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Abstract The BBSome is a heterooctameric protein complex that plays a central role in primary

cilia homeostasis. Its malfunction causes the severe ciliopathy Bardet-Biedl syndrome (BBS). The

complex acts as a cargo adapter that recognizes signaling proteins such as GPCRs and links them

to the intraflagellar transport machinery. The underlying mechanism is poorly understood. Here we

present a high-resolution cryo-EM structure of a human heterohexameric core subcomplex of the

BBSome. The structure reveals the architecture of the complex in atomic detail. It explains how the

subunits interact with each other and how disease-causing mutations hamper this interaction. The

complex adopts a conformation that is open for binding to membrane-associated GTPase Arl6 and

a large positively charged patch likely strengthens the interaction with the membrane. A prominent

negatively charged cleft at the center of the complex is likely involved in binding of positively

charged signaling sequences of cargo proteins.

Introduction
Ciliary research had a rocky trail to travel since the discovery of cilia in 1675 as the first known organ-

elle by Antony Van Leeuwenhoek. Although primary cilia have long been thought to be only minor

players in the cellular opera (Bloodgood, 2009), they perform key functions as cellular antennae. Pri-

mary cilia contain a plethora of crucial signaling proteins with important sensory and regulatory func-

tions particularly in development and cell signaling (Satir, 2017; Nachury, 2014). Since cilia do not

contain a protein synthesis machinery, a key question of ciliary research is how proteins are trans-

ported to, from and within the cilium. The BBSome is a cargo adaptor that recognizes a diverse set

of membrane-bound ciliary proteins. It binds with its cargo to the intraflagellar transport (IFT) com-

plex, a large heterooligomeric protein complex that is transported along ciliary microtubules by the

molecular motors dynein and kinesin (Wingfield et al., 2018; Stepanek and Pigino, 2016). Interest-

ingly, the BBSome is also involved in the assembly and stabilization of the IFT complex (Wei et al.,

2012; Ou et al., 2005), with varying impact on IFT stability in different organisms (Wei et al., 2012;

Williams et al., 2014; Pan et al., 2006; Lechtreck et al., 2009).

It has been proposed that the BBSome is assembled in a sequential order starting from a com-

plex of BBS7, BBS chaperonins and the CCT/TRiC complex, which acts as a scaffold for further

BBSome subunits to be added (Zhang et al., 2012a). However, this route cannot hold true in Dro-

sophila, where the BBSome components BBS2 and BBS7 are missing. The lack of these domains in

Drosophila raises in general the question whether these subunits are important for central BBsome

functions such as cargo and membrane binding or if they are mostly involved in cilia-specific pro-

cesses that require the interaction with the IFT complex. In line with this, Drosophila and other

organisms with a small number of ciliated cells lack the IFT proteins IFT25 and IFT27 (Zhang et al.,

2017), which are considered to be the anchor points for the BBSome on the IFT complex

(Liew et al., 2014; Eguether et al., 2014; Lechtreck, 2015). It is therefore conceivable that BBS2
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and BBS7 perform functions that are mostly relevant in the context of the cilium, while the other

BBSome subunits BBS1, 4, 5, 8, 9, and 18 represent a core complex with an independent set of func-

tions, some of which might be relevant outside the cilium.

BBS1 emerged to be the most important BBSome subunit for cargo recognition, with several

described interactions with ciliary cargo proteins (Jin et al., 2010; Seo et al., 2011; Su et al., 2014;

Seo et al., 2009; Bhogaraju et al., 2013; Ruat et al., 2012; Zhang et al., 2012b). The BBSome is

recruited to membranes by the small GTPase Arl6 (Jin et al., 2010), which binds to the N-terminal

b-propeller domain of BBS1. The crystal structures of this domain in complex with Arl6

(Mourão et al., 2014), as well as the b-propeller of BBS9 (24), provide the only currently available

high-resolution structural information on BBSome subdomains. While this manuscript was in prepara-

tion, the medium-resolution structure of a BBSome complex purified from bovine retina was

reported (Chou et al., 2019). The structure revealed that BBS2 and BBS7 form a top lobe that blocks

the Arl6 interaction site on BBS1. The complex, however, has been purified by affinity chromatogra-

phy using Arl6 as bait. This suggests that the conformation of the BBsome in its apo state differs

from that of the complex bound to Arl6.

Although the cryo-EM structure at 4.9 Å revealed the overall domain architecture of the complex,

an atomic model could not be accurately built due to the limited resolution. However, this is needed

to fully understand the interactions of the domains and the mechanism underlying cargo binding

and membrane interaction.

We recently reconstituted a heterologously expressed core complex of the human BBSome, com-

prising the subunits BBS1, 4, 5, 8, 9, and 18 (Klink et al., 2017). Although this complex lacks BBS2

and BBS7, it binds with up to sub-micromolar binding affinity to cargo proteins. In addition, we

found that strongly binding ciliary trafficking motifs contain stretches of aromatic and positively

charged residues, many of which were located in the third intracellular loop and the C-terminal

domain of ciliary GPCRs. Multiple binding epitopes on cargo proteins cooperatively interact with

multiple subunits of the BBSome (Klink et al., 2017), which is consistent with previous reports

(Jin et al., 2010). A detailed insight of how these motifs interact with the BBSome requires a full

molecular model of the complex to evaluate the potential interaction surfaces on the side-chain

level.

Here we report the structure of the human BBSome core complex at an average resolution of 3.8

Å for BBS1, 4, 8, 9, and 18 and 4.3 Å for BBS5. The high quality of the map allowed us to build an

atomic model of ~80% of the complex. The structure reveals the architecture of the complex and the

sophisticated intertwined arrangement of its subunits. A large positively charged region on the sur-

face of the complex suggests how it orients on the negatively charged ciliary membrane. We found

that the complex adopts a conformation in which the Arl6 binding site would be accessible. The

high-resolution structure allows us to accurately locate pathogenic patient mutations and to deci-

pher how they perturb intra- and/or intermolecular interactions on the molecular level. We identified

a negatively charged cleft in the center of the complex, which is positioned favorably for cargo inter-

actions. Based on these findings, we propose a model for how membrane-bound ciliary cargo pro-

teins like GPCRs can bind to the BBSome.

Results and discussion

Architecture of the BBSome core
To obtain suitable samples for high-resolution structural analysis, we chose to work on the BBSome

core instead of the full complex, because the core, comprising BBS1, 4, 5, 8, 9, and 18 was consider-

ably better soluble, more stable and homogeneous, but still bound with high affinity to Arl6 and

cargo peptides (Figure 1A) (Klink et al., 2017). We determined the structure of the BBSome core

complex by electron cryo microscopy (cryo-EM) at an average resolution of 3.8 Å. Besides BBS5 that

was only sub-stoichiometrically bound (Figure 1—figure supplement 1A), all domains were well

resolved with only some connecting loops and N-and C-terminal regions missing (Figure 1A, Fig-

ure 1—figure supplements 1 and 2). After three-dimensional sorting (Materials and methods, Fig-

ure 1—figure supplement 3) we also resolved BBS5 at a resolution of 4.3 Å (Figure 1—figure

supplement 1) and combined its density with the reconstruction of the full data set (Figure 1B) to

build an atomic model (Materials and methods, Figure 1C, Table 1).
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Figure 1. Architecture of the BBSome. (A) Domain architecture of the protomers forming the BBSome core

complex. The parts of the primary structure that could be assigned in the density is shown in full colors, while non-

modeled regions are represented in opaque colors. (B) Composite cryo-EM density map of the BBSome core

complex in different orientations. Each protomer is colored differently and the thresholds of the segmented

densities of the individual domains were adjusted to visualize each domain at an optimal signal intensity. BBS5 is

poorly visible at the signal level of the other subunits and required a reconstruction from a subset of particles,

which was obtained by 3D-sorting (Figure 1—figure supplement 1). (C) The final model of the core BBSome. (D):

Schematic representation of the complex, highlighting the two b-propeller domains of BBS1 and BBS9 as red and

green segmented wheels, and the super helical arrangements of the TPR repeats of BBS4 and BBS8 as blue and

cyan helices.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Positioning of BBS5 in the BBSome core complex.

Figure supplement 2. Quality of the model of the BBSome core complex.

Figure supplement 3. Single particle processing workflow for structure determination of the human core BBSome.

Figure supplement 4. Sequence assignment of BBS18.

Figure supplement 5. Partially structured insert in BBS8, and hypothetical model for BBS9 dimerization.

Figure supplement 6. Surface potential and surface hydrophobicity of the core BBSome.
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The BBSome core complex is arranged in multiple layers with its smallest 93 residue subunit

BBS18 (also known as BBIP10, BBIP1) in its center (Figure 2). While being almost completely

unfolded itself, BBS18 winds through two super-helically arranged TPR domains of the perpendicu-

larly arranged BBS4 and BBS8 subunits, and clamps them together like a U-bolt (Figure 1,

Figure 2A,B). The resulting Y-shaped arrangement forms the spine of the core BBSome complex.

BBS1 binds to the N-terminal end of the TPR superhelix formed by BBS4 via its N-terminal b-propel-

ler domain (Figure 3A), wraps around BBS4 and BBS8, and binds with its C-terminal GAE domain to

the TPR domain of BBS8 (Figure 2C, Figure 4A,C). BBS9 has a similar domain architecture as BBS1,

with two additional domains at its C-terminus. The N-terminal b-propeller of BBS9 binds to the

N-terminus of the TPR superhelix formed by BBS8, in analogy to the BBS1/BBS4 interaction

(Figure 3B). BBS9 wraps around BBS4 and parts of BBS1, and engulfs the GAE domain of BBS1 with

its C-terminal GAE, platform and a-helical domains (Figure 2D, Figure 4A). BBS5 is composed of

two PH domains that both interact with the b-propeller of BBS9. One of the PH domains also inter-

acts with BBS8 and with an unstructured loop of BBS9 (Figure 2E; Figure 1—figure supplement

1C,E).

Table 1. EM data collection and refinement statistics of the core BBSome.

The BBS subunits 1,4,8,9 and 18 were modeled into the reconstruction from all particles that

remained after ISAC 2D sorting (see blue box in Figure 1—figure supplement 3), while the subunit

BBS5 was modeled into a map derived by 3D clustering from 180.654 out of 862.114 particles (see

green box in Figure 1—figure supplement 3).

Data collection

Microscope Titan Krios
(Volta Phase plate, XFEG)

Voltage (kV) 300

Camera K2 summit (Gatan)

Pixel size (Å) 1.07

Number of frames 50

Total electron dose (e-/Å2) 67

Number of particles 2,831,329

Defocus range (mm) �0.3 – �1.0

Phase Shift (degree) 30–120

Atomic model composition BBS 1,4,8,9,18 [+BBS5]

Non-hydrogen atoms 16,924 [+1175]

Protein atoms 16,924 [+1175]

particle substack 862,114 [180,654]

Ligand atoms -

Refinement (Phenix)

RMSD bond 0.005

RMSD angle 0.993

Model to map fit, CC mask 0.79

Resolution (FSC@0.143, Å) 3.8 [4.3]

B-factor (Å2) 145.45

Validation

Clashscore 6.34

Ramachandran outliers (%) 0.09

Ramachandran favoured (%) 90.45

Molprobity score 1.89

EMRinger score 1.53
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BBS18 is a central stabilizing component of the core BBSome
From co-expression and pulldown studies of the individual BBSome subunits, we know that BBS18 is

important for the stability of larger BBSome subcomplexes (Klink et al., 2017). The cryo-EM struc-

ture of the core BBSome delivers an explanation for these findings, revealing that BBS18 is involved

in a large amount of stabilizing interactions with the TPR domains of BBS4 and BBS8 (Figure 5A,

Figure 6D–E, Figure 1—figure supplement 4I). Because of its unfolded U-bolt region, BBS18 forms

a large interaction surface with these subunits, resulting in high solvation free energies (DiG) (as ana-

lyzed by the Pisa server Krissinel and Henrick, 2007) (Table 2, Figure 5A, Figure 1—figure supple-

ment 4I).

The short helix of BBS18 (residues L61 to N80) protrudes from the BBSome core complex and

only loosely interacts with the GAE domain of BBS1 (Figure 4D) and with a loop of BBS8 (Figure 1—

figure supplement 5B). Despite this limited interaction with other subunits, the helix is important

for the proper assembly of the BBSome as has been shown previously, analyzing a disease-causing

null mutation in BBS18 (L58*) which results in the loss of the helix (Scheidecker et al., 2014).

Taken together, these findings suggest that BBS18 functions as a structural scaffold protein that

is essential for the proper assembly and structural stability of the BBSome complex.

Figure 2. Arrangement of subunits and domains within the BBSome core. (A–E) The described order of addition

of subunits has been chosen for visual clarity and does not reflect the sequential assembly in vivo. BBS4 and BBS8

are shown in two different views to visualize the superhelical arrangement of the TPR repeats. Likewise, domains of

BBS1 and BBS9 are also shown individually in two views.
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Surface complementary b-propeller-TPR interactions
Interestingly, both structurally analogous TPR containing subunits BBS4 and BBS8 interact with b-

propellers of BBS1 and BBS9, respectively. In both cases, it is the N-terminus of the TPR containing

subunits that binds to the central grooves of the b-propellers (Figure 3A,B), the mode of interaction,

however, differs.

As previously described (Knockenhauer and Schwartz, 2015), the b-propeller of BBS9 is nega-

tively charged around its central cavity. Our structure reveals that it interacts with a positively

charged patch of BBS8 (Figure 3B). The surface charges at the center of the b-propeller of BBS1

and the N-terminus of BBS4, however, are more evenly distributed and the interface at this position

is mostly stabilized by hydrophobic interactions (Figure 3A). In addition, the superhelically arranged

TPRs of BBS4 and BBS8 wind around and extensively interact with the side of the respective b-pro-

peller. These interfaces are mostly stabilized by potential ionic interactions (Figure 3A,B). Moreover,

the interface between BBS8 and the side of the BBS9 b-propeller contains two pairs of methionines,

which potentially interact via hydrophobic and S/p interactions (Figure 3B).

Mutations at the BBS4-BBS1 and BBS8-BBS9 interfaces (Table 3), such as Q325R (Chou et al.,

2019) at the side of the BBS9 b-propeller (Figure 5B) or E224K (Redin et al., 2012) and R268P

(Estrada-Cuzcano et al., 2012) in the central cavity of the BBS1 b-propeller (Figure 5C) lead to dis-

ease in patients, indicating that proper interaction between these subunits is crucial for a functional

BBSome.

Figure 3. Interactions of the TPR repeat proteins BBS4 and BBS8 with b-propellers of BBS1 and BBS9,

respectively. (A) Open book representation of the interaction surface of BBS4 with the b-propeller (BP) of BBS1.

The interacting subunits are shown in ribbon and surface representations, respectively. Close-up views show

relevant residues of the interaction surface. (B) Analogous open book representation of the interaction surface of

BBS8 with the b-propeller (BP) of BBS9.
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In contrast to BBS4, BBS8 contains a long loop between tyrosine 53 and lysine 180, connecting

the first N-terminal TPR domain with the rest of the TPR superhelix. This loop is not fully resolved in

our structure, but can be partly visualized at lower resolution (Figure 1—figure supplement 5A,B).

Starting after the first TPR domain, it winds through the center of the complex and back to the fol-

lowing TPR domains. It interacts with BBS18 and with several TPRs of BBS8 and does not interrupt

the TPR superhelix (Figure 1—figure supplement 5B). Interestingly, the region around this loop

varies in different human BBS8 splice variants, expressed in different tissues (Murphy et al., 2015;

Riazuddin et al., 2010). For example, Exon 2a of BBS8 is only expressed in retina, resulting in an

additional insert of 10 residues between helices 2 and 3 of BBS8, which is in direct proximity to the

unmodeled density in our structure which we assign to the unstructured loop in BBS8 (Figure 1—fig-

ure supplement 5B). It is therefore conceivable that the loop in BBS8 is also involved in tissue-spe-

cific functions of the BBSome.

The C-terminus of BBS9 forms a GAE binding motif
A prominent feature in the core BBSome structure is the expanded domain arrangement of BBS1

and BBS9 which allows the wrapping of these subunits around the central BBS4 and BBS8 subunits

(Figure 2C,D). BBS1 and BBS9 interact with each other via their C-terminal domains (GAE, platform,

and a-helical domain) in such a way that the b-propellers orient to the opposite direction locating to

the periphery of the complex where they interact with the TPR domains of BBS4 and BBS8

(Figure 2C,D, Figure 4A). The interaction of BBS1 with BBS9 is essential for the function of the

BBSsome, as BBS1 mutations L518P (Mykytyn et al., 2003) and N524D (Deveault et al., 2011) at

the interface between the GAE domain of BBS1 and BBS9 are pathogenic (Figure 4-C, Table 3). The

Figure 4. Pathogenic patient mutations within the interaction surface of BBS8 with BBS18 and with the C-termini

of BBS1 and BBS9. (A) The GAE domain of BBS1 binds to BBS8 and is embraced by the C-terminus of BBS9. (B,C)

Pathogenic patient mutations Q439H and Q445K on BBS8 and L518P and N524D on BBS1 disturb this interface.

(D) In contrast, the C-terminal BBS18 helix (Ser60-Gln80) only interacts weakly with the complex, and is held in

place by interactions with the GAE domain of BBS1. The pathogenic patient mutation L58* eliminates this helix.
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GAE domain of BBS1 is also involved in interactions with BBS8. The glutamine residues 439 and 445

in BBS8 are located at this interface and their mutation results in disease (Q439H, Q445K)

(Chou et al., 2019; van Huet et al., 2015; Ullah et al., 2017; Goyal et al., 2016) (Figure 4C,

Table 3).

The GAE domains of BBS1 and BBS9 interact strongly with each other (Figure 4A). Since their

structure is very similar, it can be imagined that these domains would induce self-dimerization of

either BBS1 or BBS9. Indeed, in previous studies (Knockenhauer and Schwartz, 2015; Klink et al.,

2017), it was shown that the isolated C-terminal region of BBS9, including the GAE domain, forms a

dimer in solution. A superposition of BBS9 monomers reveals that an interaction via their GAE

domains would not result in steric clashes (Figure 1—figure supplement 5C). Taken together with

our observation that the GAE domains strongly interact in the BBSome core complex, we propose

that the strong heterodimeric interaction between the GAE domains is the reason for isolated BBS9

to homodimerize via its GAE domain.

BBSome subcomplexes bind to phosphoinositides in the absence of
BBS5
Compared to the other subunits, BBS5 is more loosely attached to the BBSome core complex, as we

could only identify the subunit in a subpopulation of particles (Figure 1—figure supplements 1 and

3). Similarly, BBS5 was also missing from a subset of natively purified BBSome complexes

Figure 5. Pathogenic patient mutations within the core BBSome complex with the potential to disturb subunit

interactions. (A) Interactions of BBS4 and BBS8 with the BBS18 ‘U-bolt’ region (Val26-Lys59) stabilize the central

spine of the complex. The mutation N309K disturbs a tight interaction of BBS4 with the main-chain of BBS18 in the

U-bolt. The pathogenic patient mutation L58* eliminates the C-terminal helix of BBS18 but leaves the ‘U-bolt’

region that clamps together BBS4 and BBS8 intact. (B) The pathogenic mutation Q325R in BBS9 is located at the

interface of the BBS9 b-propeller with BBS8. (C) Several pathogenic patient mutations are located at the interface

of the BBS1 b-propeller and its helical insertion with the N-terminus of BBS4 (R160Q, E224K, R268P, L288R),

underlining the importance of this interface.
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(Chou et al., 2019). In addition, the resolution is limited in this region, indicating a high degree of

conformational flexibility.

BBS5 is composed of two pleckstrin homology (PH) domains that were predicted to be close

structural relatives to the PH-like domains PH-GRAM (Begley et al., 2003) and GLUE (Teo et al.,

2006). In the BBSome core structure, the PH domains are laterally rotated by 90˚ to each other

(Figure 2E). Like PH-GRAM and GLUE, BBS5 was shown to bind phosphoinositides, with the highest

preference for phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidic acid (PA), which was sug-

gested to be crucial for ciliogenesis (Nachury et al., 2007). Besides BBS1 that indirectly interacts

with membranes via Arl6 (Jin et al., 2010; Mourão et al., 2014), BBS5 likely mediates the contact to

membranes by direct interactions with phosphoinositides (Nachury et al., 2007). The specific bind-

ing to certain PIPs is a potential way to regulate BBSome transportation in and out of the cilium, as

the composition of ciliary membranes differs from that of the plasma membrane (Garcia-

Gonzalo et al., 2015; Chávez et al., 2015; Nachury and Mick, 2019).

To find out whether BBS5 is the only subunit of the BBSome complex that interacts with phos-

phoinositides, we compared the binding of different phosphoinositides to the core BBSome

Figure 6. Highly negatively charged regions in the central cleft of the BBSome. (A): An open cleft within the center

of the core BBSome contains multiple highly negatively charged regions that might be involved in cargo binding.

The Arl6 binding site, as deduced from the crystal structure of the b-propeller of BBS1/Arl6 (Mourão et al., 2014),

is shown as purple ribbon. (B,D,F): Surface charges in three hotspots of negative charge within the central cleft. (C,

E,G): Positions of negatively charged residues.

Klink et al. eLife 2020;9:e53910. DOI: https://doi.org/10.7554/eLife.53910 9 of 22

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.53910


complex containing BBS 1, 4, 5, 8, 9 and 18 with a smaller complex that lacks BBS5 and BBS1

(Figure 7A–C). We found that the core BBSome complex interacts preferably with PI(3)P, PI(3,5)P2,

PI(4,5)P2, PI(5)P, and PA. This pattern is similar to the one observed for BBS5 alone (Nachury et al.,

2007), however, the interaction with PI(3,5)P2 and PI(4,5)P2 is more pronounced in the case of the

BBScome core complex (Figure 7B). Surprisingly, the smaller 4mer complex also binds specifically to

the same phosphoinositides as the BBS5 and BBS1-containing complex and especially strong to PA

(Figure 7A). This shows that BBS5 is not exclusively responsible for phosphoinositide and PA binding

and that respective binding sites must exist on one or more of the other subunits, namely BBS 4, 8,

9 or 18.

Functional subcomplexes of the BBSome
There are indications that subcomplexes of the BBSome exist and that these might have functional

relevance (Barbelanne et al., 2015). The BBS5 subunit was shown to be dispensable for BBSome

assembly (Zhang et al., 2012a), and was only found in a subset of particles both from our core

BBSome purification and in a native purification of the full bovine BBSome complex (Chou et al.,

2019). Although this could also be explained by a misfolded or denatured BBSome, such substoi-

chiometric complexes would be consistent with the existence of functional complexes lacking BBS5.

Table 2. Interfaces between core BBSome subunits.

The mutual subunit interaction surfaces within the core BBSome with highest relevance for complex

stability (i.e. with solvation free energies (DiG)<�2.5 kcal/mol and with interface areas > 400 Å2), as

analyzed by the Pisa server (Krissinel and Henrick, 2007).

BBSome subunit A BBSome subunit B Interface area (A-B) [Å2]
DiG (A-B)
[kcal/mol]

BBS18 BBS8 1621.0 �28.1

BBS18 BBS4 1411.0 �25.4

BBS9 BBS1 1946.2 �23.0

BBS9 BBS8 2148.3 �22.7

BBS8 BBS1 1785.8 �20.5

BBS4 BBS1 2429.1 �18.0

BBS8 BBS4 1469.4 �13.1

Table 3. Disease-causing variants at the interface between BBSome subunits.

Only mutations that sit at the interface between BBSome subunits and likely have an influence on the

stability of the complex have been analyzed.

BBS gene mutation phenotype Reference

BBS1 L518P BBS Mykytyn et al., 2003

N524D BBS Deveault et al., 2011

R160Q BBS, RP Sharon and Banin, 2015;
Deveault et al., 2011

E224K BBS Redin et al., 2012

R268P BBS Estrada-Cuzcano et al., 2012

L288R BBS Muller et al., 2010

BBS4 N309K BBS Muller et al., 2010

BBS8 Q439H BBS, RP Ullah et al., 2017;
Goyal et al., 2016

Q445K RP van Huet et al., 2015

BBS9 Q325R BBS Chou et al., 2019

BBS18 L58* BBS Scheidecker et al., 2014
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Figure 7. Interaction of the core BBSome with membranes. (A–C) The affinity of the 4mer BBSome complex

containing BBS4, 8, 9 and 18 (A) and of the core BBSome complex containing BBS1, 4, 5, 8, 9, 18 (B) to different

lipids were probed in a protein-lipid overlay assay. For this, hydrophobic membranes with immobilized lipids as

depicted in (C) (so-called ‘PIP-strips’, Echelon) were blocked with TBS-T + 3% fatty acid–free BSA and then

incubated with 7.5 mg/ml complex for one hour at room temperature. After washing three times with TBS-T + 3%

fatty acid–free BSA, immobilized complexes were detected by Western blot against the Flag-tag on BBS8. The PIP

strip experiments indicate that BBSome subcomplexes interact specifically with PIPs even in the absence of both

the Arl6-binding subunit BBS1 and the previously described PIP-binding subunit BBS5 (40). (D): Potential

orientation of the BBSome core complex towards the membrane. The orientation of Arl6 towards the BBSome was

deduced from the crystal structure of the b-propeller of BBS1/Arl6 (Mourão et al., 2014), which was overlaid with

the BBS1 b-propeller from the BBSome core complex. In such an arrangement, a positively charged surface of the

core complex would be oriented towards the membrane (E,G) and a negatively charged cleft in the vicinity of

BBS1 is favorably positioned to accept BBSome-binding regions from cargo proteins like GPCRs (E–G), which were

found to be mostly positively charged (Klink et al., 2017). A model how GPCRs might be recognized by the

BBSome is depicted in (G).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure 7 continued on next page
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Likewise, both in native and in our heterologous expressions, the top lobe formed by BBS2 and

BBS7 readily dissociates from the complex (Chou et al., 2019) or renders it insoluble (Klink et al.,

2017). Chou et al. suggested that the stability of the a-hairpin in the C-terminal domain of BBS9

likely depends on the stabilization by its partner hairpin in BBS2. We found that in the absence of

BBS2, the BBS9 hairpin folds towards BBS8 and is stabilized that way (Figure 7—figure supplement

1D,E). This further supports our hypothesis that the core BBSome is an independently stable entity

(Klink et al., 2017), and that BBS2 and BBS7 (and also BBS5) are probably not required in every

step within the ‘lifecycle’ of the BBSome.

Membrane association and cargo recognition of the core BBSome
The BBSome is recruited to membranes by the small GTPase Arl6 in a GTP-dependent manner

(Jin et al., 2010). A crystal structure of Arl6 with the b-propeller of BBS1 from Chlamydomonas rein-

hardtii revealed how Arl6 interacts with the BBSome in atomic detail (Mourão et al., 2014). To ana-

lyze how the core BBSome would orient on the membrane, we placed Arl6 at the same position as

in the crystal structure by overlaying the respective BBS1 b-propeller domains (Figure 7D). The

BBS1 b-propeller is located at the periphery of the core BBSome complex, and – in the absence of

BBS2 and BBS7 - is freely accessible to bind to membrane-attached Arl6. Such an orientation would

position a positively charged surface patch of the core BBSome close to the membrane, which is

favorable for interactions with the negatively charged membrane surface. Importantly, this orienta-

tion also leaves a negatively charged cleft in the BBSome structure oriented perpendicular to the

plane of the membrane (Figure 7E,F). We have previously found that prominent features of GPCR

cargo molecules which determine binding to the core BBSome are motifs composed of aromatic

and basic residues, many of which are found in the third intracellular loop and the C-terminal tail of

GPCRs (Klink et al., 2017). The negatively charged cleft within the BBSome probably interacts spe-

cifically with these positively charged motifs and is thereby directly involved in cargo recognition

(Figure 7E–G). This would also position the motifs close to BBS1, a subunit which was shown to be

particularly important for cargo recognition (Jin et al., 2010; Seo et al., 2011; Su et al., 2014;

Seo et al., 2009; Bhogaraju et al., 2013; Ruat et al., 2012; Zhang et al., 2012b).

The negative charge in the cleft is not formed by BBS1 alone, but also by residues of all other

core BBSome subunits, except BBS5. There are three ‘hotspots’ of negative charge. One of them is

located at the contact surface of the GAE domain of BBS1 and the 5a domain of BBS9 (Figure 6B,

C), the second one is deeply buried in the core BBSome complex at the junction point where the

BBS18 U-bolt ends and descends into a short a-helix (Figure 6D,E), and the third one is determined

by the a-helical insertion within the BBS1 b-propeller, which contains many glutamate or aspartate

residues (Figure 6F,G). The a-helical insertion can only get in contact with cargo peptides that

extend far into the negatively charged cleft (Figure 7D). The b-propeller itself and the C-terminal

GAE domain of BBS1 are also accessible from within the cleft. They have a more balanced charge

distribution and might contribute to cargo binding by hydrophobic and ionic interactions at the base

of the cleft, which would explain the high importance of BBS1 for cargo interactions.

The large size of the binding cleft with different ‘hotspots’ suggests that cargo recognition is

likely very complex and variable, involving the interaction with different BBSome subunits. The

proper study of BBSome-cargo interactions therefore requires the full BBSome complex as cargo

binding to single subunits, albeit relevant, does not take interaction to multiple sites into account.

For example, we previously identified a peptide fragment from the C-terminal part of SSTR3 which

binds to the core BBSome with ~100 fold higher affinity than to the isolated BBS1 b-propeller (aa1-

430) (Klink et al., 2017).

Since the BBS5 and Arl6 binding sites are located on opposite sides of the core BBSome complex

(Figure 7D), a simultaneous membrane binding of both motifs would require a curved membrane

surface, as it is present on the inner cilium wall, and/or conformational rearrangements of the com-

plex. The observed dynamic properties of BBS5 (Figure 1—figure supplements 1 and 3) are

Figure 7 continued

Figure supplement 1. Comparison of bovine BBSome with human core BBSome.
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probably the prerequisite for the subunit to be able to reorient and position one or both of its PH

domains closer to the membrane, thereby enabling interaction with the membrane.

While this manuscript was being prepared, the structure of the bovine BBSome complex at 4.9 Å

was published, in which the Arl6 binding site is blocked by the subunits BBS2 and BBS7 (25). These

two additional subunits form a highly intertwined lobe that contacts the BBSome core at the C-ter-

minal hairpin in BBS9 and at the b-propeller of BBS1. While this blocks the binding site for Arl6, the

complex was still able to bind to immobilized Arl6 during the purification, indicating a high degree

of conformational dynamics of the lobe formed by BBS2 and BBS7 (25). The overall architecture of

both BBSome complexes is very similar, but interestingly, in a rigid body overlay of our structure

with the bovine BBSome, the Arl6 binding site does not clash with BBS2 or BBS7 (Figure 7—figure

supplement 1). This is due to a different orientation of the BBS1 b-propeller to which Arl6 binds. In

the structure of the bovine BBSome complex the BBS7 b-propeller interacts with the b-propeller of

BBS1 and thereby pulls it towards the BBS2-BBS7 lobe. The small change of the BBS1 b-propeller

orientation results in a ~ 20˚ change in the angle of Arl6 binding to the complex (Figure 7—figure

supplement 1F–H).

While we cannot rule out that the changed BBS1 b-propeller adopts a non-physiological confor-

mation in the absence of BBS2 and BBS7, it is probable that the reorientation of the propeller will

occur in a similar manner when the highly dynamic BBSome ‘top lobe’ formed by BBS2 and BBS7

opens up to allow Arl6 binding (Chou et al., 2019). We therefore believe that our BBSome core

structure represents the open conformation of the complex in contrast to the autoinhibited closed

state of the bovine BBSome complex (Chou et al., 2019).

The additional subunits BBS2 and BBS7 extend the interaction surface that we suggest to bind to

ciliary membranes (Figure 7E, Figure 7—figure supplement 1C), and narrow down the opening to

the negatively charged cleft. However, it is still sufficiently large for peptides from cargo proteins to

enter the cleft (Figure 7F,G, Figure 7—figure supplement 1C).

Future perspectives
Future studies should reveal the details of how cargo proteins get recognized and how the ‘top

lobe’ formed by BBS2 and BBS7 makes space for cargo binding, particularly in the context of

BBSome interactions with Arl6 and the IFT complex. For this it will be crucial to obtain structures of

the BBSome complex bound to different cargo peptides or full cargo proteins. The architecture of

the extended negatively charged cleft within our structure of the core BBSome suggests that cargo

binding depends on the 3-dimensional arrangement of all BBSome subunits, and that different cargo

proteins might utilize different binding modes within the cleft. This would also suggest that the

BBSome complex binds differently to cargo proteins in its open or its closed conformation.

Other intriguing questions to be addressed in the future include determining the precise orienta-

tion of the BBSome on membranes, and the relevance of interactions with phosphoinositides via

BBS5 or via currently unidentified phosphoinositide binding motifs on one of the subunits BBS4, 8, 9

or 18 (compare Figure 7A–C).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Homo sapiens)

BBS1 N/A NCBI reference
sequence: NM_024649.4

Gene
(Homo sapiens)

BBS4 N/A NCBI reference
sequence: NM_033028.3

Gene
(Homo sapiens)

BBS5 N/A NCBI reference
sequence: NM_152384.2

Gene
(Homo sapiens)

BBS8 N/A NCBI reference
sequence: NM_198309.2

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Homo sapiens)

BBS9 N/A NCBI reference
sequence: NM_198428.2

Gene
(Homo sapiens)

BBS18 N/A NCBI reference
sequence: NM_001195306.1

Cell line
(S. frugiperda)

SF9 Thermo
Fisher (Germany)

RRID:CVCL_0549

Cell line
(Trichoplusia ni)

Hi5 Thermo
Fisher (Germany)

RRID:CVCL_C190

Antibody Mouse monoclonal
anti-Flag antibody

Thermo
Fisher (Germany)

Cat.No.
MA1-91878

dilution 1:5000

Other ACEMBL Vijayachandran et al., 2011
PMID: 21419851

Recombinant
expression system for
multiprotein complexes

Software,
algorithm

SPHIRE
software package

Moriya et al., 2017
PMID: 28570515

Software,
algorithm

CrYOLO Wagner et al., 2019
PMID: 31925080

Software,
algorithm

Chimera Pettersen et al., 2004
PMID: 15264254

Software,
algorithm

Coot Emsley et al., 2010
PMID: 20383002

Software,
algorithm

Phenix Adams et al., 2010
PMID: 20124702

Software,
algorithm

RaptorX Wang et al., 2018
PMID: 28845538

Software,
algorithm

HHpred Söding et al., 2005
PMID: 15980461

Software,
algorithm

iMODFIT Lopéz-Blanco
and Chacón, 2013
PMID: 23999189

Purification of BBSome subcomplexes
The core BBSome (BBS 1, 4, 5, 8, 9, 18) and the 4mer BBSome subcomplex (BBS 4, 8, 9, 18) were

cloned and purified as described previously (Klink et al., 2017). An SDS-PAGE analysis of a batch of

both complexes, which was one of the batches that was also used for this study, can be assessed in

Figure 1A of the manuscript (Klink et al., 2017). Briefly, the proteins were overexpressed in Hi5

insect cells (Thermofisher Scientific), harvested by centrifugation at 3000 rpm, and resuspended in

lysis buffer (50 mM Hepes pH 8.0, 150 mM NaCl, 5 mM MgCl2, 10% glycerol, 1 mM PMSF, 1 mM

benzamidine, 1 mM TCEP). The resuspended cells were lysed with a Dounce Tissue Grinder

(Wheaton, Millville, NJ), cell debris was removed by centrifugation at 25.000 rpm, and the superna-

tant was used for further protein purification.

For affinity purification, the cell supernatant was loaded on a column filled with Strep-Tactin

Superflow high capacity resin (IBA). The column was washed and the proteins were eluted with elu-

tion buffer (50 mM Hepes pH 8.0, 150 mM NaCl, 5 mM MgCl2, and 10% glycerol, 1 mM TCEP, and

10 mM D-desthiobiotin (IBA)). The eluted protein complexes were further purified by Ni2+–NTA

(Qiagen, Germany) affinity and/or anti-Flag M2 affinity chromatography (Sigma, Germany). Affinity-

purified proteins were subjected to size-exclusion chromatography on a Superdex 200 10/300 col-

umn or on a Superose 6 5/150 column (GE Healthcare, Germany) in gel filtration buffer (50 mM

Hepes pH 8.0, 150 mM NaCl, 5 mM MgCl2, 10% glycerol and 0.1 mM TCEP).

Protein-Lipid overlay assays
The affinity of the core BBSome complex (BBS1, 4, 5, 8, 9, 18) and the 4mer BBSome complex con-

taining BBS4, 8, 9 and 18 to different lipids immobilized on hydrophobic membranes (‘PIP-strips’
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P-6001, P6002, Echelon) were probed in a protein-lipid overlay assay according to the manufac-

turer’s instructions. In brief, PIP-strips were blocked with TBS-T + 3% fatty acid–free BSA and then

incubated with 7.5 mg/ml complex for one hour at room temperature. After washing three times

with TBS-T + 3% fatty acid–free BSA, immobilized complexes were detected by a western blot

against the Flag-tag on BBS8.

Chemical crosslinking to improve complex stability
To improve the stability of the core BBSome complex for cryo-EM experiments, the purified protein

was diluted to 0.1 mg/ml in gel filtration buffer and treated with 0.05% glutaraldehyde at 20˚C for

two minutes. The reaction was stopped by adding TRIS buffer to a concentration of 100 mM. The

protein was then concentrated and subjected to size-exclusion chromatography on a Superose 6 5/

150 column (GE Healthcare, Germany) in plunging buffer (20 mM TRIS-HCl pH 7.5, 150 mM NaCl

and 0.1 mM TCEP) to remove particles that aggregated during the crosslinking procedure. Fractions

containing the crosslinked BBSome complex were immediately used for cryo-EM experiments.

Sample vitrification
The concentration of the core BBSome as derived from chemical crosslinking was adjusted to 0.05–

0.08 mg/ml and 4 ml of sample was immediately applied to a glow-discharged UltrAuFoil R1.2/1.3

holey gold grid (Quantifoil). After two minutes incubation at 13˚C and 100% relative humidity (RH),

the sample was manually blotted, replaced by fresh 4 ml sample, and then automatically blotted and

plunged in liquid ethane using a Vitrobot (FEI).

Electron microscopy and image processing
We observed the tendency of the BBSome complex to partially dissociate, which lead to a significant

proportion of incomplete particles in many images, particularly in those with very thin ice, probably

indicating some denaturation at the air-water interface. The problem persisted even after crosslink-

ing and subsequent gel filtration. In addition, the particles had the tendency to aggregate, which fur-

ther complicated the identification of intact single particles at the low contrast of typical EM

micrographs, particularly at low defocus. We therefore pursued the use of a Volta phase plate (VPP)

for data collection to enhance image contrast in order to improve the selection of complete com-

plexes later on Danev et al. (2014).

Cryo-EM datasets were collected on a Titan Krios electron microscope (FEI) equipped with a

post-column energy filter, a Volta phase plate (VPP) and a field emission gun (FEG) operated at 300

kV acceleration voltage. A total of 15,266 micrographs were recorded on a K2 direct electron detec-

tor (Gatan) with a calibrated pixel size of 1.07 Å. The energy filter was used for zero-loss filtration

with an energy width of 20 eV. In total 50 frames (each 300 ms) were recorded, resulting in a total

exposure time of 15 s and a total electron dose of 67 e-Å�2. Data was collected using the automated

data collection software EPU (FEI), with a defocus range of �0.3 to �1.0 mm. The position of the

VPP was changed every 60 to 120 images, resulting in phase shifts of 30–120 degrees in >95% of all

micrographs. Beam-induced motion was corrected for by using Motioncor2 (Zheng et al., 2017) to

align and sum the 50 frames in each micrograph movie and to calculate dose-weighted and

unweighted full-dose images. CTF parameters were estimated from the unweighted summed images

and from micrograph movies utilizing the ‘movie mode’ option of CTFFIND4 (Rohou and Grigorieff,

2015). For subsequent steps of data processing using the software package SPHIRE/EMAN2

(Moriya et al., 2017), dose-weighted full dose images were used to extract dose-weighted and

drift-corrected particles with a final window size of 280 � 280 pixels.

A total of 10 datasets were collected from several independently prepared protein samples and

were successively processed by a combination of manual and automated particle extraction using

crYOLO (Wagner et al., 2019), 2D sorting using the iterative stable alignment and clustering (ISAC)

as implemented in SPHIRE, and merging with existing data to consecutively improve the size and

quality of the derived particle stack. An initial model for 3D refinement was generated from the

ISAC 2D class averages using RVIPER from SPHIRE, and was used as input for the first 3D refinement

using MERIDIEN (3D refinement in SPHIRE). The obtained 3D reconstruction of MERIDIEN was then

sharpened and filtered to its nominal resolution, and used as input for subsequent 3D refinements.

Completeness of data collections was evaluated based on the improvements in resolution of the
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resulting final reconstructions, which plateaued at 4 Å resolution from a cleaned set of 724,828 par-

ticles, as estimated by the ‘gold standard’ criterion of FSC = 0.143 between two independently

refined half maps.

To further improve the quality of the derived particle stack, an alternative processing attempt

was tested in which all 15266 micrographs were combined and subjected to automatic particle pick-

ing using crYOLO, selecting 1,973,261 particles with a high confidence score (threshold 0.7) and

additional 858,068 particles that had a lower score (threshold greater than 0.2 but smaller than 0.7).

Both sets of particles were subjected to 2D sorting, and the best particles of each subset were

merged and sorted again to obtain a new particle stack of 884,341 particles. After 3D refinement,

the final reconstruction had a slightly improved quality compared to the first processing attempt as

judged by visual inspection of the map quality. However, it was also apparent that a significant num-

ber of ‘good’ particles (i.e. particles that were kept after 2D sorting with ISAC) were only selected in

one of the two sorted particle stacks, indicating that about 30% of high-quality particles were lost

during 2D sorting.

To further improve the quality of the sorted particle stack, we developed a procedure to combine

multiple particle stacks from independent processing attempts. Briefly, we re-extracted box files for

all stacks using the PIPE restacking procedure from SPHIRE, combined all box files for a given micro-

graph, and then removed all boxes which are in close proximity to another box in that image with a

simple bash script. The thus cleaned set of boxes was used to re-extract a stack with unique, non-

overlapping particles. The use of box files has the advantage that it is straightforward to inspect the

success of the procedure, and even allows to identify duplicated particles with slightly different ori-

gin, for example when the original particle selections were updated in one of the processing

attempts by recentering and particle re-extraction. By combining the two particle stacks from both

independent processing attempts and removing all duplicate particles, we rescued about 220,000

“good” particles that were sorted out in one or the other processing attempt. The derived com-

bined stack of 1,103,959 particles could thus be subjected to a final, more stringent 2D sorting

round to obtain a final particle stack with 862,114 particles that, after 3D refinement, resulted in a

3.8 Å reconstruction with significantly improved quality compared to the individual refinement

attempts.

3D clustering using SORT3D of the SPHIRE suite was performed with a 3D-focussed mask that

includes BBS5, which was first apparent in a variability map of the full particle stack as calculated

using 3DVARIABILITY from SPHIRE (Figure 1—figure supplement 3). 3D clustering separated the

particles into four 3D clusters which were then subjected to local 3D refinement using MERIDIEN.

One of the generated 3D reconstructions clearly indicated BBS5 density, resulting in a 4.3 Å resolu-

tion map of the core BBSome with BBS5 (Figure 1—figure supplement 3). An analysis of the 3D var-

iability in this map indicated no remaining variability in the BBS5 focus region, while the variability in

other regions of the complex remained similar as in the full particle stack (e.g. indicating some con-

formational heterogeneity around the 4a helical insert in the b-propeller of BBS1, around the plat-

form domain of BBS9, at the tip of the hairpin within the 5a helical domain of BBS9, and at the

unresolved C-terminal end of BBS4). All of these regions with enhanced variability indeed have a

lower-than-average map resolution, indicating a high flexibility in these regions. Nevertheless, the

4a helical insert in the b-propeller of BBS1 in our structure was better defined than in the bovine

BBSome structure (Chou et al., 2019), and allowed the building of a model.

Model building
For building an atomic model of the BBSome core comples, we used the two available crystal struc-

tures of the b-propeller domains of C. reinhardtii BBS1 (Mourão et al., 2014) and of human BBS9

(Knockenhauer and Schwartz, 2015) as starting points for the assignments of BBS domains. For

this, the human homology model to the C. reinhardtii BBS1 b-propeller was generated using HHpred

(Söding et al., 2005), and the structure of a helical insert in the b-propeller (Pro127-Gln197) that is

missing in the crystal structure was predicted using RaptorX (Wang et al., 2018). For the human

BBS9 b-propeller, the pdb entry 4YD8 could be directly used as starting model after minor modifica-

tions (i.e. changing the selenomethionine residues to methionine and adding a few loops that were

missing in the crystal structure). The large helical insert in BBS1 that is not present in BBS9 allowed

an unambiguous placement of both structures into the density. BBS4 and BBS8 are the two subunits

that are predicted to fold into TPR repeats, and from biochemical data it is apparent that BBS9
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forms a stable binary subcomplex with BBS8 (26). Since in the cryo-EM map two superhelical

arrangements of TPR motifs are visible and BBS9 forms no interactions with one of them, the correct

placement of BBS9 and BBS1 also allowed an unambiguous assignment of BBS4 and BBS8. Initial

models for BBS4 and BBS8 were generated by de novo structure prediction using RaptorX

(Wang et al., 2018; Wang et al., 2016; Wang et al., 2017a; Wang et al., 2017b) followed by flexi-

ble fitting of fractions of the RaptorX structure predictions into consistent parts of the density using

iMODFIT (Lopéz-Blanco and Chacón, 2013) and subsequent manual model correction in Coot

(Emsley et al., 2010). The validity of the fit could be verified based on side chain consistency with

the map as BBS4 and BBS8 are positioned in a central region of the complex with sufficiently high

local map resolution. Consistent with the RaptorX prediction, we observed that a region of about

130 residues in BBS8 (Tyr53-Lys180) is only partially structured and forms an extended loop that

winds through the center of the complex and back (Figure 1—figure supplement 5A,B).

The assignments of the C-terminal parts of BBS1 and BBS9 were less obvious as they are sepa-

rated by partially flexible linkers from the N-terminal b-propeller domains. We could assign the GAE

domains of BBS1 and BBS9 based on the clearly resolved connection of the BBS9 GAE domain to

the C-terminal platform and a-helical domains that are missing in BBS1. Furthermore, the connection

of the BBS1 GAE domain could be traced up to a small gap of about 20 residues to its correspond-

ing N-terminal b-propeller, which would not allow an alternative assignment. The structures of all

these domains were also predicted with RaptorX, flexibly fitted with IMODFIT and manually cor-

rected with Coot as described above. The resolution of the GAE domains was sufficient to verify the

validity of the model based on side-chain densities, and even in the lower resolved part of the plat-

form and a helical domains of BBS9, multiple hallmark residue side chains allowed a clear validation

of the overall fold, although some solvent-exposed loops are only weakly defined.

After placing BBS1, 4, 8 and 9, a prominent stretch of well resolved density remained unexplained

that winds through the superhelices formed by BBS4 and BBS8 and connects to a short a-helix. With

a total length of about 60 residues and no obvious covalent connection to one of the other subunits,

we were confident that this stretch represents a major part of the 93 residue subunits BBS18, which

is also consistent with biophysical data showing that BBS18 forms stable subcomplexes with BBS4

and with BBS4, 8 and 9 (Klink et al., 2017). With few initial indications how to assign the primary

sequence to this linear, mostly unfolded domain, we utilized the following method to find the correct

frame: We first built a 59 residue poly-alanine model, then assigned all 33 possible frames of BBS18

sequence to this model, and further refined each of them automatically using Phenix real-space

refinement (Adams et al., 2010) (Figure 1—figure supplement 4A–F). Comparing the correlation

of the map to the refined models, we observed a clearly separated best hit for one sequence assign-

ment (Figure 1—figure supplement 4A,F) with no obvious discrepancies between map and model,

while the other models showed significant deviations from map to model that could not be

explained by noise, imperfect modeling or a lack of resolution (Figure 1—figure supplement 4C,D,

E,G). The final model was further manually refined in Coot and corresponds to residues Val26-Gln80

of BBS18 (Figure 1—figure supplement 4H). As shown in Figure 1—figure supplement 4I, the final

model forms favorable interactions with neighboring BBS subunits BBS4 and BBS8.

After placing all subunits except BBS5, missing residues that were visible in the density were

placed and all subunits were further manually refined in Coot. Atom clashes were removed by

energy minimization (with torsion and Ramachandran restraints turned on) using PHENIX real space

refinement (Adams et al., 2010), followed by another round of manual refinement. Compared to

the other subunits of the core BBSome, BBS5 is more loosely attached at the periphery of the com-

plex, and could only be identified in a subpopulation of particles that was isolated by 3D clustering

(Figure 1—figure supplements 1 and 4). The best 3D class containing BBS5 allowed a reconstruc-

tion with an average resolution of about 4.3 Å (Figure 1—figure supplement 1D, Figure 1—figure

supplement 3). The two PH domains of BBS5 were modeled with RaptorX and were positioned into

the derived BBS5 density using Chimera (UCSF) (Pettersen et al., 2004), followed by relaxation into

the density in Coot (Figure 1—figure supplement 1E). An overlay of the maps derived from the full

particle stack with the 3D cluster containing BBS5 allowed to position BBS5 relative to the higher

resolved reconstruction from all particles in which BBS5 was not visible. BBS5 was then combined

with the higher resolved full particle reconstruction to generate a combined molecular model of the

human BBSome core complex.
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Visualization
Visualization, analysis and figure preparation was done with Chimera (UCSF) (Pettersen et al.,

2004). Local resolution gradients within a map were estimated using LOCRES as implemented in the

SPHIRE suite, and final densities were filtered according to the calculated local resolution unless

stated otherwise. Resolution gradients were visualized by coloring the corresponding maps accord-

ing to the local resolution in Chimera (Figure 1—figure supplement 2D). To visualize surface elec-

trostatic potentials, the correct protonation state of the core BBSome was predicted using the H++

web server (http://biophysics.cs.vt.edu/H++ ; Anandakrishnan et al., 2012) and the hydrogenated

model was colored according to its electrostatic potential in Chimera. 3D average and variability

maps were calculated using 3DVARIABILITY of the SPHIRE package and visualized in Chimera. Angu-

lar distribution plots were generated using PIPE from SPHIRE. In addition to the binned 2-D class

averages produced by ISAC that were used for the particle selection process, unbinned class aver-

ages showing high-resolution features were calculated using COMPUTE_ISAC_AVG from SPHIRE for

visualization purposes.
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Data availability

The electron density maps have been deposited to the EMDB under the accession codes EMD-

10617 and EMD-10618. The final models of the BBSome were submitted to the Protein Data Bank

under the accession codes 6XT9 (subunits BBS1,4,8,9,18) and 6XTB (subunits BBS1,4,5,8,9,18).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
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https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
10617

Electron Microscopy
Data Bank, EMD-10
617

Björn Udo Klink,
Stefan Raunser,
Christos Gatsogian-
nis

2020 The human core BBSome complex
(BBS 1,4,5,8,9,18)

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
10618

Electron Microscopy
Data Bank, EMD-10
618

Klink BU, Raunser S,
Christos Gatsogian-
nis

2020 Subunits BBS 1,4,8,9,18 of the
human BBSome complex

https://www.rcsb.org/
structure/6XT9

RCSB Protein Data
Bank, 6XT9

Klink BU, Raunser S,
Christos Gatsogian-
nis

2020 Subunit BBS 5 of the human core
BBSome complex
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structure/6XTB

RCSB Protein Data
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