Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones

  1. Anastasia A Minervina  Is a corresponding author
  2. Mikhail V Pogorelyy  Is a corresponding author
  3. Ekaterina A Komech
  4. Vadim K Karnaukhov
  5. Petra Bacher
  6. Elisa Rosati
  7. Andre Franke
  8. Dmitriy Chudakov
  9. Ilgar Z Mamedov
  10. Yuri B Lebedev
  11. Thierry Mora
  12. Aleksandra M Walczak
  1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Federation
  2. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russia
  3. Skoltech, Russian Federation
  4. Kiel University, Germany
  5. École Normale Supérieure, France

Abstract

The diverse repertoire of T-cell receptors (TCR) plays a key role in the adaptive immune response to infections. Using TCR alpha and beta repertoire sequencing for T-cell subsets, as well as single-cell RNAseq and TCRseq, we track the concentrations and phenotypes of individual T-cell clones in response to primary and secondary yellow fever immunization — the model for acute infection in humans — showing their large diversity. We confirm the secondary response is an order of magnitude weaker, albeit ∼ 10 days faster than the primary one. Estimating the fraction of the T-cell response directed against the single immunodominant epitope, we identify the sequence features of TCRs that define the high precursor frequency of the two major TCR motifs specific for this particular epitope. We also show the consistency of clonal expansion dynamics between bulk alpha and beta repertoires, using a new methodology to reconstruct alpha-beta pairings from clonal trajectories.

Data availability

Sequencing data have been deposited in SRA under accession code PRJNA577794.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anastasia A Minervina

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    For correspondence
    aminervina@mail.ru
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9884-6351
  2. Mikhail V Pogorelyy

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    For correspondence
    m.pogorely@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0773-1204
  3. Ekaterina A Komech

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
    Competing interests
    No competing interests declared.
  4. Vadim K Karnaukhov

    Center of Life Sciences, Skoltech, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  5. Petra Bacher

    Institute of Immunology, Kiel University, Kiel, Germany
    Competing interests
    No competing interests declared.
  6. Elisa Rosati

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2635-6422
  7. Andre Franke

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    No competing interests declared.
  8. Dmitriy Chudakov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-790X
  9. Ilgar Z Mamedov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  10. Yuri B Lebedev

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4554-4733
  11. Thierry Mora

    Laboratoire de Physique, École Normale Supérieure, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  12. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702

Funding

European Research Council (Consolidator Grant no 724208)

  • Thierry Mora
  • Aleksandra M Walczak

Russian Science Foundation (15-15-00178)

  • Anastasia A Minervina
  • Mikhail V Pogorelyy
  • Ekaterina A Komech
  • Vadim K Karnaukhov
  • Yuri B Lebedev

Russian Foundation for Basic Research (18-29-09132)

  • Ilgar Z Mamedov

Russian Foundation for Basic Research (19-54-12011)

  • Ilgar Z Mamedov

Deutsche Forschungsgemeinschaft (Exc2167)

  • Petra Bacher
  • Elisa Rosati
  • Andre Franke

Deutsche Forschungsgemeinschaft (4096610003)

  • Elisa Rosati

Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1660)

  • Dmitriy Chudakov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Satyajit Rath, Indian Institute of Science Education and Research (IISER), India

Ethics

Human subjects: All donors gave written informed consent to participate in the study under the declaration of Helsinki. The blood was collected with informed consent in a certified diagnostics laboratory. The experimental protocol was approved by the Ethical Committee of the Pirogov Russian National Research Medical University, Russia (FLU0108, granted January 29, 2016).

Version history

  1. Received: November 18, 2019
  2. Accepted: February 21, 2020
  3. Accepted Manuscript published: February 21, 2020 (version 1)
  4. Version of Record published: March 6, 2020 (version 2)

Copyright

© 2020, Minervina et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,573
    Page views
  • 541
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anastasia A Minervina
  2. Mikhail V Pogorelyy
  3. Ekaterina A Komech
  4. Vadim K Karnaukhov
  5. Petra Bacher
  6. Elisa Rosati
  7. Andre Franke
  8. Dmitriy Chudakov
  9. Ilgar Z Mamedov
  10. Yuri B Lebedev
  11. Thierry Mora
  12. Aleksandra M Walczak
(2020)
Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones
eLife 9:e53704.
https://doi.org/10.7554/eLife.53704

Share this article

https://doi.org/10.7554/eLife.53704

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.