Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic

  1. Aashutosh Vihani  Is a corresponding author
  2. Xiaoyang Serene Hu
  3. Sivaji Gundala
  4. Sachiko Koyama
  5. Eric Block
  6. Hiroaki Matsunami  Is a corresponding author
  1. Duke University, United States
  2. University at Albany, State University of New York, United States
  3. Indiana University Bloomington, United States

Abstract

Understanding how genes and experiences work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell types in mice. We identified a subpopulation of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic. This subpopulation of olfactory sensory neurons was over-represented in sex-separated mice and robustly responsive to sex-specific semiochemicals. Sex-combined housing led to an attenuation of the dimorphic representations. Single-cell sequencing analysis revealed an axis of activity-dependent gene expression amongst a subset of the dimorphic OSN populations. Finally, the pro-apoptotic gene Bax is necessary to generate the dimorphic representations. Altogether, our results suggest a role of experience and activity in influencing homeostatic mechanisms to generate a robust sexually dimorphic phenotype in the main olfactory epithelium.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE160272.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Aashutosh Vihani

    Department of Neurobiology, Duke University, Durham, United States
    For correspondence
    aashutosh.vihani@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5979-101X
  2. Xiaoyang Serene Hu

    Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  3. Sivaji Gundala

    Department of Chemistry, University at Albany, State University of New York, Albany, United States
    Competing interests
    No competing interests declared.
  4. Sachiko Koyama

    Biology, Indiana University Bloomington, Bloomington, United States
    Competing interests
    No competing interests declared.
  5. Eric Block

    Department of Chemistry, University at Albany, State University of New York, Albany, United States
    Competing interests
    No competing interests declared.
  6. Hiroaki Matsunami

    Department of Neurobiology, Duke University, Durham, United States
    For correspondence
    hiroaki.matsunami@duke.edu
    Competing interests
    Hiroaki Matsunami, HM receives royalties from Chemcom..

Funding

National Institute on Deafness and Other Communication Disorders (DC014423)

  • Eric Block
  • Hiroaki Matsunami

National Institute on Deafness and Other Communication Disorders (DC016224)

  • Hiroaki Matsunami

National Science Foundation (1556207)

  • Hiroaki Matsunami

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tali Kimchi, Weizmann Institute of Science, Israel

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol A128-19-06 at Duke University.

Version history

  1. Received: December 16, 2019
  2. Accepted: November 22, 2020
  3. Accepted Manuscript published: November 24, 2020 (version 1)
  4. Version of Record published: December 11, 2020 (version 2)

Copyright

© 2020, Vihani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,491
    views
  • 288
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aashutosh Vihani
  2. Xiaoyang Serene Hu
  3. Sivaji Gundala
  4. Sachiko Koyama
  5. Eric Block
  6. Hiroaki Matsunami
(2020)
Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic
eLife 9:e54501.
https://doi.org/10.7554/eLife.54501

Share this article

https://doi.org/10.7554/eLife.54501

Further reading

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.