Loss of centromere function drives karyotype evolution in closely related Malassezia species

  1. Sundar Ram Sankaranarayanan
  2. Giuseppe Ianiri
  3. Marco A Coelho
  4. Md Hashim Reza
  5. Bhagya C Thimmappa
  6. Promit Ganguly
  7. Rakesh Netha Vadnala
  8. Sheng Sun
  9. Rahul Siddharthan
  10. Christian Tellgren-Roth
  11. Thomas L Dawson
  12. Joseph Heitman  Is a corresponding author
  13. Kaustuv Sanyal  Is a corresponding author
  1. Jawaharlal Nehru Centre for Advanced Scientific Research, India
  2. Duke University Medical Center, United States
  3. The Institute of Mathematical Sciences (HBNI), India
  4. Uppsala University, Sweden
  5. Agency for Science, Technology and Research, Singapore
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/53944/elife-53944-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sundar Ram Sankaranarayanan
  2. Giuseppe Ianiri
  3. Marco A Coelho
  4. Md Hashim Reza
  5. Bhagya C Thimmappa
  6. Promit Ganguly
  7. Rakesh Netha Vadnala
  8. Sheng Sun
  9. Rahul Siddharthan
  10. Christian Tellgren-Roth
  11. Thomas L Dawson
  12. Joseph Heitman
  13. Kaustuv Sanyal
(2020)
Loss of centromere function drives karyotype evolution in closely related Malassezia species
eLife 9:e53944.
https://doi.org/10.7554/eLife.53944