/cercor/bhy290
http://www.ncbi.nlm.nih.gov/pubmed/30535141
https://doi.org/10.1016/s0079-6123(08)63330-0
http://www.ncbi.nlm.nih.gov/pubmed/8979830
https://doi.org/10.1142/S1793536910000549
https://doi.org/10.7554/eLife.53588

