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Abstract Genetic screens are powerful tools for the functional annotation of genomes. In the

context of multicellular organisms, interrogation of gene function is greatly facilitated by methods

that allow spatial and temporal control of gene abrogation. Here, we describe a large-scale

transgenic short guide (sg) RNA library for efficient CRISPR-based disruption of specific target

genes in a constitutive or conditional manner. The library consists currently of more than 2600

plasmids and 1700 fly lines with a focus on targeting kinases, phosphatases and transcription

factors, each expressing two sgRNAs under control of the Gal4/UAS system. We show that

conditional CRISPR mutagenesis is robust across many target genes and can be efficiently

employed in various somatic tissues, as well as the germline. In order to prevent artefacts

commonly associated with excessive amounts of Cas9 protein, we have developed a series of novel

UAS-Cas9 transgenes, which allow fine tuning of Cas9 expression to achieve high gene editing

activity without detectable toxicity. Functional assays, as well as direct sequencing of genomic

sgRNA target sites, indicates that the vast majority of transgenic sgRNA lines mediate efficient

gene disruption. Furthermore, we conducted the so far largest fully transgenic CRISPR screen in

any metazoan organism, which further supported the high efficiency and accuracy of our library and

revealed many so far uncharacterized genes essential for development.

Introduction
The functional annotation of the genome is a prerequisite to gain a deeper understanding of the

molecular and cellular mechanisms that underpin development, homeostasis and disease of multicel-

lular organisms. Drosophila melanogaster has provided many fundamental insights into metazoan

biology, in particular in the form of systematic gene discovery through genetic screens. Forward

genetic screens utilize random mutagenesis to introduce novel genetic variants, but are limited by

the large number of individuals required to probe many or all genetic loci and difficulties in identify-

ing causal variants. In contrast, reverse genetic approaches, such as RNA interference (RNAi), are

gene-centric designed and allow to probe the function of a large number of genes (Boutros and

Ahringer, 2008; Heigwer et al., 2018; Horn et al., 2011; Mohr et al., 2014). In addition, RNAi

reagents can be genetically encoded and used to screen for gene function with spatial and temporal

precision (Dietzl et al., 2007; Kaya-Çopur and Schnorrer, 2016; Ni et al., 2009). However, RNAi is

often limited by incomplete penetrance due to residual gene expression and can suffer from off-tar-

get effects (Echeverri et al., 2006; Ma et al., 2006; Perkins et al., 2015).

While genetic screens have contributed enormously to our understanding of gene function, large

parts of eukaryotic genomes remain not or only poorly characterized (Brown et al., 2009;

Dickinson et al., 2016; White et al., 2013). For example, in Drosophila only 20% of genes have

associated mutant alleles (Kaufman, 2017). Therefore, there exists an urgent need to develop
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innovative approaches to gain a more complete understanding of the functions encoded by the vari-

ous elements of the genome.

Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) - CRISPR-associated (Cas)

systems are adaptive prokaryotic immune systems that have been adopted for genome engineering

applications (Doudna and Charpentier, 2014; Wang et al., 2016). Cas9 complexed with a single

chimeric guide RNA (sgRNA) mediates site-specific DNA double strand breaks and subsequent DNA

repair can result in small insertions and deletions (indels) at the break point. However, not all Cas9-

mediated indel mutations abrogate gene function. To compensate for that, strategies have been

developed to introduce simultaneously several mutations in the same gene. The efficiency of such

multiplexing strategies has been demonstrated in flies, mice, fish and plants, and several sgRNAs

are often required to generate bi-allelic loss-of function mutations in all cells (Port and Bullock,

2016; Xie et al., 2015; Yin et al., 2015). Furthermore, to gain a comprehensive understanding of

the often multifaceted functions genetic elements have in multicellular organisms requires methods

that enable spatial or temporal control of gene disruption. To restrict CRISPR mutagenesis to

defined cells, tissues or developmental stages, specific regulatory regions are commonly employed

to drive Cas9 expression. However, Cas9 expression vectors with tissue-specific enhancers often dis-

play ‘leaky’ Cas9 expression in other tissues and poor control of CRISPR mutagenesis has been

observed in multiple systems, including flies, mice and patient derived xenografts (Chen et al.,

2017; Dow et al., 2015; Hulton et al., 2019; Port and Bullock, 2016). It has recently been demon-

strated that expressing both Cas9 and sgRNA from conditional regulatory elements can result in

tightly controlled genome editing (Port and Bullock, 2016), but the robustness of such a strategy

across many genomic target sites has so far not been explored.

Here, we describe a large-scale resource for spatially restricted mutagenesis in Drosophila. The

system mediates robust mutagenesis across target genes, giving rise to a large fraction of cells con-

taining gene knock-outs and displays tight spatial and temporal control. We developed a series of

tunable Cas9 lines that allow gene editing with high efficiency and low toxicity independent of

enhancer strength. These can be used with a growing library of sgRNA transgenes, which currently

comprise over 1700 Drosophila strains, for systematic mutagenesis in any somatic tissue or the germ-

line. Furthermore, we present the first large-scale transgenic CRISPR screen using this resource,

which confirms its high efficiency and specificity and reveals multiple uncharacterized genes with

essential, but unknown function.

eLife digest Twenty years after the release of the sequence of the human genome, the role of

many genes is still unknown. This is partly because some of these genes may only be active in

specific types of cells or for short periods of time, which makes them difficult to study.

A powerful way to gather information about human genes is to examine their equivalents in

‘model’ animals such as fruit flies. Researchers can use genetic methods to create strains of insects

where genes are deactivated; evaluating the impact of these manipulations on the animals helps to

understand the roles of the defunct genes. However, the current methods struggle to easily delete

target genes, especially only in certain cells, or at precise times.

Here, Port et al. genetically engineered flies that carry CRISPR-Cas9, a biological system that can

be programmed to ‘cut’ and mutate precise genetic sequences. The insects were also manipulated

in such a way that the CRISPR elements could be switched on at will, and their quantity finely tuned.

This work resulted in a collection of more than 1,700 fruit fly strains in which specific genes could be

deactivated on demand in precise cells. Further experiments confirmed that this CRISPR system

could mutate target genes in different parts of the fly, including in the eyes, gut and wings.

Port et al. have made their collection of genetically engineered fruit flies publically available, so

that other researchers can use the strains in their experiments. The CRISPR technology they refined

and developed may also lay the foundation for similar collections in other model organisms.

Port et al. eLife 2020;9:e53865. DOI: https://doi.org/10.7554/eLife.53865 2 of 20

Tools and resources Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.53865


Results

Robust tissue-specific CRISPR mutagenesis
We set out to develop a large-scale resource that would allow systematic CRISPR-mediated gene

disruption with tight spatial and temporal control (Figure 1A). In Drosophila, tissue-specific expres-

sion of transgenes is most commonly performed via the binary Gal4/UAS system (Brand and Perri-

mon, 1993) and thousands of Gal4 lines with specific temporal and spatial expression patterns are

publicly available. To harness this resource for tissue-specific CRISPR mutagenesis we aimed to uti-

lize UAS-Cas9 transgenes and combine them with the sgRNA expression vector pCFD6, which ena-

bles Gal4-dependent expression of sgRNA arrays. We have previously shown that conditional

expression of both Cas9 and sgRNAs is necessary to achieve tight control of mutagenesis

(Figure 1B; Port and Bullock, 2016). Since this previous proof-of principle study was restricted to

testing pCFD6 with two sgRNAs targeting the Wnt secretion factor Evenness interrupted (Evi, also

known as Wntless or Sprinter; Bänziger et al., 2006; Bartscherer et al., 2006; Port and Bullock,

2016), we first tested whether this system is robust across target genes and tissues, a prerequisite

to generate large-scale libraries of sgRNA strains targeting many or all Drosophila genes. To this

end, we created various transgenic fly lines harbouring a pCFD6 transgene encoding two sgRNAs

targeting a single gene at two independent positions. These were crossed to flies containing a UAS-

cas9.P2 transgene and a tissue-specific Gal4 driver. We then analysed if mutations were efficiently

induced, restricted to the appropriate cells and caused the expected phenotypes. We observed effi-

cient and specific gene disruption in wing imaginal discs with pCFD6 sgRNA transgenes targeting

the Drosophila beta-Catenin homolog armadillo (arm, Figure 1C), as well as the transcription factor

senseless (sens) or the transmembrane protein smoothened (smo) (Figure 1—figure supplement

1A,B). To test tissue-specific CRISPR mutagenesis in a different tissue context, we targeted Notch

(N) in the Drosophila midgut, which is derived from the endoderm. We observed a strong increase

in stem cell proliferation and an accumulation of cells with small nuclei, which matches the described

phenotype of N mutant clones in the midgut (Ohlstein and Spradling, 2006; Figure 1D and Fig-

ure 1—figure supplement 2). Interestingly, we observed a qualitative difference between perturba-

tion of N expression by RNAi, which only induces hyperplasia in female flies (Figure 1—figure

supplement 2; Hudry et al., 2016; Siudeja et al., 2015), and N mutagenesis by CRISPR, which indu-

ces strong overgrowth in both male and female midguts (Figure 1—figure supplement 2). We also

tested conditional mutagenesis of neuralized (neur) and yellow (y) along the dorsal midline and of

sepia (se) in the developing eye and observed in each case the described null mutant phenotype in

the expected domain (Figure 1E,F, Figure 1—figure supplement 1C).

Next, we tested whether pCFD6-sgRNA2x also mediates efficient mutagenesis in the germline,

where some UAS vectors are silenced (DeLuca and Spradling, 2018; Huang et al., 2018). This is a

particularly important application, as it allows to create stable and sequence-verified mutant fly lines,

which can be backcrossed to remove potential off-target mutations. We crossed previously

described nos-Gal4VP16 UAS-Cas9.P1 flies (Port et al., 2014) to sgRNA strains targeting either

neur, N, cut (ct), decapentaplegic (dpp) or Ras85D. Despite the fact that all five genes are essential

for Drosophila development and act in multiple tissues, nos-Gal4VP16 UAS-Cas9.P1 pCFD6-sgRNA2x

flies were viable and morphologically normal, demonstrating tightly restricted mutagenesis. We then

tested their offspring for CRISPR induced mutations at the sgRNA target sites. Crosses with pCFD6-

sgRNA2x targeting neur, N, ct and Ras85D passed on mutations to most or all analysed offspring

(Figure 1G). Mutations were often found on both target sites, were frequently out-of-frame and

included large deletions of 8 and 14 kb between the sgRNA target sites (Figure 1G). In contrast,

nos-Gal4VP16 UAS-Cas9.P1 pCFD6-dpp2x flies produced only few viable offspring of which only 1/

11 carried a mutation, which was in-frame. Since dpp is known to be haploinsufficient (St Johnston

et al., 1990), this is consistent with a high number of dpp loss-of function alleles being transmitted

to the next generation.

Together, these experiments demonstrate that sgRNA expression from pCFD6 mediates efficient

and tightly restricted mutagenesis in various somatic cell types as well as the germline and estab-

lishes that tissue-specific CRISPR mutagenesis in Drosophila is robust across genes and tissues.
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Figure 1. Conditional CRISPR mutagenesis with pCFD6 is robust across target genes and tissues. (A) Schematic overview of the workflow. To perform

tissue-specific targeted mutagenesis flies transgenic for a specific Gal4 driver (X-Gal4) and UAS-Cas9 are crossed to flies with a UAS-sgRNA transgene.

Offspring from this cross express Cas9 and sgRNAs in Gal4 expressing cells, leading to mutagenesis of the target gene. (B) Schematic of gene editing

outcomes typically observed with a single, ubiquitous sgRNA (lower left) or a conditional array of several sgRNAs (lower right). Leaky expression, that is

expression in the absence of Gal4, from conditional Cas9 transgenes gives rise to ectopic mutagenesis in combination with ubiquitous, but not

conditional, sgRNAs. Gene editing in tissues typically results in genetic mosaics, which can be enriched for bi-allelic knock-out cells through sgRNA

multiplexing. (C) Conditional CRISPR mutagenesis in wing imaginal discs with nub-Gal4 in the wing pouch. Gene editing with pCFD6-arm2x results in

loss of Arm protein exclusively in the Gal4 expression domain in nearly all cells. Control animals express the nub-Gal4 driver and UAS-cas9.P2. Scale

bar = 50 mm. (D) Conditional CRISPR mutagenesis of Notch in intestinal stem cells drives tumor formation in the midgut. esgts (esg-Gal4 tub-Gal80ts)

was used to repress expression of UAS-cas9.P2 and pCFD6-N2x until adult stages. Mutagenesis was induced for 5 days at 29˚C and flies were returned

to 18˚C to avoid Cas9.P2 mediated toxicity. Posterior midguts 15 days after induction of mutagenesis are shown. esgts UAS-cas9.P2 pCFD6-N2x tissue

Figure 1 continued on next page
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Tunable Cas9 expression to balance activity and toxicity
We and others have shown that expression of high amounts of Cas9 protein is toxic in various organ-

isms (Jiang et al., 2014; Poe et al., 2019; Port et al., 2014; Yang et al., 2018). For example, over-

expression of Cas9 in the wing imaginal disc of nub-Gal4 UAS-cas9.P2 animals results in a strong

induction of apoptosis (Figure 2—figure supplement 1A). Since only relatively low levels of Cas9

are sufficient for efficient gene editing (Figure 2—figure supplement 1B), we sought to engineer a

system that would allow to tune Cas9 expression to optimally balance activity and toxicity. Such a

system would ideally allow to modulate Cas9 levels independent of enhancer strength, in order to

be compatible with the wide range of available Gal4 lines. We employed a method that uses

upstream open reading frames (uORF) of different length to predictably reduce translation of the

main, downstream ORF (Ferreira et al., 2013; Kozak, 2001; Southall et al., 2013). We created a

series of six UAS-cas9 plasmids containing uORFs of different length, ranging from 33 bp (referred

to as UAS-uXSCas9) to 714 bp (UAS-uXXLCas9, Figure 2A). When combined with nos-cas9 these plas-

mids resulted in Cas9 protein levels inversely correlated with the length of the uORF (Figure 2B, Fig-

ure 2—figure supplement 1C). Reducing the amount of Cas9 protein resulted in a strong decrease

in the number of apoptotic cells (Figure 2C). Importantly, three UAS-uCas9 transgenes with moder-

ate levels of Cas9 expression and apoptosis levels similar to controls did mediate full on-target gene

editing activity at the evi locus in wing imaginal discs (Figure 2D, Figure 2—figure supplement 1C).

Together, these experiments demonstrate that the UAS-uCas9 vector series enables titration of

Cas9 expression to avoid toxicity without sacrificing gene editing activity.

Next, we generated a toolbox of various fly strains harbouring a UAS-uMCas9 transgene and a

Gal4 driver on the same chromosome (Figure 2—figure supplement 2A,B). Such stocks can be

crossed to transgenic sgRNA lines to induce conditional CRISPR mutagenesis in Gal4-expressing

cells. We tested the spatial mutagenesis pattern for a number of novel Gal4 UAS-uMCas9 lines in the

wing imaginal disc of third instar larva by either visualizing the loss of protein encoded by the target

gene with a specific antibody, or by using the transgenic CIGAR reporter (Brunner et al., 2019).

CIGAR encodes an ubiquitously expressed fluorescent protein that is only efficiently translated once

an upstream sequence has been mutated by CRISPR gene editing (Brunner et al., 2019). While not

all CRISPR-mediated mutations lead to induction of the fluorophore encoded by CIGAR, this strat-

egy has the advantage that it readily reveals CRISPR activity throughout the entire organism.

We found that while some Gal4 UAS-uMCas9 lines resulted in mutagenesis exclusively in cells pos-

itive for Cas9 at that stage (Figure 2—figure supplement 2D,E), others had much broader muta-

genesis patterns (Figure 2E, Figure 2—figure supplement 2F,G). For example, in third instar wing

discs ptc-Gal4 is expressed in a narrow band of cells along the anterior-posterior boundary

(Figure 2E). However, CRISPR mutagenesis with ptc-Gal4 frequently leads to mutations throughout

the entire anterior compartment (Figure 2E’), likely reflecting broader expression of ptc-Gal4 in

early development or expression at low level in this domain. Similar effects were observed with dpp-

Gal4 (Figure 2—figure supplement 2G). Therefore, additional regulatory mechanisms to temporally

control Cas9 expression are highly desirable when using Gal4 lines with dynamic expression patterns

Figure 1 continued

shows an accumulation of stem cells (DNA marked in cyan) and an increase in mitotic cells (pHistone3 in magenta). Quantification of phenotypes are

shown in Figure 1—figure supplement 2. Control genotype is esgts UAS-cas9.P2 pCFD6-se2x. Scale bar = 50 mm. (E) Mutagenesis of neur in pnr-Gal4

UAS-cas9.P2 pCFD6-neur2x animals results in loss of thoracic bristles along the dorsal midline, where pnr-Gal4 is expressed. Note the tissue patch that

retains bristles, reflecting mosaic mutagenesis. (F) Mutagenesis of the pigmentation gene se in the eye. GMR-Gal4 UAS-casp.P2 pCFD6-se2x animals

develop a uniform dark eye coloration. Control animals in (E) and (F) express the respective Gal4 driver and UAS-cas9.P2 pCFD6-Sfp24C12x. (G) pCFD6

mediated mutagenesis in the germline. Shown is a summary of the mutational status at each sgRNA target site in individual F1 flies. nos-Gal4VP16

UAS-cas9.P1 pCFD6 flies expressing sgRNAs targeting the indicated essential genes are viable, demonstrating germline restricted mutagenesis, and

transmit mutant alleles to their offspring. Shown is a summary of the mutational status at each sgRNA target site in individual flies. All lines, except the

one targeting Dpp (asterisk), transmit mutant alleles to the majority of offspring. Flies expressing sgRNAs targeting Dpp in the germline produce few

viable offspring and transmitted only a single, in-frame, mutation out of 11 analysed offspring. The same sgRNA construct results in highly efficient

mutagenesis in somatic tissues (see Figure 4), consistent with haploinsufficiency of Dpp in the Drosophila embryo.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Efficient conditional CRISPR mutagenesis in various Drosophila tissues.

Figure supplement 2. Qualitative differences between CRISPR mutagenesis and RNAi knock-down of Notch in the Drosophila midgut.
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Figure 2. A transgenic series for tunable Cas9 expression to balance activity and toxicity. (A) Principle of the UAS-uCas9 series. Translation of the

downstream ORF is inversely correlated with length of the upstream ORF in bicistronic mRNAs. The UAS-uCas9 series consists of transgenes that

harbor uORFs of different length to modulate expression of Cas9. (B - D) Systematic characterization of Cas9 expression, toxicity and mutagenesis

efficiency of the UAS-uCas9 series. Transgenes of the UAS-uCas9 series were recombined with nub-Gal4 and crossed to the apoptosis sensor UAS-

Figure 2 continued on next page

Port et al. eLife 2020;9:e53865. DOI: https://doi.org/10.7554/eLife.53865 6 of 20

Tools and resources Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.53865


during development. We first employed the temperature-sensitive Gal80 repressor to suppress Gal4

activity. While Gal80ts mediated strong inhibition of mutagenesis in ptc-Gal4 UAS-uMCas9 tub-

Gal80ts flies at the restrictive temperature of 18˚C, we still observed mutagenesis in Gal4-expressing

cells in 11/24 wing discs, indicating residual Gal4 activity (Figure 2F). We therefore tested an alter-

native strategy to induce CRISPR mutagenesis at a given time point. We created a transgene that

harbors a FRT-flanked GFP Stop-cassette between the UAS promoter and the uMCas9 expression

cassette (UAS-FRT-GFP-FRT-uMCas9, Figure 2G). A brief pulse of Flp recombinase (from a hs-Flp

transgene) can be used to excise the GFP cassette at the desired time and induce Cas9 expression.

We validated this approach by mutagenizing ct in a negatively marked subset of cells in the wing

disc and observed loss of Ct protein exclusively in cells that had lost GFP expression (Figure 2G).

These experiments highlight the need to critically evaluate spatial mutagenesis patterns in condi-

tional CRISPR experiments and suggest strategies for additional control of gene editing in cases

where the Gal4 expression pattern alone does not suffice. We envision that in the future other sys-

tems for conditional transgene expression, such as the chemical-dependent GeneSwitch system

(Osterwalder et al., 2001; Roman et al., 2001), split-Gal4 (Luan et al., 2006) or conditional trans-

gene degradation (Sethi and Wang, 2017) will also be combined with CRISPR to further refine

mutagenesis patterns.

A large-scale transgenic sgRNA library
Having established the robustness of our method and developed an optimised Cas9 toolkit, we next

focused our efforts on the generation of a large-scale sgRNA resource. First, we generated and vali-

dated three sgRNA lines targeting genes with highly restricted expression patterns, which can be

used as controls for effects of Cas9/sgRNA expression and induction of DNA damage in the majority

of tissues where their target gene is not expressed (Figure 3—figure supplement 1;

Graveley et al., 2011). To allow systematic screening of functional gene groups we then designed

sgRNAs against all Drosophila genes encoding transcription factors, kinases and phosphatases, as

well as a large number of other genes encoding fly orthologs of genes implicated in human patholo-

gies (Figure 3A, see Materials and methods). We used CRISPR library designer (Heigwer et al.,

2016) to compile a list of all sgRNAs that do not have predicted off-target sites elsewhere in the

genome. We then selected sgRNAs depending on the position of their target site within the target

gene. We chose sgRNAs targeting coding exons shared by all mRNA isoforms and target sites that

were located in the 5’ half of the open reading frame, where indel mutations often have the largest

functional impact. We then grouped sgRNAs in pairs, with each pair targeting sites typically

Figure 2 continued

GC3Ai (B, C) or pCFD6-evi2x (D). Graphs show data as individual dots, and boxplots as a data summary, with the line representing the median and the

box the interquartile range. (B) Quantification of anti-Cas9 staining intensity in wing discs of the indicated genotype. Cas9 levels gradually reduce as the

size of the uORF increases. N � 6 wing discs. (C) Elevated levels of apoptosis were only observed with UAS-uXSCas9. The longest uORF (uXXL)

encodes EGFP, preventing visualization of dying cells with GC3Ai. Quantification of fluorescent intensity of the GC3Ai reporter in the wing pouch.

N � 14 wing discs. (D) All transgenes of the UAS-uCas9 series mediate evi mutagenesis, with transgenes containing the four shortest uORFs (XS-L)

leading to comparable gene editing that removes Evi from nearly all cells in the Gal4 expression domain. Quantification of staining intensity for Evi

protein in the wing pouch (Gal4 on), relative to Evi staining in the hinge region (Gal4 off). N � 6 wing discs. (E, E’) CRISPR mutagenesis patterns reflect

Gal4 expression history. (E) Fluorescence of GFP, which turns over, reflects most recent Gal4 expression pattern. (E’) CRISPR mutagenesis, visualized by

activation of the CIGAR reporter, is permanent and reveals the Gal4 expression history. Images of a representative wing disc are shown to the left of

each panel and average intensity projection of several discs registered to a common template are shown on the right (see Materials and methods).

Areas that are CIGAR positive in many discs appear bright, while areas devoid of signal in most discs appear dark. (F, F’) Incomplete repression of

CRISPR mutagenesis by temperature-sensitive Gal80. (F) Principle of the Gal80ts system. At 18˚C Gal80 binds and inhibits Gal4. (F’) Mutagenesis is still

observed at 18˚C in 11/24 discs and observed preferentially in the Gal4 expression domain, indicating incomplete Gal4 suppression by Gal80ts. (G - G’’)

Control of CRISPR mutagenesis by a flip-out cassette. (G) In the absence of FLP recombinase a FRT-flanked GFP flip-out cassette (FRT sites represented

by triangles) separates Cas9 from the promoter, resulting in cells that express GFP, but no Cas9. In the presence of FLP, the GFP cassette is excised

and Cas9 is expressed. (G’) Staining for the transcription factor Cut reveals a continuous stripe of cells expressing ct along the dorsal-ventral boundary

in wildtype tissue. (G’’) A pulse of FLP expression was used to excise the GFP flip-out cassette in a subset of cells (marked by the absence of GFP). Cut

expression (magenta) is exclusively lost in GFP negative cells. Scale bar = 50 mm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. High levels of Cas9 expression from UAS-cas9.

Figure supplement 2. CRISPR mutagenesis patterns reflect expression patterns of Gal4 lines throughout development.
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Figure 3. Generation of a large-scale sgRNA library. (A) Design of the sgRNA pairs used for the HD_CFD library. sgRNAs were designed through CLD

and filtered to target common exons in the 5’ORF and not overlap the start codon. sgRNAs were then paired to target two independent positions in

the same gene. As an example the locations of the two target sites in ovo targeted by the two sgRNAs encoded in line HD_CFD000172 is shown.

Exons are represented as boxes and regions in blue are protein coding. (B) Experimental strategy for the generation of the transgenic sgRNA library.

Figure 3 continued on next page
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separated by approximately 500 bp of protein coding DNA (see Materials and methods). Next, we

devised an efficient cloning protocol to insert defined sgRNA pairs into pCFD6. This utilized synthe-

sized oligonucleotide pools, which allow cloning of hundreds to thousands of sgRNA plasmids in

parallel in a single tube, followed by clonal selection of individual pCFD6-sgRNA2x plasmids and

sequence validation (Figure 3B, see Materials and methods). We also generated a derivative of

pCFD6, pCFD6.FRT, which harbors incompatible FRT2 and FRT5 sites before and after the sgRNA

cassette, respectively. These recombination sites can be used to exchange sequences either side of

the sgRNA cassette, for example the promoter, or to add additional sgRNAs to the array

(Figure 3C). We validated that both FRT sites mediate highly efficient chromosome exchange in vivo

(Figure 3D). We then generated a large-scale transgenic sgRNA library, which we collectively refer

to as the ‘Heidelberg CRISPR Fly Design Library’ (short HD_CFD library). This growing resource cur-

rently contains 2622 plasmids and 1739 fly stocks targeting 1513 unique genes (Supplementary file

1). Fly lines are so far available for 545/754 (72%) transcription factors, 199/230 (87%) protein kinases

and 141/207 (68%) phosphatases (Figure 2D).

HD_CFD sgRNA lines mediate efficient mutagenesis and allow robust
CRISPR screening
To test on-target activity of HD_CFD sgRNA strains, we crossed a random selection of 28 HD_CFD

lines to an act-cas9;;tub-Gal4/TM3 strain, which is expected to mediate ubiquitous mutagenesis in

combination with active sgRNAs. We then sequenced PCR amplicons encompassing the sgRNA tar-

get sites (see Materials and methods) and analysed editing efficiency by ICE analysis (Hsiau et al.,

2019). We found that the vast majority (26/28) of HD_CFD sgRNA lines resulted in gene editing on

both target sites (Figure 4A). For 12/28 of lines editing on both sites was inferred to be at least 50%

and 23/28 reached this threshold on at least one target site. In contrast, only a single line

(HD_CFD00032) resulted in no detectable gene editing at either sgRNA target site. This suggests

that HD_CFD sgRNA lines mediate robust and efficient mutagenesis of target genes across the

genome.

Next, we performed a large-scale transgenic CRISPR screen. We crossed HD_CFD animals to act-

cas9;;tub-Gal4/TM3 to induce mutations ubiquitously in the offspring and determined viability at five

to seven days after eclosion. 290/639 (45%) of all crosses did not yield any viable offspring, while

269 (42%) lines produced viable adults and 53 (8%) of the lines resulted in lethality with incomplete

penetrance (Figure 4B and Supplementary file 2). In order to benchmark the performance of the

screen, we manually curated viability information based on genetic alleles stored in the Flybase data-

base to determine which HD_CFD lines target genes known to be essential or non-essential during

Drosophila development. This resulted in a list of 210 lines that target known essential genes. Of

those, 167 (79%) resulted in lethality, 20 (10%) were scored as semi-lethal, and 23 (11%) gave rise to

viable adult offspring. Interestingly, among the targets of sgRNA lines that produced false-negative

results there was a strong enrichment of genes known to play important roles, and to be highly

expressed, during early embryonic development. Furthermore, sequencing the sgRNA target sites in

randomly selected false-negative lines revealed efficient gene editing on one or both sites in 3/3

lines (Figure 4—figure supplement 1), suggesting that false-negative results often arise due to

mRNA perdurance, not inactive sgRNAs. Next, we analysed our data set for the occurrence of false-

Figure 3 continued

sgRNA target sequences are encoded on oligonucleotides synthesized and cloned in pool. Individual plasmids are sequence verified and transformed

into Drosophila at attP40 on the second chromosome following a pooled injection protocol followed by genotyping of individual transformants. (C)

Applications of the pCFD6::FRT vector. pCFD6::FRT contains two non-compatible FRT sites either side of the sgRNA cassette. Using compatible FRT

sides in trans allows to exchange sequences upstream or downstream of the sgRNAs in vivo. (D) Efficient promoter or sgRNA exchange in vivo.

Summary of FLP/FRT mediated exchange of the sgRNA promoter (left) or sgRNAs (right). Each line represents a single sequenced animal. Red and blue

boxes either side of the triangle (representing FRT) indicate successful recombination. (E) Summary statistics of the different functional groups present

in the sgRNA library. Given is the number of genes from each category that are covered by fly lines, plasmids or against which currently no tools are

available. Note that for some genes two fly lines or plasmids exist. Status in September 2019 is shown. Group ‘Others’ contains mainly genes with

human orthologs associated with cancer development in humans.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Negative control sgRNA transgenes for use with HD_CFD library.
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Figure 4. A large-scale CRISPR screen for essential genes in Drosophila. (A) The majority of sgRNA lines mediates efficient mutagenesis on both

sgRNA target sites. sgRNA transgenes were combined with act-cas9 and tub-Gal4 to induce ubiquitous mutagenesis. Mutagenesis was measured by

sequencing PCR amplicons spanning the target sites followed by Inference of CRISPR Edits (ICE) analysis. Shown are mean values of 2–4 independent

experiments and the standard error of the mean. (B) CRISPR screening for essential genes in Drosophila. Ubiquitous mutagenesis was induced in

Figure 4 continued on next page
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positives, that is lines that target non-essential genes, but result in lethality. Among the 639 lines

present in our screen, 54 target genes are currently annotated as viable. Of those, 48 (89%) gave

rise to viable adult offspring, one resulted in semi-lethal offspring and 5 (9%) produced no viable off-

spring. False-positive results might arise due to off-target mutagenesis, mutations that affect neigh-

bouring genes or cis-elements located at the target-locus, or reflect incorrect annotations in the

database. Of the five lines giving rise to false-positive results in our screen two target the same gene

(Blos1), arguing against sgRNA-mediated off-target mutagenesis in this case.

Screening for lethality not only allowed us to benchmark our sgRNA library, but also revealed

multiple lines targeting uncharacterized genes with putative essential functions (Supplementary file

3). For example, sgRNA line HD_CFD558 targets CG9890, an evolutionary conserved (55% amino

acid similarity to the human ortholog) zinc finger protein of unknown function. Another interesting

example is CG6470, which is targeted by HD_CFD557 and HD_CFD599 with independent sgRNAs.

CG6470 encodes an uncharacterized zinc finger protein that despite its essential role during devel-

opment is evolutionary restricted to the genus Drosophila. These examples highlight the value of

our lethality screen beyond benchmarking our technology. To further characterize genes of interest

sgRNA lines can then be used for tissue-specific mutagenesis, where genes performing similar cellu-

lar functions often give rise to phenotypes with high similarity. To demonstrate this application, we

crossed several lines targeting genes associated with dpp/TGFb signalling with nub-Gal4 UAS-

uMCas9 flies, which drive CRISPR mutagenesis in selected tissues, including cells giving rise to the

adult wing. All these lines result in lethality in combination with a ubiquitous CRISPR system

(Supplementary file 2), but gave rise to viable adults in combination with nub-Gal4 UAS-uMCas9,

highlighting again the tight control of mutagenesis. Moreover, all lines resulted in offspring that had

wings of abnormal size and morphology and faithfully recapitulated the known phenotypes of loss-of

function mutations of their target genes (Figure 4E). Together these results show that lines of the

HD_CFD library can be used for systematic CRISPR screens in vivo and mediate relevant phenotypes

with very high penetrance and specificity.

Discussion
Here, we present a large-scale collection of transgenic sgRNA strains for conditional CRISPR muta-

genesis in Drosophila. In combination with the associated toolbox of novel Cas9 constructs, the

sgRNA lines mediate efficient mutagenesis with precise temporal and spatial control. This allows the

rapid targeted disruption of genes in various contexts in the intact organism. The high performance

of this resource relies on a) use of conditional sgRNA constructs to achieve strong dependency of

CRISPR mutagenesis on Gal4, b) tunable Cas9 expression to achieve high on-target activity with low

toxicity, c) the use of two sgRNAs targeting independent positions in the same gene to increase the

fraction of cells that harbor non-functional mutations in both alleles. We validate our library by con-

ducting a fully transgenic CRISPR mutagenesis screen, to our knowledge the so far largest in any

multicellular animal, which revealed 259 putative essential genes, of which 56 are poorly

characterized.

Figure 4 continued

offspring of HD_CFD sgRNA lines crossed with act-cas9;;tub-Gal4/TM6B partners. Vials were analysed after 15–17 days (~5–7 days after eclosion) for

viable act-cas9;pCFD6-sgRNA2x; tub-Gal4 offspring. Summary statistics are shown on the right. Crosses were scored as semi-lethal when flies of the

correct genotype were present, but <50% of the number of TM6B flies, and dead larva, pupae or adults were evident in the vail. (C) False-negative

results are rare and often occur for genes controlling early development. Summary statistics for 208 HD_CFD sgRNA lines targeting known essential

genes are shown. 23 (11%) lines give rise to the incorrect (viable) phenotype. mRNA expression data for these target genes is shown below (data from

modENCODE). Most genes have maternally contributed mRNA, are highly expressed in early embryonic stage or play known roles in embryonic

development. (D) Low number of false-positive results caused by HD_CFD sgRNA lines. 54 HD_CFD lines in the screen target genes known to be

dispensable for fly development. five lines result in lethality when crossed to act-cas9;;tub-Gal4/TM6B flies. Note that lines HD_CFD795 and

HD_CFD1058 target the same gene with independent sgRNAs. (E) Tissue-specific CRISPR mutagenesis in the developing wing. Representative images

of adult wing phenotypes caused by CRISPR mutagenesis of Dpp signalling components are shown. All lines give rise to the expected alterations in

wing size and vein patterning with varying strength.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. HD_CFD sgRNA line resulting in false-negative results mediate efficient on-target mutagenesis.
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To date RNAi is the most commonly used method to disrupt gene expression in defined cell

types or developmental stages in vivo. In Drosophila, transgenic RNAi libraries that cover most pro-

tein coding genes have been described (Dietzl et al., 2007; Heigwer et al., 2018; Perkins et al.,

2015). However, a significant number of these lines do not mediate efficient gene knock-down and

the majority reduces mRNA levels by less than 75% (Perkins et al., 2015). Residual gene expression

can therefore mask phenotypes in RNAi experiments, which loss-of function alleles induced by

CRISPR mutagenesis might reveal. In support of this notion three recent studies demonstrate that

CRISPR mutagenesis in vivo can cause phenotypes that are significantly more penetrant than RNAi

(Meltzer et al., 2019) or are missed altogether in RNAi experiments (Delventhal et al., 2019;

Schlichting et al., 2019). Furthermore, our molecular analysis of mutations induced by the CRISPR

library described here, as well as the phenotypes arising from them, suggest that the fraction of lines

that produce no or only insufficient on-target mutations is less than 10%, which compares favorably

to current Drosophila RNAi libraries. Together these observations strongly suggest that screening

biological processes of interest by conditional CRISPR mutagenesis can reveal novel gene functions

that have so far been missed in RNAi based experiments.

For conditional CRISPR mutagenesis to be broadly applicable, it needs to be effective in a wide

range of tissues and cell types. We show here that our system works effectively in a number of

important tissues in the fly, such as imaginal discs, the adult midgut and the germline. Furthermore,

others have shown that CRISPR with transgenic components is also effective in postmitotic neurons

(Delventhal et al., 2019) or in cells of the prothoracic gland, which are endoreplicating and contain

multiple copies of the genome (Huynh et al., 2018). In addition, our finding that sequencing of PCR

amplicons generated from genomic DNA of entire flies frequently indicates mutations in over 90%

of the amplicons suggests that CRISPR is effective in most cells of the animal.

In parallel to the CRISPR library described here, the National Institute of Genetics (NIG) in Japan,

the Transgenic RNAi Project (TRIP) at Harvard University and the Schuldiner group at the Weizmann

Institute are generating collections of transgenic sgRNA lines (Meltzer et al., 2019; Zirin et al.,

2020; https://shigen.nig.ac.jp/fly/nigfly/). These projects follow different strategies to prioritise tar-

get genes and hence the overlap between different collections is currently limited. Furthermore,

there exist significant differences in design between these resources and the library described here.

First, the NIG and the majority of TRIP and Weizmann libraries encode a single sgRNAs per trans-

gene, while all HD_CFD lines encode two sgRNAs. Co-expression of more than one sgRNA against

the same target leads to more penetrant phenotypes and reduces the number of inactive lines

(Port and Bullock, 2016; Xie et al., 2015; Yin et al., 2015). Second, the HD_CFD sgRNAs are

encoded in pCFD6 or pCFD6.FRT, which are conditional UAS vectors, while all other libraries so far

used plasmids expressing sgRNAs from ubiquitous U6 promoters. We have previously shown that

expression of U6-sgRNA in combination with UAS-Cas9 alone is not sufficient to efficiently restrict

mutagenesis to Gal4 expressing cells and that expression of sgRNAs from a UAS vector, such as

pCFD6, results in a significant improvement in spatial and temporal control (Port and Bullock,

2016). The use of transgenes of the UAS-uCas9 series can reduce, but not prevent, unwanted muta-

genesis in combination with U6-sgRNAs, as leaky (i.e. Gal4 independent) Cas9 expression is reduced

in the presence of a uORF. An advantage of U6-sgRNA vectors is the consistent high sgRNA expres-

sion, whereas the level of sgRNAs expressed from UAS promoters depends on the strength of the

Gal4 line and can become limiting with weak Gal4 drivers (Meltzer et al., 2019). Of note, pCFD6.

FRT can alleviate this problem, as users can easily swap the UAS promoter for a U6:3 promoter in

cases where high sgRNA expression is a higher priority than tight conditional mutagenesis. The dif-

ferent sgRNA libraries that are currently being developed are therefore complementary resources

for CRISPR mutagenesis. Large-scale screens in different contexts using lines from different libraries

will be informative about the optimal use of each resource.

Two decades after the publication of the genome sequence of humans, mice, flies, worms and

many other organisms, the functional annotation of these genomes are still far from complete.

CRISPR-Cas genome editing is accelerating the rate at which new gene functions are described. The

resources described here will facilitate context-dependent functional genomics in Drosophila. New

insights into the function of the fly genome will inform the functional annotation of the human

genome, reveal conserved principles of metazoan biology and suggest control strategies for insect

disease vectors.
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Materials and methods

Plasmid construction
PCRs were performed with the Q5 Hot-start 2x master mix (New England Biolabs (NEB)) and cloning

was performed using the In-Fusion HD cloning kit (Takara Bio) or restriction/ligation dependent clon-

ing. Newly introduced sequences were verified by Sanger sequencing. Oligonucleotide sequences

are listed in Supplementary file 4.

UAS-uCas9 plasmids
The UAS-uCas9 series of plasmids was generated using the pUASg.attB plasmid backbone

(Bischof et al., 2013). The plasmid was linearized with EcoRI and XhoI and sequences coding for

mEGFP(A206K) and hCas9-SV403’UTR were introduced by In-Fusion cloning using standard proce-

dures. Coding sequences for mEGFP(A206K) were ordered as a gBlock from Integrated DNA Tech-

nologies (IDT) and amplified with primers mEGFPfwd and mEGFPrev (Supplementary file 4). The

sequence coding for SpCas9 and an SV40 3’UTR were PCR amplified from plasmid pAct-Cas9

(Port et al., 2014) with primers Cas9SV40fwd and Cas9SV40rev. Both PCR amplicons and the linear-

ized plasmid backbone were assembled in a single reaction to generate plasmid UAS-uXXLCas9.

UAS-uCas9 plasmids with shorter uORFs were generated by PCR amplification using UAS-uXXLCas9

as template and the common fwd primer uCas9fwd in combination with rev primers binding at vari-

ous positions in the mEGFP ORF (uXSCas9rev for UAS-uXSCas9; uSCas9rev for UAS-uSCas9;

uMCas9rev for UAS-uMCas9; uLCas9rev for UAS-uLCas9; uXLCas9rev for UAS-uXLCas9). PCR prod-

ucts were cirularized by In-Fusion cloning and the sequence between the hsp70 promoter and the

attP site was verified by Sanger sequencing. The UAS-uCas9 plasmid series and the full sequence of

each plasmid will become available from Addgene (Addgene plasmids 127382–127387).

UAS-FRT-GFP-FRT-uMCas9
To generate UAS-FRT-GFP-FRT-uMCas9 plasmid UAS-Cas9.P2 (Port and Bullock, 2016) was

digested with EcoRI and the plasmid backbone was gel purified. The FRT-GFP-FRT cassette was

ordered as two separate gBlocks from IDT (GFPflipout5 and GFPflipout3) and individually PCR

amplified with primers GFPflipout5fwd and GFPflipout5rev or GFPflipout3fwd and GFPflipout3rev

and gel purified. The two amplicons were mixed at equalmolar ratios and fused by extension PCR,

adding primers GFPflipout5fwd and GFPflipout3rev after 8 PCR cycles for an additional 25 cycles.

The final FRT-GFP-FRT cassette was gel purified. The uMCas9EcoRI fragment was PCR amplified

from plasmid UAS-uMCas9 with primers uMCas9EcoRIfwd and uMCas9EcoRIrev and gel purified.

The plasmid backbone, FRT-GFP-FRT cassette and uMCas9EcoRI fragment were assembled by In-

Fusion cloning and sequence from the first FRT site to the end of Cas9 was verified by Sanger

sequencing. The UAS-FRT-GFP-FRT-uMCas9 plasmid and the full sequence will become available

from Addgene (Addgene plasmid 127388).

pCFD6.FRT
pCFD6.FRT was generated as a derivative of pCFD6. pCFD6 was linearized by restriction digestion

with EcoRI-HF and XbaI. The sgRNA cassette was exchanged with a new cassette encoding (from 5’

to 3’): 5’UTR spacer, FRT2 site, D. mel. tRNA Gly, BbsI site, sgRNA core, D. mel. tRNA Glu, BbsI

site, sgRNA core, Os. sat. tRNA, FRT5 site. The new sgRNA cassette was ordered as a gBlock from

IDT and cloned into the linearized pCFD6 plasmid and newly introduced sequences were verified by

Sanger sequencing. pCFD6.FRT will become available from Addgene.

sgRNA design
All possible sgRNA sequences targeting all transcription factors, kinases, phosphatases and a num-

ber of other - mostly disease relevant - genes in the D. melanogaster genome version BDGP6 were

identified using the CRISPR library designer (CLD) software version 1.1.2 (Heigwer et al., 2016).

CLD excludes sgRNA sequences that have predicted off-target sites elsewhere in the genome. The

resulting pool of sequences was further filtered according to additional criteria. Specifically, sequen-

ces with BbsI and BsaI restriction sites were excluded. In addition, sequences containing stretches of

4 or more identical nucleotides were removed from the pool. Two pairs of sgRNAs targeting each
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gene were then selected using a random sampling approach. For each gene, up to 10,000 pairs of

sgRNA sequences were selected at random from the pool of available sequences. Each sequence

pair was then evaluated according to a custom scoring function. In order to preferentially select

sgRNA pairs that target constitutive exons, the scoring function awarded bonus points for each tran-

script targeted by either of the sgRNAs. Bonus points were further given to sgRNAs targeting the

first half of the gene and small distances to the gene’s transcription start site were awarded addi-

tionally. To avoid selecting pairs of overlapping sgRNAs that could potentially interfere with each

other’s activity, sgRNA pairs that were less than 75 bp apart from each other were strongly penal-

ized. Further, sgRNAs targeting the gene within 500 bp of each other were penalized. This was

done to avoid functional protein products in cases where the second sgRNA might correct an out-

of-frame mutation introduced by the first sgRNA. Finally, we penalized sgRNA with predicted off-tar-

get effects according to CLD. The two top-scoring pairs for each gene were selected for the

HD_CFD library.

sgRNA library cloning
sgRNA pairs were cloned into BbsI digested pCFD6 (Port and Bullock, 2016) following a two-step

pooled cloning protocol. Oligonucleotide pools were ordered from Twist Biosciences and Agilent

Technologies. Each oligonucleotide contained two sgRNA protospacer sequences targeting the

same gene separated by a BsaI restriction cassette. Furthermore, oligos contained sequences at

either end for PCR amplification and BbsI sites at the 5’ end of the first and 3’ end of the second

protospacer. An annotated example oligo is shown in Supplementary file 4. Oligo pools were resus-

pended in sterile dH2O and amplified by PCR with primers Libampfwd and Libamprev, followed by

BbsI digestion and gel purification. Digested oligo pools were then ligated into BbsI digested

pCFD6 plasmid backbone, transformed into chemically competent bacteria and plated on agarose

plates containing Carbenicillin. After incubation overnight at 37˚C transformed bacteria were resus-

pended and plasmid DNA was extracted and digested with BsaI. Next, the sgRNA core sequence

and tRNA required between the two protospacers, but not encoded on the oligos, were introduced.

These were PCR amplified from pCFD6 using primers Core_tRNAfwd and Core_tRNArev. PCR

amplicons were digested with BsaI and ligated into the BsaI digested pCFD6 plasmid pool contain-

ing the library oligos, transformed into chemically competent bacteria and plated on agarose plates

containing Carbenicillin. The next day single colonies were picked and used to inoculate liquid cul-

tures. The following day plasmid DNA was extracted and the sgRNA cassette was sequenced with

primer pCFD6seqfwd2 to determine which oligo was inserted and to verify the sequence. Individual

sequence verified pCFD6-sgRNA2x plasmids were stored at �20˚C and make up the HD_CFD plas-

mid library.

Drosophila strains and culture
Transgenic Drosophila strains used or generated in this study are listed in Supplementary file 5.

Unless specified otherwise flies were kept at 25˚C with 50 ± 10% humidity with a 12 hr light/12 hr

dark cycle.

Transgenesis
Transgenesis was performed with the PhiC31/attP/attB system and plasmids were inserted at land-

ing site (P{y[+t7.7]CaryP}attP40) on the second chromosome. Additional insertions of UAS-uMCas9

were generated at (M{3xP3-RFP.attP}ZH-51D) on the second chromosome and (M{3xP3-RFP.attP}

ZH-86Fb) and (PBac{y+-attP-3B}VK00033) on the third chromosome. Microinjection of plasmids into

Drosophila embryos was carried out using standard procedures either in house, or by the Drosophila

Facility, Centre for Cellular and Molecular Platforms, Bangalore, India (http://www.ccamp.res.in/dro-

sophila) or by the Fly Facility, Department of Genetics, University of Cambridge, UK (www.flyfacility.

gen.cam.ac.uk/). Transgenesis of sgRNA plasmids was typically performed by a pooled injection pro-

tocol, as previously described (Bischof et al., 2013). Briefly, individual plasmids were pooled at equi-

molar ratio and DNA concentration was adjusted to 250 ng/ml in dH2O. Plasmid pools were

microinjected into y[1] M{vas-int.Dm}ZH-2A w[*]; (P{y[+t7.7]CaryP}attP40) embryos, raised to adult-

hood and individual flies crossed to P{ry[+t7.2]=hsFLP}1, y[1] w[1118]; Sp/CyO-GFP. Transgenic off-

spring was identified by orange eye color and individual flies crossed to P{ry[+t7.2]=hsFLP}1, y[1] w
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[1118]; Sp/CyO-GFP balancer flies. In the very rare case that a plasmid stably inserted at a genomic

locus different than the intended attP40 landing site, this typically resulted in a noticeably different

eye colouration and such flies were discarded.

Genotyping of sgRNA flies
Transgenic flies from pooled plasmid injections were genotyped to determine which plasmid was

stably integrated into their genome. If transgenic flies were male or virgin female, animals were

removed from the vials once offspring was apparent and prepared for genotyping. In the case of

mated transgenic females, genotyping was performed in the next generation after selecting and

crossing a single male offspring, to prevent genotyping females fertilised by a male transgenic for a

different construct. Single flies were collected in PCR tubes containing 50 ml squishing buffer (10 mM

Tris-HCL pH8, 1 mM EDTA, 25 mM NaCl, 200 mg/ml Proteinase K). Flies were disrupted in a Bead

Ruptor (Biovendis) for 20 s at 30 Hz. Samples were then incubated for 30 min at 37˚C, followed by

heat inactivation for 3 min at 95˚C. 3 ml of supernatant were used in 30 ml PCR reactions with primers

pCFD6seqfwd2 and pCFD6seqrev2. PCR amplicons were analysed by Sanger sequencing with

primer pCFD6seqrev2.

Selection of lethal and viable target genes
Genes considered ‘known lethal’ or ‘known viable’ were chosen based on information available in

FlyBase (release FB2018_1). For each gene report we manually reviewed the lethality information

available in the phenotype category. We did not consider information based on RNAi experiments,

as these typically were performed with tissue-restricted Gal4 drivers and residual expression might

mask gene essentiality. Annotations of viability in FlyBase are heavily skewed towards lethal genes,

likely reflecting the uncertainty in many cases whether a viable phenotype reflects residual gene

activity of a particular allele.

Immunohistochemistry
Immunohistochemistry of wing imaginal discs was performed using standard procedures. Briefly,

larva were dissected in ice cold PBS and fixed in 4% Paraformaldehyde in phosphate buffered saline

(PBS) containing 0.05% Triton-X100 for 25 min at room temperature. Larva were washed three times

in PBS containing 0.3% Triton-X100 (PBT) and then blocked for 1 hr at room temperature in PBT con-

taining 1% heat-inactivated normal goat serum. Subsequently, larva were incubated with first anti-

body (mouse anti-Cas9 (Cell Signaling) 1:800; mouse anti-Cut (DSHB, Gary Rubin) 1:30; guinea pig

anti-Sens (Boutros lab, unpublished) 1:300; rabbit anti-Evi [Port et al., 2008] 1:800) in PBT overnight

at 4˚C. The next day, samples were washed three times in PBT for 15 min and incubated for 2 hr at

room temperature with secondary antibody (antibodies coupled to Alexa fluorophores, Invitrogen)

diluted 1:600 in PBT containing Hoechst dye. Samples were washed three times 15 min in PBT and

mounted in Vectashield (Vectorlabs). To visualize apoptotic cells wing discs expressing the apoptosis

sensor GC3Ai (Schott et al., 2017) was fixed in 4% PFA, washed in PBT containing Hoechst and

mounted in Vectashield.

Image acquisition, processing and analysis
Images were acquired with a Zeiss LSM800, Leica SP5 or SP8 or a Nikon A1R confocal microscope in

the sequential scanning mode. Samples that were used for comparison of antibody staining intensity

were recorded in a single imaging session. Image processing and analysis was performed with FIJI

(Schindelin et al., 2012). For the comparative analysis of anti-Cas9, GC3Ai and anti-Evi fluorescent

intensities presented in Figure 2 raw image files were used to select the wing pouch area and mea-

sure the average fluorescence intensity. Experiments were performed at least twice and more than

three samples were analyzed for each experiment.

To produce the overlay of several wing imaginal discs shown in Figure 1 the Fiji plug-in

bUnwarpJ (Sorzano et al., 2005) was used. Images were rotated and cropped such that wing discs

were oriented dorsal up and anterior left and positioned in the center of the image. A representative

image was selected as ‘target’ and all other images registered to this target using bUnwarpJ, select-

ing ‘mono’ as registration mode and setting landmark weight to 1. Landmarks were manually

selected around the outline of the target wing disc, as well as along the folds in the hinge region of
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the disc. Registered images were then transformed to a binary image using the Fiji threshold func-

tion and assembled to an image stack. Shown are average intensity projections of the indicated

number of images using the Fire lookup table. In the resulting image bright areas are CIGAR positive

in many discs, while dark areas are devoid of CIGAR signal in most discs.

Sequence analysis of CRISPR-Cas9 induced mutations
To determine the mutational status at each sgRNA target site the locus was PCR amplified and PCR

amplicons were subjected to sequencing. To extract genomic DNA, flies were treated as described

above under ‘Genotyping of sgRNA flies’. Primers to amplify the target locus were designed to

hybridize 250–300 bp 5’ or 3’ to the sgRNA target site and are listed in Supplementary file 4. PCR

products were purified using the PCR purification Kit (Qiagen) according to the instructions by the

manufacturer and sent for Sanger sequencing. While Sanger sequencing is less accurate and quanti-

tative than deep sequencing of amplicons on, for example, the Illumina platform, it typically allows

to cover both sgRNA targets on a single amplicon, which is necessary to account for mutations that

result in deletions of the intervening sequence. In cases where this was not possible, for example

due to the presence of a large intron between the target sites, each site was analysed on a separate

PCR amplicon. To account for deletions in these cases additional PCR reactions containing the distal

fwd and rev primers were included. Sequencing chromatograms were visually inspected for sequenc-

ing quality and presence of the sgRNA target site and analysed by Inference of CRISPR Edits (ICE)

analysis (Hsiau et al., 2019).
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