Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic

  1. Aashutosh Vihani  Is a corresponding author
  2. Xiaoyang Serene Hu
  3. Sivaji Gundala
  4. Sachiko Koyama
  5. Eric Block
  6. Hiroaki Matsunami  Is a corresponding author
  1. Duke University, United States
  2. University at Albany, State University of New York, United States
  3. Indiana University Bloomington, United States

Abstract

Understanding how genes and experiences work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell types in mice. We identified a subpopulation of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic. This subpopulation of olfactory sensory neurons was over-represented in sex-separated mice and robustly responsive to sex-specific semiochemicals. Sex-combined housing led to an attenuation of the dimorphic representations. Single-cell sequencing analysis revealed an axis of activity-dependent gene expression amongst a subset of the dimorphic OSN populations. Finally, the pro-apoptotic gene Bax is necessary to generate the dimorphic representations. Altogether, our results suggest a role of experience and activity in influencing homeostatic mechanisms to generate a robust sexually dimorphic phenotype in the main olfactory epithelium.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE160272.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Aashutosh Vihani

    Department of Neurobiology, Duke University, Durham, United States
    For correspondence
    aashutosh.vihani@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5979-101X
  2. Xiaoyang Serene Hu

    Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  3. Sivaji Gundala

    Department of Chemistry, University at Albany, State University of New York, Albany, United States
    Competing interests
    No competing interests declared.
  4. Sachiko Koyama

    Biology, Indiana University Bloomington, Bloomington, United States
    Competing interests
    No competing interests declared.
  5. Eric Block

    Department of Chemistry, University at Albany, State University of New York, Albany, United States
    Competing interests
    No competing interests declared.
  6. Hiroaki Matsunami

    Department of Neurobiology, Duke University, Durham, United States
    For correspondence
    hiroaki.matsunami@duke.edu
    Competing interests
    Hiroaki Matsunami, HM receives royalties from Chemcom..

Funding

National Institute on Deafness and Other Communication Disorders (DC014423)

  • Eric Block
  • Hiroaki Matsunami

National Institute on Deafness and Other Communication Disorders (DC016224)

  • Hiroaki Matsunami

National Science Foundation (1556207)

  • Hiroaki Matsunami

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol A128-19-06 at Duke University.

Copyright

© 2020, Vihani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,539
    views
  • 302
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aashutosh Vihani
  2. Xiaoyang Serene Hu
  3. Sivaji Gundala
  4. Sachiko Koyama
  5. Eric Block
  6. Hiroaki Matsunami
(2020)
Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic
eLife 9:e54501.
https://doi.org/10.7554/eLife.54501

Share this article

https://doi.org/10.7554/eLife.54501

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.