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Abstract Reproductive division of labor (e.g. germ-soma specialization) is a hallmark of the

evolution of multicellularity, signifying the emergence of a new type of individual and facilitating

the evolution of increased organismal complexity. A large body of work from evolutionary biology,

economics, and ecology has shown that specialization is beneficial when further division of labor

produces an accelerating increase in absolute productivity (i.e. productivity is a convex function of

specialization). Here we show that reproductive specialization is qualitatively different from classical

models of resource sharing, and can evolve even when the benefits of specialization are saturating

(i.e. productivity is a concave function of specialization). Through analytical theory and evolutionary

individual-based simulations, we demonstrate that reproductive specialization is strongly favored in

sparse networks of cellular interactions that reflect the morphology of early, simple multicellular

organisms, highlighting the importance of restricted social interactions in the evolution of

reproductive specialization.

Introduction
The evolution of multicellularity set the stage for unprecedented increases in organismal complexity

(Szathmáry and Smith, 1995; Knoll, 2011). A key factor in the remarkable success of multicellular

strategies is the ability to take advantage of within-organism specialization through cellular differen-

tiation (Queller and Strassmann, 2009; Brunet and King, 2017; Cavalier-Smith, 2017). Reproduc-

tive specialization, which includes both the creation of a specialized germ line during ontogeny (as in

animals and volvocine green algae) and functional differentiation into reproductive and non-repro-

ductive tissues (as in plants, green and red macroalgae, and fungi), may be especially important

(Cooper and West, 2018; Michod et al., 2006; Ispolatov et al., 2012; Solari et al., 2013;

Michod, 2007; West et al., 2015). Reproductive specialization is an unambiguous indication that

biological individuality rests firmly at the level of the multicellular organism (Michod, 1999;

Folse and Roughgarden, 2010), and is thought to play an important role in spurring the evolution

of further complexity by inhibiting within-organism (cell-level) evolution (Buss, 1988) and limiting

reversion to unicellularity (Libby and Ratcliff, 2014). Despite the central importance of reproductive

specialization, its origin and further evolution during the transition to multicellularity remain poorly

understood (McShea, 2000).

The origin of specialization has long been of interest to evolutionary biologists, ecologists, and

economists. A large body of theory from these fields shows that specialization pays off only when it

increases total productivity, compared to the case where each individual simply produces what they

need (Szathmáry and Smith, 1995; Smith and Szathmáry, 1997; Goldsby et al., 2012;
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Corning and Szathmáry, 2015; Hidalgo and Hausmann, 2009; Boza et al., 2014; Taborsky et al.,

2016; Page et al., 2006; Rueffler et al., 2012; Szekely et al., 2013; Findlay, 2008; Amado et al.,

2018). Certain types of trading arrangements maximize the benefits of specialization; highly recipro-

cal interactions, which facilitate exchange between complementary specialists, amplify cooperation

(Allen et al., 2017; Pavlogiannis et al., 2018). Still, previous work finds that even when groups

grow in an ideal spatial arrangement, increased specialization and trade is only favored by natural

selection when productivity increases as an accelerating function of the degree of specialization (i.e.,

productivity is a convex, or super-linear, function of the degree of specialization). Conversely, satu-

rating functional returns (i.e. productivity is a concave, or sub-linear, function of the degree of spe-

cialization) should inhibit the evolution of specialization (Cooper and West, 2018; Michod et al.,

2006; Ispolatov et al., 2012; Solari et al., 2013; Michod, 2007; West et al., 2015).

Reproductive specialization differs from classical models of trade in several key respects. Trade

between germ (reproductive) and somatic (non-reproductive) cells is intrinsically asymmetric,

because the cooperative action, multicellular replication, is not a product that is shared evenly.

Selection acts primarily on the fitness of the multicellular group as a whole (Folse and Roughgarden,

2010). As a result, optimal specialization can result in behaviors that reduce the short-term fitness of

some cells within the multicellular group (Michod et al., 2006; Michod, 2007), often manifest as

reproductive altruism.

Understanding the evolution of cell-cell trade, a classic form of social evolution (Kirk, 2005),

requires understanding the extent of between-cell interactions. Network theory has proven to be an

exceptionally powerful and versatile technique for analyzing social dynamics (Wey et al., 2008;

Lieberman et al., 2005), and indeed, is uniquely well suited to understanding the evolution of early

multicellular organisms. When cells adhere through permanent bonds, sparse network-like bodies

(i.e. filaments and trees) often result (Amado et al., 2018). This mode of group formation is not only

common today among simple multicellular organisms (Umen, 2014; Claessen et al., 2014), but is

the dominant mode of group formation in the lineages evolving complex multicellularity (i.e. plants,

red algae, brown algae, and fungi, but not animals).

In this paper, we develop and investigate a model for how the network topology of early multicel-

lular organisms affects the evolution of reproductive specialization. We find that under a broad class

of sparse networks, complete functional specialization can be adaptive even when returns from

dividing labor are saturating (i.e. concave/sub linear). Sparse networks impose constraints on who

can share with whom, which counterintuitively increases the benefit of specialization (McShea, 2000).

By dividing labor, multicellular groups can capitalize on high between-cell variance in behavior, ulti-

mately increasing group-level reproduction. Further, we consider group morphologies that naturally

arise from simple biophysical mechanisms and show that these morphologies strongly promote

reproductive specialization. Our results show that reproductive specialization can evolve under a far

broader set of conditions than previously thought, lowering a key barrier to major evolutionary

transitions.

Model
Reproductive specialization can be modeled as the separation of two key fitness parameters, those

related to either viability or fecundity, into separate cells within the multicellular organism

(Michod, 2006; Folse and Roughgarden, 2010). The dichotomy of viability versus fecundity was

originally used by Michod, 2006 to partition components of cellular fitness into actions that contrib-

ute to keeping a cell alive (viability), and actions that directly contribute to reproduction (fecundity).

Multicellular organisms often have evolved to divide labor along these two lines (i.e. reproduction

by germ cells and survival provided by somatic cells), while their unicellular ancestors had to do

both. We define viability as activities keeping the cell alive (e.g. investing in cellular homeostasis or

behaviors that improve survival), and fecundity as activities involved in cellular reproduction.

At the cellular level, there appears to be a fundamental asymmetry in how viability effort and

fecundity effort can be shared among cells: while multicellular organisms readily evolve differenti-

ated cells that are completely reliant on helper cells (i.e. glial cells that support neurons in animals or

companion cells that support sieve tube cells in plants), no cell can directly share its ability to repro-

duce. To better understand the intuition behind this, consider a cell that elongates prior to fission.

This cell must grow to approximately twice its original length. Two cells cannot elongate by 50% and

then combine their efforts; elongation is an intrinsically single cell effort. We thus use a model in
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which viability can be shared across connected cells, but fecundity cannot be shared (note, in order

to test the sensitivity of our predictions to this assumption, in a later section we will consider the

more general case in which viability and fecundity can both be shared, but by different amounts).

We consider a model of multicellular groups composed of clonal cells that each invest resources

into viability and fecundity. Because there is no within-group genetic variation, within-group evolu-

tion is not possible, though selection can act on group-level fitness differences. Specifically, we con-

sider the pattern of cellular investment in fecundity and viability, and their sharing of these resources

with neighboring cells within the group, to be the result of a heritable developmental program.

Thus, selection is able to act on the multicellular fitness consequences of different patterns of cellular

behavior within the group. We let v denote each cell’s investment into viability, and b denote each

cell’s investment into fecundity. Each cell’s total investment is constrained so that vþ b ¼ 1. How-

ever, a cell’s return on its investment is in general nonlinear. Here, we let a represent the ‘return on

investment exponent’: by tuning a above and below 1.0, we can simulate conditions with accelerat-

ing and saturating (i.e. convex and concave, or super- and sub-linear) returns on investment, respec-

tively. We let ~v and ~b represent a cell’s return on viability and fecundity investments, respectively.

Following Michod, 2006; Michod and Roze, 1997, we calculate a cell’s reproductive output as a

multiplicative function of ~v and ~b (thus, both functions must be positive for a cell to grow). A single

cell’s reproduction rate is w ¼ ~v~b ¼ vaba. At the group level, fitness is the total contribution of all

cells in the group toward the production of new groups (i.e. group level reproduction). The group

level fitness is thus the sum of ~v~b over all cells.

Finally, cells may share the products of their investment in viability with other cells to whom they

are connected.For a given group, the details about who may share with whom, and how much, is

encoded in a weighted adjacency matrix c. The element cij defines what proportion of viability

returns cell i shares with cell j. Cells cannot give away all of their viability returns, as they would no

longer be viable; mathematically, we count a cell among its neighbors and thus ensure that they

always ‘share’ a positive portion of viability returns with themselves, so that cii>0. Furthermore, since

a cell cannot share more viability returns than the total it possesses, we have
PN

i¼1
cji ¼ 1 for a group

of N cells. For the networks we consider, each cell takes a fraction b of its viability returns and shares

that fraction equally among all of its ni neighbors (including itself), and keeps the rest of its returns

1� b for itself. Therefore cell i keeps a total fraction of 1� bþ b

ni
of its returns for itself and gives b

ni

to each of its non-self neighbors. In other words, cii ¼ 1� bþ b

ni
, cij ¼

b

ni
if cells i and j are connected,

and cij ¼ 0 if cells i and j are not connected. This means the total amount of returns kept by cell i

depends on both the network topology and b. When b ¼ 0 there is no sharing, and when b ¼ 1 cells

share everything equally among all connections and themselves. We refer to b as interaction

strength. A given group topology (unweighted adjacency matrix) and b completely specify c.

Within a group of N cells, the overall returns on viability that a given cell enjoys, then, comprises

its own returns as well as whatever is shared with it by other members of the group. This can be writ-

ten as ~vi ¼ vai cii þ
Pn

j 6¼i v
a
j cji, or equivalently, ~vi ¼

Pn
j v

a
j cji. Note that this is a column sum, since it

describes the total incoming viability returns a cell receives as a result of its own effort and trade

with neighboring cells. Therefore, we write the group level reproduction rate (i.e. the group fitness)

for a group of N cells as

W ¼
X

i¼N

i¼1

~bi �~vi

W ¼
X

i¼N

i¼1

~bi
X

j¼N

j¼1

vaj cji

W ¼
X

i¼N

i¼1

X

j¼N

j¼1

bai cjiv
a
j ;

(1)

where all three of the above equations are equivalent. We investigate evolutionary outcomes under

this definition of group level fitness for groups with different topologies (who shares with whom),

and in scenarios with various return on investment exponents a.
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Results

Fixed resource sharing
We first consider cases wherein cells within a group share across fixed intercellular interactions. In

each case we vary the return on investment exponent, a, between 0.5 and 1.5, and the interaction

strength, b, between 0.0 and 1.0, both in increments of 0.1. For each combination of topology, a,

and b, the group investment strategy (vi for all i) was allowed to evolve for 1000 generations.

We begin with simple topologies: groups with no connections and groups that are maximally con-

nected. They represent, respectively, the case in which all cells within the group are autonomous

and the case in which every cell interacts with all others (i.e. a ‘well-mixed’ group). In the absence of

interactions, cells cannot benefit from functions performed by others and therefore must perform

both functions v and b; hence specialization is not favored, and does not evolve. In the fully con-

nected case, a high degree of specialization is observed for many values of a and b (Figure 1a).

Consistent with classic results (Cooper and West, 2018; Michod et al., 2006; Ispolatov et al.,
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Figure 1. Schematic of topology for a simplified ten cell group (first row), and mean specialization as a function of specialization power a and

interaction strength b across the entire population. (A) When each cell in the group is connected to all others, specialization is favored only when a>1.

(B) For the nearest neighbor topology, specialization is favorable for a wider range of parameters, including for some values of a<1. Specifically,

specialization is advantageous when a> 3

4b
. (C) Connecting alternating specialists creates a bipartite graph which maximizes the benefits of

specialization and the range of parameters for which it is advantageous. In this case, specialization is favorable wherever a> 3

5b
. The red curves represent

analytical predictions for a�, the lowest value of a for which complete generalization is disfavored, and the orange vertical lines are at a ¼ 1 to guide

the eye. While analysis shows that some degree of specialization must occur in the regime upward and to the right of the red curves, simulations reveal

that when complete generalization is disfavored complete specialization is favored in these networks.
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2012; Solari et al., 2013; Michod, 2007; West et al., 2015), specialization is only achieved in the

fully connected case for a>1.

Next, we consider a simple sparse network in which each cell within a group is connected to only

two other cells, forming a complete ring (Figure 1b); we refer to this as the neighbor network. Sur-

prisingly, preventing trade between most cells encourages division of labor. We find that specializa-

tion evolves even when a<1:0, that is, when the returns on investment are saturating or concave. In

our simulations, this topology leads to alternating specialists in viability and fecundity (Figure 1b).

Analytically, we find that this topology always favors at least some degree of specialization whenever

a> 3

4b
.

We next study a network with cells that can be separated into two disjoint sub-groups, where

every edge of the network connects a cell in one sub-group to a cell in the other sub-group and no

within sub-group connections exist, that is, a bipartite graph (Figure 1c). We refer to the specific

network structure in Figure 1c as the ‘balanced bipartite’ network. We find that specialization

evolves even when a<1:0, similar to the neighbor network. However, we find that specialization

evolves for a wider range of a and b values for the balanced bipartite network than for the neighbor

network.

We can analytically determine under what conditions complete generalization is optimal. The

complete generalist investment strategy is where every cell in the group invests equally into viability

and fecundity, defined as: v�i ¼
1

2
for all i. For these simple topologies, the complete generalist strat-

egy is either a maximum or a saddle point, depending on the values of a and b. Complete generali-

zation is only favored when the Hessian evaluated at the generalist investment strategy q
2W

qvk
qv‘

j~v� ¼ H
�

is negative definite, that is, all of its eigenvalues are negative. The largest eigenvalues of the Hessian

for the complete, neighbor, and balanced bipartite networks are a 1

2

� �2a�3
ð�1þ abÞ,

a 1

2

� �2a�3
ð�1þ 4

3
abÞ, and a 1

2

� �2a�3
ð�1þ 2N

Nþ2
abÞ, respectively. When a and b are chosen so that the

largest eigenvalue becomes non-negative, complete generalization cannot maximize group fitness.

While we have not analytically shown where the fitness maximum occurs in cases where the gen-

eralist strategy becomes a saddle point, evolutionary simulations (Figure 1) suggest that when com-

plete generalization is not a fitness maximum, a high degree of (or even complete) specialization

typically does maximize fitness.

In all cases in which complete specialization is achieved in evolutionary simulations, ~v~b terms for

viability specialists go to zero, as they cannot reproduce on their own. Furthermore, the fecundity

specialists are entirely reliant on the viability specialists for their survival; if viability sharing were sud-

denly prevented, their ~v~b terms would also be zero. This amounts to complete reproductive speciali-

zation (Cooper and West, 2018; Kirk, 2005; Michod, 2006).

Evolving resource sharing
Until now, sharing has been included in every intercellular interaction within groups. Here, we con-

sider the case in which there is initially no sharing, and sharing must evolve along with specialization.

These simulations begin with no resource sharing (i.e. b ¼ 0); during every round, each group in the

population has a 2% chance that a mutation will impact its developmental program, and the b value

for one of its cells will change. The new b value is chosen from a truncated Gaussian with standard

deviation of 10% of the mean, centered on the current value. Whatever is not retained is shared

equally across all interactions, including the self term.

Evolutionary simulation results are similar to those from the fixed-sharing model (Appendix 1—

figure 1). Saturating specialization (i.e. specialization despite a concave return function) still occurs

for the neighbor and balanced bipartite topologies. Thus, for both fixed and evolved resource shar-

ing, we observe specialization for the largest range of parameters (including a<1) not when the

group is maximally connected, but rather when connections are fairly sparse. Therefore, a sparse

group topology constitutes a cooperation-prone physical substrate that can favor the evolution of

cellular.

As an example of the benefit of evolving sharing, consider that the maximum fitness according to

Equation 1 for a group of N disconnected cells scales as N 1

2

� �2a
. On the other hand, for the balanced

bipartite network with a complete specialization strategy (i.e.~v ¼ h0; 1; 0; 1; :::i), the fitness scales as
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N2b

2Nþ2

� �

. The ratio of these fitnesses is N2b

2N2þ2N

� �

2
2a

»b22a�1, where the approximation is for large N.

So for larger groups and when a> 1

2
� logb

2 log 2
, if a group can evolve resource sharing (i.e. letting b ! 1

and adopting the specialist investment strategy) its maximum fitness will increase.

Benefit of specialization
We now consider a simple example to highlight why specialization can be adaptive despite saturat-

ing (i.e., concave) returns from trade. Consider groups of four cells, connected via the nearest-neigh-

bor topology (i.e. in a ring). We directly calculate the group-level fitness of generalists and

specialists for two scenarios: a ¼ 0:9 and a ¼ 1 by summing the contributions of each cell within

these groups (Figure 2). In this simple scenario, reproductive specialization strongly increases group

fitness (33% for a ¼ 1 and 16% for a ¼ 0:9).

The benefit of specialization in neighbor networks increases with group size. For a ring of size N,

fitness under the specialist strategy~v ¼ h0; 1; 0; 1:::i is W ¼ b

3
N. For a ring of generalists the fitness is

W ¼ Nð1
2
Þ2a. Therefore, whenever a> log 3�logb

2 log 2
, the ring of complete specialists enjoys a greater fitness

than the ring of complete generalists. Again, note that complete generalization becomes disfavored

when a> 3

4b
, so there is a narrow regime where 3

4b
<a< log 3�logb

2 log 2
during which neither complete gener-

alization nor complete specialization is optimal. Numerical optimization and evolutionary simulations
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B

Figure 2. To explore how specialization can be favored by the nearest-neighbor topology, we compare the fitness of a four member system when cells

are (A) generalists and (B) specialists. We first consider the case of linear functional returns (a ¼ 1). For the case of generalists (A), each cell receives as

much viability as it shares, and all nodes contribute equally to the fitness of the group. Therefore, the fitness of the group is W ¼ 4 � 1
2
� 1
2
¼ 1. For the

case of specialists, however, the viability specialist cells (blue) have ~v~b ¼ 0, while the fecundity specialist cells have nonzero ~v~b due to the fact that they

receive 1

3
of each viability specialist’s output. Thus the fitness of the group is W ¼ 2ð2 � 1

3
Þ ¼ 4

3
. Thus, fitness is higher for the group of specialists, so

specialization is favored. For a ¼ 0:9, the fitness of generalists is 1.15, and the fitness of specialists is 1.33. Thus, even though the returns on investment

are saturating (i.e. concave), specialization is favored.
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suggest that even in this region, however, the specialization score of the optimal strategy is large

(Figure 1).

Effect of sparsity
Surprisingly, saturating specialization appears to be the rule, rather than the exception, for sparsely

connected graphs. We investigated Erdős-Rényi random graphs with varying degrees of connectivity

to systematically examine the relationship between sparsity and the value of a at which specialization

is favored. We find that many randomly assembled graphs obtain maximum fitness through com-

plete reproductive specialization even when a is below 1 (Figure 3b,c). It is only at the extremes of

sparsity and connectivity (near the fully connected or fully unconnected points) that generalists main-

tain superior fitness for all values of a<1. We further show that this general trend is independent of

the size of a group; saturating specialization is favorable for groups of size N ¼ 10, N ¼ 100, and

N ¼ 1000. When network connectivity is at its minimum, the group consists solely of isolated cells

that cannot interact. Under these conditions generalists are favored. Similarly, at maximum connec-

tivity every cell interacts with every other cell. Under these conditions generalists are favored unless

ab>1. However, when connectivity is small but not zero, specialization arises most readily. We con-

jecture that the troughs in Figure 3b, where specialization occurs for the lowest values of a, occur

when connectivity is just large enough so that the existence of a spanning tree is more likely than

not.

0.5
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Figure 3. Sparsity encourages specialization. Heat maps showing conditions that favor specialists (white) and

generalists (black) for nearest neighbor topologies (A, left) and randomly generated graphs with the same

connectivity as nearest neighbor topologies (A, right). Specialization is adaptive on a neighbor network for a> 3

4b
;

random networks with the same mean connectivity as the nearest neighbor topology behave similarly. (B) The

sparsity of a random graph affects how likely it is to favor specialization. We numerically maximize fitness for

random graphs of size N ¼ 10 (left), N ¼ 20 (middle), and N ¼ 100 (right) at different levels of sparsity, and

subsequently measure the specialization S of the fitness maximizing investment strategy. The horizontal axis is the

fraction of possible connections present ranging from 0 (none) to 1 (all). The vertical axis is the specialization

power a, and the colormap shows mean specialization.
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Filaments and trees
Sparse topologies like the neighbor network configuration have significant biological relevance, and

direct ties to early multicellularity. The first step in the evolution of multicellularity is the formation of

groups of cells (Szathmáry and Smith, 1995; Kirk, 2005; Willensdorfer, 2008; Bonner, 1998;

Fairclough et al., 2010). Simple groups readily arise through incomplete cell division, forming either

simple filaments (Figure 4a) or tree-like morphologies (Figure 4b; Bengtson et al., 2017b;

Droser and Gehling, 2008; Berman-Frank et al., 2007; Ratcliff et al., 2012). Filament topologies

have been widely observed in independently-evolved simple multicellular organisms, from ancient

fossils of early red algae (Butterfield, 2000; Figure 4a) to extant multicellular bacteria

(Claessen et al., 2014) and algae (Umen, 2014). Branching multicellular phenotypes have also been

observed to readily evolve from baker’s yeast (Ratcliff et al., 2015; Figure 4b), and are reminiscent

of ancient fungus-like structures (Bengtson et al., 2017a) and early multicellular fossils of unknown

phylogenetic position from the early Ediacaran (Droser and Gehling, 2008).

Simulations of populations of groups with filamentous and branched topologies reveal that spe-

cialization is indeed favored in the sub-linear regime (Figure 4a and b) ; conversely, sub-linear spe-

cialization is never observed for fully connected topologies (Figure 4c). While the generalist strategy

is never a critical point for these networks (which have c 6¼ c
T , see Materials and methods), we con-

jecture that there is a nearby critical point which maximizes fitness at small values of a and becomes

unstable at larger values of a. We introduce a new metric, a�, defined as the value of a such that the

largest (least negative) eigenvalue of the Hessian evaluated at the complete generalist strategy is

zero when b ¼ 1. For topologies in which each member has the same number of neighbors, a� is a

critical value at which generalization is no longer an optimal strategy. However, even for groups
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Figure 4. Simple multicellular organisms with sparse topologies. We show two examples of simple multicellular organisms with linear and branched

topologies. The image in (A) is a fossilized rhodophyte specimen of Bangiomorpha pubescens, courtesy of Prof. Nicholas Butterfield (see e.g.

Butterfield, 2000); the image in (B) is a confocal image of ‘snowflake yeast’ showing cell volumes in blue and cell-cell connections in green; the image

in (C) is an epifluorescence image of individual yeast cells from a planktonic culture, with the same staining technique as in (B). Scale bars in pictures

= 10 mm. Panels include cartoons depicting simplified topologies. Topologically similar to the two-neighbor configuration, these configurations yield

similar simulation results. Specialization is plotted as a function of a. Solid (A) and blue (B) vertical lines (A and B) indicate analytical solutions for the

transition point where the Hessian evaluated at~v ¼ 1

2
~1 stops being negative definite, that is, a�; dotted lines indicate roughly where the simulation

curves cross specialization of 0.5, that is, the ’true’ transition value of a where specialization becomes favored. (C) In contrast, for a well-mixed group

with fully connected topology, a� ¼ 0:5, indicating specialization only occurs when there are accelerating returns on investment. (D) To further explore

trees and filaments we analytically solved for a� for various types of trees and filaments of different sizes. a� is plotted versus group size for several

topologies. This is a proxy measure of how amenable a network structure is to specialization.

Prof. Butterfield has granted permission to distribute the image in panel A under the terms of a Creative Commons Attribution license [https://creativecommons.org/licenses/by/4.0/]; further reproduc-

tion of this image should adhere to the terms of the CC BY 4.0 license with an attribution to Prof. Butterfield.
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where the number of neighbors for each cell varies, we can still use a� as a proxy for how amenable

a topology is to saturating specialization. The smaller a�, the more specialization is likely to be

favored. We plot vertical lines where a ¼ a� (solid lines in Figure 4(a) Figure 4(b)), and dotted lines

to indicate roughly where the simulation curves cross specialization of 0.5. These results show that,

for these topologies, a� acts as an effective metric for how amenable a network is to saturating spe-

cialization. This metric a� only depends on topology and can in principle be calculated analytically

given any network. We examined the value of a� as filaments and a variety of tree-like structures

grow larger, and find that specialization becomes more strongly favored (Figure 4D ). While group

size has no effect on specialization for some topologies, like the neighbor network, filaments and

trees all see a decrease in a� as group size increases; a� eventually plateaus once groups are larger

than a few tens of cells. Simple and easily accessible routes to multicellular group formation can

readily evolve in response to selection for organismal size (Ratcliff et al., 2012), and this process

may also strongly favor the evolution of cellular differentiation (McCarthy and Enquist, 2005;

Heim et al., 2017; McClain and Boyer, 2009; Bonner, 1998).

Mean field model
Finally, to capture some general principles underlying this phenomenon, we consider a mean-field

model with N cells (N >> 1), each of which is connected to z other cells. For simplicity we consider

the case in which b ¼ 1 and a ¼ 1. We pick a ¼ 1 as at this point, if the fitness of specialists is greater

than that of generalists, specialization will be favored for at least some values of a<1. If the fitness of

generalists is greater than or equal to that of specialists, specialization will only be favored if a>1.

For generalists, the fitness is simply WG ¼ N=4, as each cell has v ¼ 1=2 and b ¼ 1=2 (before and

after sharing). Viability specialists produce v ¼ 1 and b ¼ 0, while fecundity specialists produce v ¼ 0

and b ¼ 1. Viability specialists then share v ¼ 1=ðzþ 1Þ with each of their z neighbors. After sharing,

fecundity specialists receive v ¼ 1=ðzþ 1Þ from each of their viability specialist neighbors. But how

many of their neighbors are viability specialists? We label the fraction of cells connected to fecundity

specialists that are viability specialists f, that is, f is the mean number of viability specialists con-

nected to each fecundity specialist divided by z, averaged over all fecundity specialists. For a bipar-

tite graph, f ¼ 1; for a randomly connected graph on which half of cells are viability specialists and

half of cells are fecundity specialists, f ¼ 1=2. Group fitness is thus:

WS ¼
zfN

2ðzþ 1Þ
: (2)

Here, zf =ðzþ 1Þ is the average viability returns each fecundity specialist has received after sharing,

which is multiplied by the amount of fecundity each fecundity specialist has (1) and the number of

fecundity specialists (N=2). Writing WS in terms of WG:

WS ¼
2zfWG

zþ 1
: (3)

Specialists will be favored if the ratio WS=WG>1. This will be true if:

f>
zþ 1

2z
; (4)

which reduces to:

f>
1

2
þ

1

2z
: (5)

This inequality implies that specialization will only be favored if fecundity specialists are preferen-

tially connected to viability specialists, that is, if f>1=2. Further, for a fully connected network

f ¼ 1=2, so this inequality is never satisfied, that is, specialists cannot have larger fitness than general-

ists for a¼ 1 and fully connected topologies, as classically predicted.

Further, f cannot be more than 1, so if the threshold from the inequality in Equation 5 is greater

than or equal to 1, specialization cannot be favored for a<1. Thus, specialization for a<1 is only pos-

sible if:
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1

2
þ

1

2z
<1; (6)

which reduces to: z>1. This again reproduces a classic result: specialization for a<1 is not possible

for disconnected cells.

This analysis allows us to interrogate specific cases. For example, if z ¼ 3, f must be greater than

2/3, while if z ¼ 4, f must only be greater than 5/8. Can such networks be constructed? The answer

will depend on both the number of cells and how they are connected. Ultimately, the question of if a

graph can be made with particular values of f and z is a graph coloring problem, and beyond the

scope of this manuscript. However, this inequality presents a useful heuristic which can be used to

determine if specialization is favored by measuring just a few properties of the graph.

Effect of varying ratios of specialists
We now allow the fraction of fecundity specialists to be X (rather than forcing X ¼ 1=2). For general-

ists, the group fitness is unchanged, WG ¼ N=4, while for specialists the group fitness is:

WS ¼
zfXN

zþ 1
: (7)

Writing WS in terms of WG gives:

WS ¼
4zfXWG

zþ 1
: (8)

Specialists will be favored if the ratio WS=WG>1. This will be true if:

f>
zþ 1

4Xz
¼

1

4X
þ

1

4Xz
: (9)

Compared to the threshold value of f when X ¼ 1=2, if X>1=2, that is, more than half of cells are

fecundity specialists, the value of f necessary for specialization to be favored is lower. If X<1=2, the

threshold value of f is higher than if X ¼ 1=2. In other words, 1:2 is different from 2:1, and they both

are different from 1:1. Once again, the question of if a particular configuration can be created–and

how–is a graph coloring problem beyond the scope of this manuscript. However, this mean field

heuristic gives us some information about how to expect graphs with different ratios of specialists to

generalists to behave.

We again ask what must be true for f to be less than 1 (if f>1, specialization will not be favored).

Thus, specialization is only possible if:

1

4X
þ

1

4Xz
<1; (10)

which reduces to:

X>
1

4
þ

1

4z
: (11)

For a mean field model, specialization with a<1 is impossible if fewer than one fourth of cells are

fecundity specialists. We stress here that this is a mean field model, and does not apply to scenarios

in which cells have a wide range of values of z. If such networks do or do not favor specialization for

a<1 will again be a graph coloring problem.

Discussion
During the evolution of multicellularity, formerly autonomous unicellular organisms evolve into func-

tionally-integrated parts of a new higher level organism (West et al., 2015; Michod and Nedelcu,

2003). Evolutionary game theory (Corning and Szathmáry, 2015; Nash, 1950; Smith, 1988) argues

that functional specialization should only evolve when increased investment in trade increases repro-

ductive output. Conventionally, this requires returns from specialization to be accelerating, that is,

convex or super-linear (Szathmáry and Smith, 1995; Smith and Szathmáry, 1997; Goldsby et al.,
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2012; Corning and Szathmáry, 2015; Boza et al., 2014; Taborsky et al., 2016; Page et al., 2006;

Rueffler et al., 2012; Szekely et al., 2013). While this idea is intuitive, it is, in the case of fixed

group topology, also overly restrictive. In this paper, we explore how social interactions within

groups, measured by their network topology, affect the evolution of reproductive specialization.

Indeed, when all cells within groups interact (with equal interaction strength), returns on investment

must be an accelerating, that is, convex, function of investment for specialization to evolve

(Figure 1a; Szathmáry and Smith, 1995; Smith and Szathmáry, 1997; Corning and Szathmáry,

2015; Cooper and West, 2018). Yet for a broad class of sparsely connected networks, complete

specialization can evolve even when the viability and fecundity return on investment curves are satu-

rating, that is, concave (Figure 3).

To understand how specialization can be favored despite concave return on investment (ROI)

curves, consider Jensen’s inequality. Jensen’s inequality states that for a convex function FðxÞ,

hFðxÞi>FðhxiÞ, that is, the average value of FðxÞ, hFðxÞi, is larger than FðhxiÞ, where hxi is the average

value of x. A corollary of Jensen’s inequality is that the opposite is true for concave functions, that is,

for a concave function GðxÞ, hGðxÞi<GðhxiÞ. Jensen’s inequality guarantees that for concave ROI func-

tions generalists produce more total viability and fecundity than specialists, and that for convex ROI

functions specialists produce more total viability and fecundity than generalists.

Crucially, however, Jensen’s inequality does not connect ROI convexity/concavity to group fit-

ness. Jensen’s inequality relates the degree of specialization to the average viability and average

fecundity produced, but does not itself say anything about group fitness, which is the product of via-

bility and fecundity averaged across all cells. For fully connected topologies (i.e. Figure 4c), greater

absolute productivity proportionally increases group fitness, and differentiation can only evolve with

accelerating benefits of specialization. This is not the case for topologically structured organisms,

where fitness also depends on how complementary specialist cells are connected. Natural selection

acts on realized productivity, that is, average vb; mutations that increase average v or average b

without increasing average vb are not adaptive. The importance of connecting complementary spe-

cialists has long been appreciated in other contexts, such as metabolic cross-feeding, for which it

has been shown that the spatial arrangement of unlike specialists plays a key role in determining

their productivity (and thus fitness) (Co et al., 2020). Indeed, While Jensen’s inequality ensures that

generalists will produce more viability and fecundity than specialists given a concave ROI function,

specialization can still increase the fitness of topologically structured groups by increasing realized

productivity.

Rather than being unusual, networks favoring specialization readily arise as a consequence of

physical processes structuring simple cellular groups (Allen et al., 2017). For example, septin

defects during cell division create multicellular groups with simple graph structures (Figure 4a and

b), where cells are connected only to parents and offspring (Bengtson et al., 2017b; Droser and

Gehling, 2008; Ratcliff et al., 2012; Ratcliff et al., 2013). If cells share resources only with physi-

cally-attached neighbors, then the physical topology of the group describes its interaction topology,

and these sparse networks strongly favor reproductive specialization. Finally, we note that the pri-

mary benefit of sparsity is that sparse networks are likely to be at least somewhat bipartite. The

more bipartite-like a network is, the less effort is wasted, and the easier it is for specialization to be

favored.

Disentangling the evolutionary underpinnings of ancient events is notoriously difficult. Still, it is

worth examining the independent origins of complex multicellularity, which are independent runs of

parallel natural experiments in extreme sociality. Complex multicellularity (large multicellular organ-

isms with considerable cellular differentiation) has evolved in at least five eukaryotic lineages, once

each in the animals (King, 2004), land plants (Kenrick and Crane, 1997), and brown algae

(Silberfeld et al., 2010), two or three times in the red algae (Cock and Collén, 2015; Yoon et al.,

2006), and 8–11 times in fungi (Nagy et al., 2018). In all cases other than animals, these organisms

form multicellular bodies via permanent cell-cell bonds, creating long-lasting highly structured cellu-

lar networks. Both fossil and phylogenetic evidence suggests that early multicellular organisms in

these lineages were considerably less complex, growing as relatively simple graph structures. For

example, 1.2 billion year old red algae formed linear filaments of cells (Butterfield, 2000), basal mul-

ticellular charophyte algae formed circular sheets of cells radiating from a common center

(Kenrick and Crane, 1997), the ancestor of the brown algae likely formed a branched haplostichous

thallus that was either filamentous or pseudoparenchymatous (Silberfeld et al., 2010), and hyphal
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fungi are primarily composed of linear chains of cells. Much less is known about the topology of ani-

mals prior to the evolution of cellular specialization. One hypothesis is that early metazoans resem-

bled extant colonial choanoflagellates (Fairclough et al., 2013), the closest-living protistan relatives

of the animals (Fairclough et al., 2010). Extant colony-forming choanoflagellates have evolved a

variety of multicellular structures with sparse cellular topologies and permanent cell-cell bonds. For

example, many species form branched, tree-like structures (Leadbeater, 2015), Choanoeca flexa

grows as a sheet of cells (Brunet et al., 2019), and Salpingoceca rosetta can form either linear chains

or rosettes in which the cells are connected via cytoplasmic bridges formed through incomplete

cytokinesis (Dayel et al., 2011). While these growth forms are quite diverse, they all share character-

istics (i.e. permanent cellular bonds and sparse topologies) that promote the evolution of cellular

differentiation.

The main differences between our work and previous investigations of the effect of group topol-

ogy on specialization is that we consider the productivity of groups as a whole, not the cells within

them, and we consider situations of highly asymmetric sharing. Our approach is general, and can be

applied to other systems of trade and specialization, so long as (1) only the aggregate productivity

of the group (and not the particles within it) is maximized, (2) the productivity of each particle within

the group is a multiplicative function of returns on investment into two (or more) tasks, and (3) there

is an asymmetry in how products of those investments are shared. While in this work we have

focused on reproductive division of labor, a process in which fecundity returns are not shared at all,

we show in the supplement that as long as sharing of two goods is sufficiently asymmetric, speciali-

zation with saturating returns on investment can still be adaptive (Appendix 1—figure 2).

Finally, we note that alternative paths to specialization likely exist. For example, cells at different

positions in a group may experience different local environments, which may produce cells with var-

ied fecundity-viability trade-offs. A previous paper demonstrated that the evolution of specialization

is favored if these ‘positional effects’ result in an initially heterogeneous population of cell types

(Tverskoi et al., 2018). However, these positional effects were considered for the case of well-mixed

groups (i.e. completely connected network topologies). We thus anticipate that future work examin-

ing the relationship between cellular interaction topology and cellular heterogeneity (as well as a

wide range of complex and varied relationships between viability, fecundity, and multicellular fitness)

will provide unique insight into the origin and diversity of multicellular forms.

Conclusion
We explored the evolution of reproductive specialization in multicellular groups with various cellular

interaction topologies. Our results demonstrate that group topological structure can play a key role

in the evolution of reproductive division of labor. Indeed, within a broad class of sparsely connected

networks, specialization is favored even when the returns from cooperation are saturating (i.e. con-

cave); this result is in direct contrast to the prevailing view that accelerating (i.e. convex), returns are

required for natural selection to favor increased specialization (Cooper and West, 2018;

Michod et al., 2006; Ispolatov et al., 2012; Solari et al., 2013; Michod, 2007; West et al., 2015).

Our results underscore the central importance of life history trade-offs in the origin of reproductive

specialization (Michod et al., 2006; Michod, 2007; Hammerschmidt et al., 2014; van Gestel and

Tarnita, 2017; Noh et al., 2018), and support the emerging consensus that evolutionary transitions

in individuality are not necessarily highly constrained (Ratcliff et al., 2012; Ratcliff et al., 2017;

Fairclough et al., 2010; Brunet and King, 2017; Pennisi, 2018; Black et al., 2019; Rose et al.,

2020; van Gestel and Tarnita, 2017; Black et al., 2019; Staps et al., 2019; Grosberg and Strath-

mann, 2007).

Materials and methods

Analysis
The gradient of the fitness with respect to the group investment strategy~v, is

qW

q~v
¼
X

N

k¼1

êkaðv
a�1

k

X

N

j¼1

ckjð1� vjÞ
a�ð1� vkÞ

a�1
X

N

j¼1

cjkv
a
j Þ (12)
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where êk is a unit vector in the kth direction. First notice that if c¼ c
T , and~v¼ 1

2
~1 where ~1 is a vector

of ones, then the gradient is zero. This strategy, ~v¼ 1

2
~1, corresponds to the ‘generalist’ strategy,

where every cell invests equally into both tasks. Second, notice that if c 6¼ c
T then the gradient is not

zero under the generalist strategy, so at least some degree of specialization must be necessary to

maximize fitness. To determine the stability of this solution we examine H
�, the Hessian (see SI Equa-

tion 3) evaluated at the generalist critical point. If H� is negative definite, then the generalist strat-

egy is a fitness maximum and is therefore an optimal strategy. If, on the other hand, H� has both

positive and negative eigenvalues then the generalist strategy lies at a saddle point within the fitness

landscape, and therefore the optimal strategy must be somewhere else in (or on the boundary of)

the domain (i.e. vi 2 ½0;1� for all i2 1;2; :::N). Finally, note that H� is never positive definite since ~1 is

always an eigenvector with negative eigenvalue (when c¼ c
T ).

We also use the zero crossing of the largest eigenvalue of H� evaluated at~v ¼ 1

2
~1 and b ¼ 1 as an

overall measure of how amenable a network is to specialization, even when c 6¼ c
T .

Evolutionary simulations
Our evolutionary simulations maintain the same overall structure as the Wright-Fisher model: a dis-

crete-time Markov chain framework with fitness-weighted multinomial sampling between genera-

tions and constant population size. Therefore we refer to them as Wright-Fisher evolutionary

simulations. We initialize a population of N ¼ 1000 groups, each of group size N ¼ 10, with uniform

random investment strategies. We then let them evolve for 1000 generations, selecting offspring

according to the relative fitness of each group (see Equation 1). At each generation, there is a 2%

chance for a mutation to a given group’s investment strategy ~v. If a mutation occurs, a new invest-

ment strategy is selected from a truncated multivariate gaussian distribution centered at the current

(pre-mutation) investment strategy and with standard deviation equal to 1

10
~v. After mutations each

group’s fitness is calculated according to Equation 1, and the population is ranked according to fit-

ness. Finally, N groups are selected (with replacement) to populate the next generation, according

to a multinomial distribution weighted by the groups’ fitness ranks.

Measuring specialization
To quantify the degree of specialization associated with a given group’s optimal investment strat-

egy—the one which maximizes the fitness—we introduce the following metric, which we refer to sim-

ply as ‘Specialization’:

S ¼
2

N

X

N

i¼1

maxðvi;1� viÞ�
1

2

� �

: (13)

Specialization ranges from 0 (for groups consisting of cells investing equally in functions v and b)

to 1 for groups consisting of cells investing exclusively in either function.

Code availability
All evolutionary simulations and other computations associated with this work are available at

github.com/dyanni3/topologicalConstraintsSpecialization (Yanni, 2020; copy archived at https://

github.com/elifesciences-publications/topologicalConstraintsSpecialization).
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Appendix 1

Analysis
As described in the main text, the fitness for a group of N individuals is defined as

W ¼
X

N

i¼1

X

N
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a
j (1)

and the gradient of the fitness with respect to the group investment strategy~v, is
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êka va�1

k

X

N

j¼1

ckjð1� vjÞ
a�ð1� vkÞ

a�1
X

N

j¼1

cjkv
a
j

 !

(2)

where êk is a unit vector in the kth direction.

Hessian
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Of particular interest for us is the value of the Hessian at the generalist strategy when c¼ c
T . In

that case

H
� ¼ a

1

2

� �2a�3

½ �abaþ ab� 1ð ÞI�: (4)

where a is the row-normalized adjacency matrix of the network. If A is the network’s adjacency

matrix then

aij ¼
Aij

PN
j¼1

Aij

:

The case when c¼ c
T

As noted above, when c ¼ c
T , the generalist strategy is always a critical point where qW

q~v ¼ 0. To

determine the stability of this solution we examine H
� (Equation 4). If H� is negative definite, then

the generalist strategy is a fitness maximum and is therefore an optimal strategy. If, on the other

hand, H� has both positive and negative eigenvalues then the generalist strategy lies at a saddle

point within the fitness landscape, and therefore the optimal strategy must be somewhere else in (or

on the boundary of) the domain (i.e. vi 2 ½0; 1� for all i 2 1; 2; :::N). Finally, note that H� is never posi-

tive definite (when c ¼ c
T ). Consider H�~1:

H
�~1¼ a

1

2

� �2a�3

½�aba~1þ ab� 1ð ÞI~1�

H
�~1¼ a

1

2

� �2a�3�

�ab~1þ ab� 1ð Þ~1

�

H
�~1¼�a

1

2

� �2a�3

~1:
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Note a~1¼~1 since a is row-normalized. Furthermore, a>0, so~1 is always an eigenvector of H� with

a negative eigenvalue.

We can next ask, under what conditions is H
� negative definite? This will depend on the group

topology, the nonlinear returns on investment a, and the interaction strength b. We examine three

cases: the neighbor graph, the balanced bipartite graph, and the complete graph.

Appendix 1—table 1. Largest eigenvalue of the Hessian evaluated at the generalist critical point as

a function of a, b, and N for three topologies.

When the group size N ¼ 4, the balanced bipartite graph coincides with the neighbor graph, and

indeed the eigenvalues agree. Similarly, when N ¼ 2 the balanced bipartite graph coincides with the

complete graph and the eigenvalues agree. The interesting domain of ab is ð0; 1�, so for the com-

plete graph H
� is always negative definite. However, the balanced bipartite and neighbor graphs

show regions where the generalist strategy is not stable.

Topology Largest eigenvalue

neighbor graph a 1

2

� �2a�3
ð�1þ 4

3
abÞ

balanced bipartite graph a 1

2

� �2a�3
ð�1þ 2N

Nþ2
abÞ

complete graph a 1

2

� �2a�3
ð�1þ abÞ

When c ¼ c
T , the matrix H

� is a special type of matrix called a circulant matrix, with well known

properties. Its eigenvalues are given by the discrete Fourier transform of its first row. The kth eigen-

value is

lk ¼
X

N�1

j¼0

H�
1je

2pi

N
jk
:

For the ring topology with N ¼ 10, for example

lk ¼ a
1

2

� �2a�3

ð�1þ
2ab

3
Þ�

ab

3
e
pi
5
k �

ab

3
e
9pi
5
k

� �

;

which has its maximum when k¼ 5,

max
k

lk ¼ a
1

2

� �2a�3

ð�1þ
4ab

3
Þ:

The maximum eigenvalue for the balanced bipartite and complete graphs can be computed

similarly.

Evolution of resource sharing
Here we model the co-evolution of sharing and specialization. We start with generalists that do not

share at all. We then allow the amount of sharing and the degree of specialization to evolve. As

described in the main text, during every round, each group in the population has a 2% chance that

one if its cells will mutate and change how much ‘viability’ it shares. When this occurs, the fraction of

its output to retain is chosen from a Gaussian with standard deviation of 10% centered on the cur-

rent value. Whatever is not retained is shared equally across its interactions. The degree of speciali-

zation evolves as in simulations described in the main text.

Results are shown in Appendix 1—figure 1, for neighbor topologies, balanced bipartite topolo-

gies, and for a complete network.
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Appendix 1—figure 1. Evolution of resource sharing. (A) Initially, individuals do not share resources;

however, they may evolve to do so via random mutations. Here, the mean specialization of the

fittest of 100 groups each with 10 cells after 100,000 steps is plotted as a function of specialization

power. Error bars are standard deviations across 10 replicates. Blue is the fully connected network,

red is the neighbor network, and green is the balanced bipartite topology. (B-D) The final

distribution of specialization values for individual cells in fully connected (B), nearest-neighbor (C),

and balanced bipartite topologies (D). The color of cells in B-D represents their degree of

specialization, as indicated in the scale bar.

General case of sharing two resources
We have so far focused on reproductive specialization, wherein the returns from one type of task

(reproduction) are completely unshared while returns from another task (viability) are shared accord-

ing to some functional interaction strength b. Here, we generalize somewhat to consider the returns

from two arbitrary tasks which may each be shared to some extent, given by functional interaction

strengths ðb1;b2Þ. For notational continuity we will continue to refer to the investment in those tasks

as b and v, and for tractability we will continue to assume that a1 ¼ a2 and that there is a single

topology governing who can trade with whom within the group. Of course, further generalizations

could be made — e.g. each task could experience different returns on investment, there could be an

arbitrary number of tasks, the availability of trading partners could differ between tasks, etc. How-

ever, we hope to show by this relatively modest generalization that there is nothing unique to
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reproductive tasks whose fruits are totally unshared that leads to specialization under regimes of

sublinear return on investment.

The fitness function is modified so that

W ¼ ðc1
T �~baÞ � ðc2

T �~vaÞ (5)

which yields the following Hessian at the generalist critical point (for the neighbor, balanced bipar-

tite, and complete networks)

H
�
ab ¼ a

1

2

� �2a�2

ð� 2aðc1 � c2
TÞab þða� 1Þ ðc1 � c2

T �~1Þa þðc1 � c2
T �~1Þb

h i

dabÞ;

where

c1 ¼ b1aþð1�b1ÞI (6)

c2 ¼ b2aþð1�b2ÞI (7)

and,

aij ¼
Aij

PN
j¼1

Aij

;

where, as above, A is the graph’s adjacency matrix (including self loops).

We see that for a given topology the adjacency matrix is fixed, so that c1 and c2 differ only in their

functional interaction strengths b1 and b2. Therefore the maximum fitness strategy, specified by the

vector~v�, for a given group will depend under our model on the following parameters:

A �! Adjacency matrix; specifies topology
b1 �! Functional interaction strength of resource1

b2 �! Functional interaction strength of resource 2

a �! Specialization power; assumed to be equal for resource 1 and 2

We demonstrate the effect of these parameters on the optimal strategy by finding the minimum

value of a for which specialization becomes favored, which we denote a�, for a given pair ðb1;b2Þ

and given topology. The results are shown in Appendix 1—figure 2.
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Appendix 1—figure 2. Effect of sharing two resources. When two resources are shared to different

degrees, specified by ðb1;b2Þ, specialization is sometimes favored under conditions of sublinear

returns on investment a�<1:0. Interestingly, specialization is favored when one resource is shared

liberally while the other resource is shared sparingly (though it is not necessary to have one resource

remain totally unshared).

Jensen’s inequality and sparse topologies and asymmetric sharing
To understand how average fitness decouples from average v and average b for sparse topologies

and asymmetric sharing, consider a ring of four cells in three different configurations: one that alter-

nates between viability and fecundity specialists, one in which like-specialists are connected to each

other, and one in which all cells are generalists (pictured below). For simplicity, we will set b ¼ 1,

and we will initially consider the case when a ¼ 1. When a ¼ 1, Jensen’s inequality tells us that gen-

eralists and specialists will be equally productive. Classically, this would suggest that specialists and

generalists should have the same fitness.

And, indeed, all three cases have the same average v and the same average b (Â½ for each).

However, the average fitnesses are all different.

Next, we consider the same three configurations, but with a ¼ 0:9. Jensen’s inequality tells us

that for this value of a, generalists should have a higher average v and average b. Indeed, the aver-

age v and b is higher for generalists than for specialists: 0.536 versus 0.5. However, the average fit-

ness of generalists, 0.287, is still lower than the average fitness of alternating specialists, 0.333.

These examples show that Jensen’s inequality still holds, and still correctly tells us which configu-

ration has the highest average v and average b. However, average v and average b are no longer

directly proportional to average fitness. Therefore Jensen’s inequality does not directly inform
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average fitness, and we should not expect convex ROI functions to be required for specialists to be

favored.

Star graphs
Let Wg be the fitness for the star shaped network group of generalists (v ¼ 0:5, b ¼ 0:5) and Ws be

the fitness of specialists (all of the points of the star get v ¼ 1, b ¼ 0 and the central point gets v ¼ 0,

b ¼ 1).

Next assume there are N cells on the points of the star and 1 cell in the center of the star. We

then have:

Ws ¼
Nb

2
(8)

as the only individual with nonzero fitness is the central individual (all others have b¼ 0). The central

individual’s fecundity returns are 1
a ¼ 1, and it’s own viability returns are 0. However, the central indi-

vidual gets shared b

2
of each of the N other individuals’ viability returns (which are 1

a ¼ 1 each).

Next, for generalists, we have

Wg ¼N
1

2

� �2a

1�bþ
b

2
þ
b

N

� �

þ
1

2

� �2a
b

N
þ 1�bþN

b

2

� �

: (9)

The term on the left of Equation 9 comes from the fact that there are N individuals each sharing
b

2
of their viability returns (which is ð1

2
Þa each) with themselves, and are getting b

N
of the central individ-

ual’s ð1
2
Þa viability returns shared with them. Additionally, they are getting 1�b of their own viability

returns (withheld from sharing). Finally, each of their fecundity returns is ð1
2
Þa.

The term on the right of Equation 9 represents the contribution to the group fitness of the single

central individual. That individual gets b

2
� ð1

2
Þa of viability returns shared to it N times, and it also

shares with itself and keeps a portion of its returns for itself. And it has a fecundity return of ð1
2
Þa.

Star topologies in the limit of large N
We first examine Equation 9 in the limit where N>>1:

Wg »N
1

2

� �2a

1�bþ
b

2

� �

þ
1

2

� �2a

N
b

2

� �

(10)

which reduces to

Wg »N
1

2

� �2a

1�bþ
b

2
þ
b

2

� �

(11)

and finally

Wg »N
1

2

� �2a

: (12)

To understand if generalists or specialists are favored we examine the ratio of generalist to spe-

cialist fitness
Wg

Ws
.

Wg

Ws

¼
b

2aþ1
: (13)

This means Wg>Ws if b>2aþ1. Since b and a are both bounded between 0 and 1, this is never

achievable. Therefore, at large N, specialists are always favored.
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Star topologies in general
Alternately, if do not assume N is large, but set b ¼ 1 for simplicity, we can solve for the largest a

which would yield equal fitness to generalists and specialists:

amax ¼�
1

2
log2

2N2

2N2 þ 2Nþ 8

� �

: (14)

Rings with even and odd numbers of cells
In the main text we plot a� for ring graphs with even numbers of cells. We made this choice as spe-

cialization is slightly frustrated when there are odd numbers of cells. Rings with odd numbers of cells

must have at least one location at which like specialists are connected, thus slightly increasing the

value of a� compared to a ring with an even number of cells (Appendix 1—figure 3). However, as

the size of the graph increases, a single frustrated pairing matters less and less, and the value of a�

for rings with odd numbers and large N appears to approach the value of a� for rings with even

numbers of cells.

Appendix 1—figure 3. Rings with odd numbers of cells are frustrated. a� plotted versus the

number of cells in the ring, for rings with even and odd numbers of cells.
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