Transcriptomics: Revisiting the genomes of herpesviruses

Combining integrative genomics and systems biology approaches has revealed new and conserved features in the genome of human herpesvirus 6.
  1. Bhupesh K Prusty  Is a corresponding author
  2. Adam W Whisnant
  1. Julius-Maximilians-Universität Würzburg, Germany

Herpesviruses cause a range of human diseases but many factors complicate the efforts made to precisely map the size and origin of RNA transcripts coded by these pathogens. For example, some mRNAs can code for more than one protein, coding sequences may overlap with each other, and the genes that are expressed may change depending on cell types or stages in the viral cycle. Moreover, the level of expression can greatly vary from gene to gene, which makes it difficult to distinguish between rare viral transcripts and other genetic products that accumulate in infected cells and during viral replication. In fact, in most herpesviruses, the majority of the genome is transcribed to some degree, yet only the most highly expressed or genomically isolated units are readily detectable.

Several new techniques have allowed researchers to bypass these problems to better annotate the genomes of herpesviruses. A tailored RNA sequencing method called cRNA-Seq, which enriches for the 5’ ends of RNA transcripts, has allowed the mapping of transcription start sites; in parallel, ribosome profiling (Ribo-Seq) has helped to highlight translational start sites. Combined, these approaches have revealed dozens to hundreds of new genes in herpesviruses such as the human cytomegalovirus (Stern-Ginossar et al., 2012) and the Kaposi’s sarcoma-associated herpesvirus (Arias et al., 2014). When paired with long-read sequencing platforms (which provide additional information about the 3’ ends of transcripts), the new methods have also led to a better understanding of a number of pathogens in the herpes family. Now, in eLife, Noam Stern-Ginossar and colleagues at the Weizmann Institute of Science and the Hebrew University Hadassah Medical School – including Yaara Finkel as first author – report new insights into human herpesvirus 6A and 6B (Finkel et al., 2020).

The results help to correct and complement previous textbook genome annotations for herpesviruses. Due to the technical limitations of the time, the exact beginnings of many transcripts and coding sequences were assigned a priori, and inclusion into published gene lists relied on rather conservative criteria. For instance, a sequence was classified as an open reading frame (the part of a genetic sequence that can potentially be translated) if it had more than 100 amino acids and started with an AUG codon. Instead, Finkel et al. demonstrate that roughly one-third of open reading frames in human herpesvirus 6A and 6B contain alternative start codons, which are also used by eukaryotes and other herpesviruses (Kearse and Wilusz, 2017; Arias et al., 2014). For instance, strains of human cytomegalovirus can have different start codons for a given gene, which may influence biological properties (Brondke et al., 2007); such questions can now be investigated in herpesvirus 6A and 6B .

Another exciting finding is the identification of hundreds of short, internal or upstream open reading frames (Figure 1). The proteins encoded by many of these sequences are likely to be too small to have direct functions. However, some of these short open reading frames are close to (or overlap with) longer coding sequences, suggesting that they may regulate translation – particularly during the later stage of viral gene expression, when homeostasis in the host cells is most disrupted. Finkel et al. observed that several of these open reading frames are also transcribed in human cytomegalovirus, indicating important conserved roles across the family of viruses that herpesvirus 6A and 6B belong to.

Taking a closer look at the genomes of human herpesviruses 6.

Finkel et al. have used a combination of techniques to reannotate the genomes of human herpesviruses 6A and 6B. They have identified new open reading frames (268 in human herpesvirus 6A and 216 in human herpesvirus 6B) and corrected the annotation of existing frames (10 in human herpesvirus 6A and 11 in human herpesvirus 6B). The figure shows how an open reading frame called U30, which codes for an important protein in both human herpesvirus 6A and 6B, was reannotated. Data from Ribo-Seq (orange) revealed that the start of the open reading frame was downstream of what was expected based on the previous annotation (black) or cRNA-Seq information (blue), leading to a new, more accurate annotation for this sequence (green).

Combining several methods that can pinpoint both translational and transcriptional start sites – as Finkel et al. did – is particularly important because modern sequencing protocols are sensitive enough to identify rare transcription events, but they cannot distinguish between ‘real’ transcriptional units and biological artifacts. Whole-genome conclusions based on one technique or method of analysis are heavily influenced by experimental noise, technical limitations and even the specific algorithm used to interpret the data. For instance, estimates of the exact number of transcriptional start sites in human cytomegalovirus vary by thousands between studies that use different methods (Stern-Ginossar et al., 2012; Parida et al., 2019); in herpes simplex virus, these numbers can vary by over six-fold (Tombácz et al., 2019; Depledge et al., 2019).

While our appreciation of the coding capacity of pathogens increases, efforts must be made to integrate newly identified gene products into already established nomenclatures. The first waves of new annotations using high-throughput techniques will probably be revised as sequencing technology and analysis techniques improve, and the results are validated in the lab. In particular, new algorithms that can better distinguish signal-to-noise values could help to identify hundreds of additional peptides in a second revision of the human cytomegalovirus genome (Erhard et al., 2018). As our ability to sequence deeper develops, multifaceted studies such as the one by Finkel et al. will provide an excellent framework to help distinguish between rare functional events and technical noise when re-examining herpesvirus genome annotations.

References

Article and author information

Author details

  1. Bhupesh K Prusty

    Bhupesh K Prusty is in the Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

    For correspondence
    bhupesh.prusty@biozentrum.uni-wuerzburg.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7051-4670
  2. Adam W Whisnant

    Adam W Whisnant is in the Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2039-2809

Publication history

  1. Version of Record published: January 16, 2020 (version 1)

Copyright

© 2020, Prusty and Whisnant

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 898
    Page views
  • 109
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bhupesh K Prusty
  2. Adam W Whisnant
(2020)
Transcriptomics: Revisiting the genomes of herpesviruses
eLife 9:e54037.
https://doi.org/10.7554/eLife.54037

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yuting Zhang, Min Zhang ... Guojiang Chen
    Research Article

    Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.

    1. Microbiology and Infectious Disease
    Chiara Andolina, Wouter Graumans ... Teun Bousema
    Research Article

    It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34–501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171–2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.