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Abstract Humans recall the past by replaying fragments of events temporally. Here, we

demonstrate a similar effect in macaques. We trained six rhesus monkeys with a temporal-order

judgement (TOJ) task and collected 5000 TOJ trials. In each trial, the monkeys watched a

naturalistic video of about 10 s comprising two across-context clips, and after a 2 s delay,

performed TOJ between two frames from the video. The data are suggestive of a non-linear, time-

compressed forward memory replay mechanism in the macaque. In contrast with humans, such

compression of replay is, however, not sophisticated enough to allow these monkeys to skip over

irrelevant information by compressing the encoded video globally. We also reveal that the monkeys

detect event contextual boundaries, and that such detection facilitates recall by increasing the rate

of information accumulation. Demonstration of a time-compressed, forward replay-like pattern in

the macaque provides insights into the evolution of episodic memory in our lineage.

Introduction
Accumulating evidence indicates that non-human primates possess the ability to remember temporal

relationships among events (Templer and Hampton, 2013; Gower, 1992; Charles et al., 2004).

The apes can remember movies based on the temporal order of scenes (Morimura and Matsuzawa,

2001) and keep track of the past time of episodes (Martin-Ordas et al., 2010), whereas macaque

monkeys possess serial (Terrace et al., 2003) and ordinal positions expertise for multi-item lists

(Chen et al., 1997) and are able to categorize sequences of fractal images by their ordinal number

(Orlov et al., 2000). However, keeping track of and remembering the positional coding, and form-

ing associative chaining (Templer et al., 2019; Long and Kahana, 2019) of lists of arbitrary items

might diverge from how a semantically linked, temporally relational representation of real-life events

is maintained and utilized.

In the human literature, it has been shown that episodes can be replayed sequentially on the basis

of learned structures (Liu et al., 2019), sensory information (Michelmann et al., 2019), and pictorial

content (Wimmer et al., 2019). These findings suggest the possibility that monkeys can rely on a

similar mechanism in recalling events that are linked temporally during temporal order judgement
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(TOJ). However, the extent to which mechanisms of temporal order judgement overlap across

humans and monkeys remains undefined. One hypothesis is that the macaques can similarly rely on

a scanning model for information retrieval – akin to serial replay of episodes – to perform temporal

order judgements (Gower, 1992; Charles et al., 2004). In this model, after encoding streams of

events, the animal performs retrieval by replaying the stream of information in a forward direction.

In this way, retrieval time (RT) would be positively correlated to the temporal distance between the

beginning of the stream and the target location. Recent findings in rodents (Panoz-Brown et al.,

2018) and in humans of memory replay during cued-recall tasks across fragments of video episodes

are characterized, however, by replay that proceeds in a forward manner and is temporally com-

pressed (Michelmann et al., 2019). A feature of this more sophisticated mechanism is that memory

replay is a fluidic process that allows subjects to skip flexibly across sub-events (Michelmann et al.,

2019). Subjects can omit non-informative parts of episodes and replay a shorter episode (shorter

than physical perception) in memory, which contains less information. This interpretation is sup-

ported by other works on the mental simulation of paths (Bonasia et al., 2016) and video episodes

(Michelmann et al., 2019). This latter model constitutes a global compression of parts of episodes

(that allows skipping across sub-events) and is regarded as substantially superior to a strict forward-

replay mechanism.

In order to simulate the dynamic flow of information that occurs in real-life scenarios, we used

naturalistic videos as experimental material to study the mechanism of memory retrieval of event

order in the monkeys. These videos are more realistic than the arbitrary items or images that were

used in previous studies (Templer and Hampton, 2013; Naya et al., 2017). We used a temporal

order judgement paradigm to examine whether and to what extent the pattern underlying memory

retrieval conforms to a time-compressed, forward-replay mechanism. In each trial, monkeys watched

a naturalistic video composed of two clips, and following a 2 s retention delay, made a temporal

order judgement to choose the frame that was shown earlier in the video between two frames

extracted from that video (Figure 1A). The two frames were either extracted from the same clip or

from two different clips of the video. Given that analyses on response latency can provide insights

into the extent to which the monkeys’ behavior might conform to the two putative replay models

outlined above, we looked into the RT data. By applying representational similarity analyses (RSA),

the Linear Approach to Threshold with Ergodic Rate (LATER) model and generalized linear

models to the RT data, we examined the presence of replay-like behavioral patterns in the monkeys.

Specifically, if monkeys recall the frames by their ordinal positions, this would imply a linear increase

in their retrieval times. By contrast, if the memory search entails a complex processing of the content

determined by their semantically linked, temporally relational linkage within the cinematic footage,

we should observe evidence of some non-linear pattern.

Our results suggested that macaque monkeys might adopt a time-compressed, replay-like pat-

tern to search within the representation of continuous information. This time-compression character-

istic refers to durations of memory replay that are significantly shorter than the length of the videos.

We found that while both species recall the video content non-linearly, there is an aspect of discrep-

ancy between the two species in which the monkeys do not compress the cinematic events globally

as effectively as in humans, whereas human participants possess an ability to skip irrelevant informa-

tion within the video. Finally, we revealed that the monkeys can make use of context changes to

facilitate memory retrieval, thus increasing their rate of information accumulation in a drift diffusion

model framework.

Results

Human-like forward replay in macaques
All six monkeys learned to perform the temporal order judgement task with dynamic cinematic vid-

eos as encoded content (Figure 1B left and Video 1). The six monkeys performed the task with a

significantly above chance level with an overall accuracy of 67.9% ± 1.5% (mean ± SD). The human

participants performed the task on average at 92.7% ± 1.2% (Figure 1—figure supplement 1A,

left). Note that there are two main kinds of TOJ trials: ‘within-context’ and ‘across-context’ trials

(Figure 1A). Here, we are first concerned with the response times (RT) data from ‘within-context’ tri-

als, which allow us to examine TOJ mechanisms, whereas RT data from ‘across-context’ trials were
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used to test for effects arising from context changes (event boundaries), as is discussed in subse-

quent subsections.

We first addressed our main hypothesis by examining changes in RT using only within-context tri-

als. One possibility is that the monkeys perform TOJ by relying on some form of memory

replay, recalling the events coded at specific ordinal positions in a serial manner. To test this hypoth-

esis, in each trial we explicitly looked at the relationship between RT and the location of the frame

within the video that the monkeys chose (‘chosen frame location’, as indexed by the ordinal frame

numbers in the video). Considering a range of nuisance variables that might affect these relation-

ships (see also full GLM results in Figure 6), we ran the linear regression analysis of reciprocal latency

as a function of chosen frame location/temporal similarity, while including a range of variables as nui-

sance regressors for each monkey separately. We found a negative relationship between reciprocal

latency and chosen frame location in all monkeys (all p<0.001 ; Figure 1C and Table 1 upper panel),

and between reciprocal latency and temporal similarity (all p<0.001; Figure 2—figure supplement

 

Figure 1. TOJ task schema and RT results. (A) In each trial, the monkey watched a video (8–12 s, comprising two 4–6 s video clips), and following a 2 s

retention delay, made temporal order judgement between two probe frames extracted from the video. The monkeys were required to choose the

frame that was presented earlier in the video for water reward. (B) Task performance of six monkeys. Proportion correct for the six monkeys (left); mean

reaction times for three trial types (right). Error bars are standard errors of the means over monkeys. *** denotes p<0.001. (C) Linear plots of reaction

time (RT) for each monkey as a function of chosen frame location, see also Table 1. (D) Linear plots of RT as a function of chosen frame location for

each human participant, see also Supplementary file 4. In panels (C) and (D), black lines and orange lines refer to lists of non-primate video clips and

primate video clips, respectively (with five repetitions collapsed for monkeys and two repetitions collapsed for human participants). All responses in

the within-context condition are shown, with cyan and magenta dots denoting whether the chosen probe frames were extracted from Clip 1 or Clip 2,

respectively.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Performance of human participants and speed accuracy trade off results.
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1A and Supplementary file 2 upper panel). This

suggests that the monkeys are systemically faster

in identifying frames that are located earlier in

the video. Moreover, we replicated these results

when considering only correct trials or only incor-

rect trials separately (Table 1 middle/bottom

panel for chosen frame location;

Supplementary file 2 middle/bottom panels for

temporal similarity), suggesting that the putative

response latency patterns are not affected by the

memory outcome. These patterns of result are

also replicated using logarithmically transformed

RT data (all p<0.001).

To address the direction and speed of mem-

ory replay, reaction times at retrieval were com-

pared between TOJ frames that are within Clip 1

versus Clip 2. During TOJ retrieval, frames that

were presented in Clip 1 (mean reaction time = 1.59 s) were retrieved significantly faster than

those that were experienced in Clip 2 (mean reaction time = 1.88 s) (one-tailed t5 = �4.533;

p=0.003; Cohen’s d = �0.54; 95% CI: –infinity to �0.158 s; log(RT): one-tailed t5 = �6.473;

p=6.558 � e�4; Cohen’s d = �0.69; 95% CI: –infinity to �0.114 s). Again, these findings confirm that

the replay of the video takes place in a forward direction.

Moreover, since the latency required to respond to the chosen frames is much smaller than the

duration of the videos themselves, the replay of the video must have been conducted at a com-

pressed speed (i.e., memory replay was faster than perception during video-watching). The differ-

ence in reaction time between the very first frame and the last frame was averaged at 942 ms

(range: 468–1859 ms). This is equivalent to 94.2 ms to scan through each second of the video, and

corresponds to a compression factor of 10.61 during replay in these monkeys (compression factor

for each monkey: Jupiter = 13.59, Mars = 7.39, Saturn = 14.80, Mercury = 21.37, Uranus = 17.78,

Neptune = 5.38, see Figure 1C). This is comparable to a compression factor of 13.7 observed in

humans, corroborating the notion of forward replay and those findings in humans

(Michelmann et al., 2019).

The results suggest that the monkeys’ judgments are faster when responding to probe frames

that are located in the earlier parts of the videos, and they also illustrate that the search might not

follow a linear function. We formally tested for any ‘non-linearity’ of the fit. We began by testing for

a linear relationship and progressively moved to higher-order relationships (quadratic, cubic). At

each step, we assessed the significance of the new predictor, having accounted for all the variance

fitted by the lower-level predictors. We reported the significance of different trends (linear, qua-

dratic, cubic) for the two species (Supplementary file 3). This non-linear (quadratic and cubic) rela-

tionship in the monkeys is important because it rules out alternative explanations in which the main

effects simply result from positional effects. Rather, the non-linear change in slope indicates that

other factors are in play, and that the monkeys might group (or parse) the content according to the

relational storyline structure (e.g., the two-clip video design), and do not merely recall the frames/

items as of their ordinal positions in a fixed linear manner. In comparison, this analysis also highlights

differences between human and macaque monkeys. We found that the human data fits best, and

only, with the cubic model (Supplementary file 3), suggesting that humans might have treated the

video and TOJ differently from the macaques. This difference is reflected in the global compression

capability of the human participants (see next section).

In summary, we found that our monkeys might have performed TOJ of video episodes using a

forward search of ordered elements in the mnemonic representation at the time of memory test

with a non-linear, time-compressed function.

We also ran the same sets of analyses on human participant data for comparison between the

two species. Showing a completely opposite pattern, regression analyses on human subjects showed

a negative relationship between temporal similarity and reciprocal latency for all participants (all

p<0.001, one subject with p=0.055, Figure 2—figure supplement 1B and Supplementary file 4

upper panel). These results imply that the more similar the two frames to be judged, the longer time

Video 1. A monkey performing an example trial.

The monkey performs an across-context trial with a

correct response (rewarded with liquid).

https://elifesciences.org/articles/54519#video1
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needed for retrieve temporal order information. There was also no observable reciprocal latency/

chosen frame location slope in the human data (if anything, it shows an opposite trend; see

Figure 1D and Supplementary file 4 bottom panel). It is notable that when reciprocal latency as a

function of chosen frame location is analyzed in the humans (as shown in Figure 2B

compared with Figure 2A for monkeys) a very different pattern emerges, suggesting some form of

mechanistic discrepancy between the species. We will examine these aspects in detail in the next

section.

Table 1. One sample t-tests of the slopes of reciprocal latency as a function of chosen frame location for each monkey after having

entered a range of nuisance variables as regressor-of-no-interest (see also Figure 6).

The three panels correspond to analyses performed using all trials (top), only correct trials (middle), and only incorrect trials (bottom).

The same slope patterns were observed irrespective of response correctness.

Monkeys Beta SEM
t-
statistics

p-
value

95% confidence interval
Lower Upper

Slope of reciprocal latency/chosen frame location tested against zero (all trials)

Jupiter –
0.203

0.021 –9.751 <0.001 –
0.244

–
0.163

Mars –
0.369

0.025 –14.950 <0.001 –
0.417

–
0.320

Saturn –
0.157

0.027 –5.810 <0.001 –
0.210

–
0.104

Mercury –
0.207

0.052 –3.958 <0.001 –
0.309

–
0.104

Uranus –
0.164

0.022 –7.595 <0.001 –
0.207

–
0.122

Neptune –
0.197

0.031 –6.361 <0.001 –
0.257

–
0.136

Slope of reciprocal latency/chosen frame location tested against zero (correct trials)

Jupiter –
0.185

0.025 –7.393 <0.001 –
0.234

–
0.136

Mars –
0.272

0.028 –9.879 <0.001 –
0.326

–
0.218

Saturn –
0.092

0.032 –2.857 0.004 –
0.155

–
0.029

Mercury –
0.246

0.065 –3.777 <0.001 –
0.374

–
0.118

Uranus –
0.153

0.024 –6.259 <0.001 –
0.201

–
0.105

Neptune –
0.150

0.039 –3.858 <0.001 –
0.226

–
0.074

Slope of reciprocal latency/chosen frame location tested against zero (Incorrect trials)

Jupiter –
0.175

0.027 –6.619 <0.001 –
0.227

–
0.123

Mars –
0.366

0.031 –11.705 <0.001 –
0.428

–
0.305

Saturn –
0.191

0.035 –5.386 0.002 –
0.261

–
0.122

Mercury –
0.075

0.077 –0.975 0.330 –
0.227

0.076

Uranus –
0.140

0.029 –4.816 <0.001 –
0.197

–
0.083

Neptune –
0.209

0.041 –5.148 <0.001 –
0.288

–
0.129
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We also ran a sliding-window average analysis to illustrate how accuracy varies as a function of

the target frames’ location within within-context trials (Figure 2C for monkeys; Figure 2D for

humans). It is clear that humans can make use of the across-clip boundary to facilitate their TOJ.

Interestingly, in paradigms that use discreet images for encoding, the TOJ performance reported in

the human literature is distinct from those making use of continuous streaming movie material. Spe-

cifically, it has been reported that accuracy and response times are worse in TOJ for items are that

separated by a boundary during encoding in the literature (Ezzyat and Davachi, 2014;

Heusser et al., 2018), whereas we show that TOJ performance is better for frames taken from an

Figure 2. Moving average analysis based on reciprocal latency and accuracy for monkeys (left panel) and human participants (right panel). (A)

Reciprocal latency for monkeys as a function of chosen frame location for the average of all animals (upper panel) in the within-context condition, with

the results for six individual monkeys are shown in the lower panel. The relationship between chosen frame location and RT follows a non-linear pattern.

(B) Reciprocal latency for human participants as a function of chosen frame location for the average of all human subjects (upper panel) in the within-

context condition, with results for individual subjects are shown in the lower panel. In panels (A) and (B), the shaded region denotes confidence

intervals. (C) Proportion of correct answers for individual monkeys as a function of target frame location in the within-context condition. (D) Proportion

of correct answers for individual human subjects as a function of target frame location in the within-context condition. In panels (C) and (D),

the horizontal blue lines denote chance-level accuracy. Blue vertical lines in these plots denote the mean boundary location between Clip 1 and Clip 2

(116th frame).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Relationship between temporal similarity and reciprocal latency for within-context trials in (A) monkeys and (B) humans.
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across-context condition than for frames taken from a within-context condition in both

the proportion of correct answers and RTs (Figure 1—figure supplement 1A). This might be

because remembering ‘discrete segment of events’ is facilitated by making use of the contextual or

perceptual cues in the video frames in across-context condition. We will pursue this aspect further in

a latter part of this manuscript, in which we focus on contrasting within-context trials with across-

context trials (results and discussion related to Figure 5).

We also noted that the accuracy might vary along the course of the videos. In order to rule out

the possibility that the putative RT effects are not driven by a trade-off in accuracy, we segmented

each video into four segments (i.e., each clip was segmented into two segments on the basis of tar-

get frame location) and calculated the inverse efficiency score [RT (ms)/percentage correct (%)] for

each segment for each individual. The monkeys showed a mild numeral increase in inverse efficiency

score across the four segments but this trend did not reach statistical significance (Figure 1—figure

supplement 1B, left panel) [F (3, 20) = 0.10, p=0.96], suggesting that the increase in RT towards the

end of the video did not contribute to better accuracy. By contrast, we found that the humans

showed a lower inverse efficiency score for the video parts immediately after a boundary (bars 2 and

3 in Figure 1—figure supplement 1B, right panel) [F (3, 24) = 4.17, p=0.016, a post hoc test shows

significant difference between bar 2 and bar 3). This pattern of boundary effect aligns with the little

‘blip’ in proportion correct that occurs shortly after the beginning of Clip 2 in the humans

(Figure 2B). These characteristics might be related to their ability to detect the boundaries.

Discrepancy with humans: compression of replay is local but not global
It has been shown in the humans that memory replay is not a straightforward recapitulation of the

original experience. Subjects can skip through their memories, on a faster time scale across seg-

ments of a video episode than within-segment, by skipping flexibly over salient elements such as

video boundaries within episodes (Michelmann et al., 2019). We propose two possible models with

respect to whether the compression is global or not over the whole video. If there is a global com-

pression of the video during replay, the time to initiate replay of Clip 2 would be sooner than the

endpoint of replay for Clip 1, as the animal would be able to skip over the whole of Clip 1 to the

beginning of Clip 2 (Global-compression model, Figure 3A, right panel). However, if the monkeys

are not equipped with the ability to skip video segments during the replay process, we would expect

a linear increase of retrieval time with chosen frame location, irrespective of the boundary (Strict for-

ward model, Figure 3A left). We tested statistically whether the time to initiate replay of Clip 2 was

shorter than the duration of Clip 1.

We divided each video into eight equal segments and computed cross-correlations derived from

pairs of averaged condition-wise RTs based on chosen frame locations using a representational simi-

larity analysis (see section ’Representational similarity analysis (RSA)’ in ’Materials and methods’ for

details). The RT for TOJ between each segment of the video increases linearly according to their

position in encoding (Figure 3B, left). We tested these against a hypothetical ‘Strict forward’ model

and found significant correlation with the Strict forward model (r = 0.66, p=0.009), but not with the

Global compression model (r = �0.16, p=0.802) (Figure 3B, left). These statistics also remain signifi-

cant for the Strict forward model when we divided the video into either 10 (p=0.030) or 14 equal

segments (p=0.020). The same patterns are also obtained when considering correct trials (Strict for-

ward model: r = 0.37, p=0.040; Global compression model: r = �0.02, p=0.545) or incorrect trials

(Strict forward model: r = 0.45, p=0.010; Global compression model: r = �0.06, p=0.545) separately.

Contrarily, these correlational patterns with the Strict forward model are not observed in the human

subjects (r = �0.11, p=0.703), but rather we observe a trend favoring the global compression model

instead (r = 0.39, p=0.069) (Figure 3B right). When contrasting the the two models using pairwise

comparisons, the two models are both statistically significant for monkeys (p<0.01) and humans

(p<0.05), confirming the significance of the winning model.

To control for the confound that the two species might be differentially susceptible to the effect

of having different numbers of trials in the experiment, we performed a control analysis that made

use of only the first two repetitions of data to equate the number of trials between the two species.

With these equated subsets of data, we re-calculated the correlation between monkey RT RDM and

the two hypothetical models (i.e., the Strict forward model vs the Global compression model). The

results showed a significant correlation with the Strict forward model (r = 0.56, p=0.049), but not

with the Global compression model (r = �0.10, p=0.643) in the monkeys. With this smaller set of
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data, we also directly compared the correlations between the two models for the monkeys and

found significant differences between them (p<0.05, FDR-corrected). These results replicated the

findings observed when the full set of data were used, suggesting that more numerous exposures to

the same stimuli did not affect the main results.

Factors modulating the model: ‘offsets’ for search and memory-search
RT slope
We defined the reduced RT to initiate replay for Clip 2 as ‘offsets’ in initiating search in Clip 2 by

skipping the non-informative Clip 1 (Figure 3A). With respect to the detailed differences between

the two models, one may wonder whether and how the ‘offsets’ between Clip 1 and Clip 2 might

influence the results. Especially for the Global compression model, changes of this parameter will

cause changes in the RDMs. To address this concern, we simulated an array of RDMs by systemically

varying the offset parameter and produced 11 hypothetical models, ranging from an absolute Global

compression model (model 1, most left in Figure 4A) to a Strict-forward model (model 6, middle in

Figure 4A), and beyond (7th to 11th models, right in Figure 4A). We then tested each individual

monkeys’ data with each of these 11 models. The results show that the Spearman correlation values

Figure 3. Model comparison using representative similarity analysis. (A) Visualization of two candidate models as representational dissimilarity

matrices (RDMs). Patterns of reaction time (rank-transformed values) as a function of chosen frame location for the the two hypothetical models. The

colors of Clip 1 and Clip 2 evolve increasingly with the temporal progression of the video (left), and their respective hypothetical RDMs (right). The

reduction in RT (indicated by an arrow) between Clip 1 and Clip 2 is defined as ‘offset’; the magnitude of such an ‘offset’ is arbitrary (but see further

analysis in Figure 4). (B) We segmented the videos into eight equal segments, and the RDMs show pairwise Euclidean distances between these

different segments for the species group average (monkeys: left; humans: right) and for each individual separately (monkeys: left bottom; humans: right

bottom). RDM correlation tests between behavioral RDMs and two candidate RDMs show that the monkeys replay the footage using a Strict forward

strategy (r = 0.66, p=0.009), and provide little evidence for the Global compression strategy (r = �0.16, p=0.802). Humans show an opposite pattern

from the macaques. In the humans, the Global compression model shows a higher correlation with behavioral RDM (marginally insignificant r = 0.39,

p=0.069) than with the Strict forward model (r = �0.11, p=0.703). Pairwise comparisons show that the two models are both statistically significant for

monkeys (p<0.01) and humans (p<0.05). Error bars indicate the standard errors of the means based on 100 iterations of randomization. P values are

FDR-corrected (***, p<0.001, **, p<0.01, *, p<0.05).
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between the monkey’s data and hypothetical RDMs reach an asymptote of around r = 0.8 as the off-

set parameter tends to zero, and notably, that the correlation values only improve minimally with

increasing offsets (Figure 4B, with each individual’s RT RDM displayed as an inset). These

results suggest that the monkeys have processed the video as a holistic chunk of information rather

than taking advantage of skipping the non-informative first clip when the two probe frames were in

Clip 2. For comparison, we also tested human participant’s data against each of these 11 hypotheti-

cal models and found a completely opposite pattern in the humans (Figure 4C, with

each individual’s RT RDM displayed as an inset). Taken together, we reveal a discrepancy between

human and macaque performance in terms of their ability to compress past (irrelevant) information

during TOJ.

Context changes (event boundaries) increase the rate of rise in decision
information
Thus far, we have focused on how the monkeys retrieve the order of frames when information was

equated within contexts, but how contextual changes might aid TOJ processes remains to be exam-

ined. It was evident that the monkeys retrieved the temporal order of frames with numerally differ-

ent speeds for the three trial-types: across-Clip 1 and Clip 2 vs. within-Clip1 vs. within-Clip2

[F (2, 15) = 2.32, p=0.132 (Figure 1B, right)]. Thus, we then compared the latency distribution of

within-context and across-context conditions. and we hypothesized that a context shift would

change the rate of rise of information accumulation (shift model) without altering the decision thresh-

old (swivel model) within the Linear Approach to Threshold with Ergodic Rate (LATER) model

(Figure 5A). We compared across-context and within-context trials specifically and fitted the two

types of LATER models to each monkey’s data separately [Figure 5B, see section ’LATER (linear

approach to threshold with ergodic rate) modelling’ in ’Materials and methods’], together with a

‘two fits’ model, which supposes that the reaction times for the two conditions are independent of

each other, and a null model, which assumes that there is no effect of manipulation. Using the Bayes-

ian information criterion (BIC) as an index of model comparison, the results consistently indicate that

the shift model is better than the swivel model for all six monkeys [range of DBIC = (14.57, 300.07);

Supplementary file 3, see section ’Model comparison’ in ’Materials and methods’). These results

further indicate that contextual changes do not alter the judgement threshold for decisions

(providing no evidence for a swivel pattern). By contrast, this pattern is not seen in the human partic-

ipants (Figure 5C and Supplementary file 3), suggesting that the two species might not treat the

information given by the event boundary during TOJ in the same manner. Within a drift diffusion

model framework, the results suggest that monkeys accumulate information for memory decisions at

a faster rate when the frames were extracted from two different clips than when the frames were

extracted from the same-context clip.

Confirmatory GLMs and control analyses for the putative patterns
To verify whether the effects are attributed to basic stimulus features such as the perceptual differ-

ences inherent in the across-context condition. We then generated several generalized linear models

to quantify the effect sizes of several principal variables (see section ’Generalized linear models

(GLM)’ in ’Materials and methods’). In the within-context condition, given that the monkeys would

replay their experience to judge the relative temporal order of probe frames (‘replay hypothesis’),

we used the temporal characteristics of probe frames, as represented by chosen frame location (or

temporal similarity, which is essentially an inverse of frame location) as the independent variables. In

the across-context condition, we included a perceptual similarity measure, which was based on fea-

ture points extracted by the SURF algorithm (SURF similarity, see Figure 6—figure supplement 1C),

in the GLM to reflect the extent to which the monkeys were able to capitalize on using contextual

boundaries for TOJ judgment. In addition, we also entered a number of independent variables as

regressors: a binary regressor indicating whether the video includes primate content or not, a binary

regressor indicating that a video is played forward or backward, the five repetitions (or two repeti-

tions for humans) of the video-trials, physical location of the selected probe (left or right), time

elapsed within a session, chosen frame location, temporal similarity, perceptual similarity (SURF),

temporal distance, and response of the subjects (correct/incorrect).
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Figure 4. The Strict forward model provides a better fit to the RT data in monkeys but not in humans. (A) ‘Offsets’ are defined as the magnitude of

reduced RT when the frames were in Clip 2. 11 hypothetical models with their reaction time patterns (top) and RDMs (bottom). We systemically varied

the ‘offset’ parameter while keeping a constant slope. These models progressively range from an absolute Global compression model (model 1, most

left) to a Strict-forward model (model 6, middle), and beyond (7th to 11th models, right). The numerals below the RDMs denote the magnitude of the
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The within-context GLM shows that monkeys’ RT was indeed significantly faster when the probe

frame was located earlier in the video, p<0.001 (or in equivalent terms, when two frames were tem-

porally closer, p=0.004), confirming our main finding that the monkeys might have adopted a for-

ward scanning strategy for information retrieval (Figure 6A, left). By contrast, the across-context

GLM shows that there was no significant effect of the chosen frame location on RT. Rather, the mon-

keys retrieve their memories significantly faster for probe frames that are contextually (or perceptu-

ally) distinct, p=0.004 (Figure 6A , right). Human results are shown in Figure 6B for comparison.

Finally, considering that the monkeys performed a larger number of trials than the human partici-

pants (5000 vs. 2000 trials), we plotted the accuracy data for each testing day for each monkey (and

for humans too, Figure 7) and observed no apparent increase in performance over the course of the

50 testing days. This absence of performance change could also be due to the extensive training

that the monkeys had received prior to this experiment (~21,150 trials in total for each monkey

across 141 sessions on average, see Table 2). We therefore deem the main effects reported here as

unlikely to be attributable to behavioral or strategic changes over the course of main experiment.

Discussion
In light of recent reports on the neural correlates underlying how humans and rodents replay their

past experiences (Liu et al., 2019; Michelmann et al., 2019; Panoz-Brown et al., 2018;

Davidson et al., 2009), here, we demonstrate parallel behavioral findings in macaque monkeys

looking at dynamic cinematic material. Previous reports of macaques succeeding in TOJ indicated

their ability to remember the order of events (Templer and Hampton, 2013; Martin-Ordas et al.,

2010; Ninokura et al., 2003) and even to monitor the quality of representations of temporal rela-

tions among item images meta-cognitively (Templer et al., 2018). For example, Orlov et al., 2000

suggested that monkeys can categorize stimuli by their ordinal number to aid recall of order, and

Templer and Hampton, 2013 showed that monkeys retrieve the temporal order information on the

basis of the order of events rather than elapsed time.

One possible common mechanism underlying these performances is that monkeys use a forward

search to identify targets in memory representation (Gower, 1992). Taking advantage of the latency

data obtained during TOJ on naturalistic materials, we provide new behavioral evidence in support

of the hypothesis proposed by Gower, 1992 that the monkeys can replay their memory in a serial

forward manner. Our analysis further clarifies that this replay process is conducted in a time-com-

pressed manner. Notwithstanding task differences, both humans and macaques execute retrieval

with forward replay with a comparable compression factor (factors of ~11 in macaques vs. ~13 in

humans, Michelmann et al., 2019) (but see also Wimmer et al., 2019). Another cross-species simi-

larity rests on the observation that the RT patterns are independent of retrieval success. We have

previously showed in analogous TOJ paradigms in humans that TOJ task-specific BOLD activation

and behavioral RT patterns are independent of retrieval accuracy (Kwok et al., 2012; Kwok and

Macaluso, 2015a). We interpreted these effects as process-based rather than content-based. At

present, the latency results probably also point towards some ‘search’ or replay processes, and any

ultimate incorrect responses are thus likely to be caused by memory noises injected during encoding

and/or during delay maintenance.

Despite the cross-species similarity, our revelation of a critical discrepancy between humans and

macaques carries an important theoretical implication: humans can do both local and global com-

pression, whereas monkeys are not able to attain global compression. The implication is that mental

time travel is not all-or-none. There could be multiple layers underpinning the concept of mental

time travel, which entail the ability to relive the past (Suddendorf et al., 2009; Tulving, 1985) and

Figure 4 continued

respective offsets. (B) Each monkey’s data were tested against each of these 11 hypothetical models. The Spearman correlations increase as a function

of offset magnitude between Clip 1 and Clip 2 until reaching an asymptote when the offset value is around zero, which corresponds to the Strict

forward model (model 6 in panel (A); see also Figure 3). Individuals’ RT RDMs are shown in insets. (C) Each human participant’s data were also tested

against each of these 11 hypothetical models. The Spearman correlations decrease as a function of offset magnitude between Clip 1 and Clip 2 until

reaching an asymptote when the offset value is around zero. This analysis confirms the hypothetical discrepancy between the two species (see also

Figure 3B).
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Figure 5. LATER model fitting of RT in across-context and within-context conditions for both species. (A) Cartoon of the LATER model cartoon

illustrating that a decision signal triggered by a stimulus rises from its start level, at a rate of information accumulation r, to the threshold. Once it

reaches the threshold, a decision is initiated. The rate of rise r varies from trial to trial, obeying the Gaussian distribution (variation denoted as green

shaded area). (B) Contextual change effect on the distribution of response latency for the monkeys; data from Monkey ‘Mars’ was chosen for larger

Figure 5 continued on next page
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skipping over unimportant information (Michelmann et al., 2019). The latter aspect allows humans

to recall our memories flexibly far into our past and suggest powerful computational efficiencies that

may facilitate memory storage and recall. By contrast, we did not find any evidence in the macaques

of an ability to make use of salient boundary cues to skip unimportant details. It thus remains

unknown how far back in time monkeys can replay their memories. It has been shown recently that

humans can spontaneously replay experience on the basis of learned structures, with fast structural

generalization to new experiences facilitated by representing structural information in a format that

is independent of its sensory consequences (Liu et al., 2019). The lack of global compression in the

monkeys of their video experience implies that the monkeys might not be able to use factorized rep-

resentations to allow components to be recombined in more ways than were experienced

(Behrens et al., 2018). However, by establishing that neither the number of intervening frames nor

the passage of time per se determines the RT pattern (probably a mixed effect resultant from a com-

bination of both), we ruled out order or positional memory as the underlying mechanism supporting

TOJ in this task.

Although we have argued for the presence of replay-like patterns in the monkey during TOJ, we

are aware that replay is a neural phenomenon supported by the activity of individual neurons and

that implicates the offline reactivation of sequences of hippocampal place cells that reflect past and

future trajectories (Pfeiffer and Foster, 2013; Jadhav et al., 2012; Ólafsdóttir et al., 2018). On

the basis of the behavioral data presented here, the question of where the putative replay may be

occurring anatomically is important for the broader field. On the one hand, in rodent research,

replay has been linked to sharp wave-ripples in the hippocampal formation (Lee and Wilson, 2002;

Foster and Wilson, 2006). On the other hand, recent MEG studies on humans’ replay have impli-

cated several cortical areas such as the occipito-parietal cortex (Michelmann et al., 2016), the

vmPFC (Liu et al., 2019), and the visual cortex (Wimmer et al., 2019), in addition to the MTL includ-

ing the hippocampus (Liu et al., 2019; Wimmer et al., 2019). These observations, made under

simultaneous whole-brain recordings in humans, are in line with the idea that replay may be coordi-

nated between the hippocampus and neocortical areas (Ji and Wilson, 2007).

A further caveat is that although most of the rodents studies on replay focus on spontaneous

replay patterns at rest (Liu et al., 2019), during sleep (Lee and Wilson, 2002; Louie and Wilson,

2001) or during a task-free state (Foster and Wilson, 2006; Karlsson and Frank, 2009), our mon-

keys perform their replay-like recall of the videos as an effortful operation to solve a TOJ task. This is

more akin to studies using stimuli embedded in episodes (Wimmer et al., 2019) or short video-epi-

sodes (Michelmann et al., 2016) for their ecological validity. Our combined results thus constitute a

novel connection between various kinds of replay-like behaviors that are shared between rodents

and humans, and provide a primate model for anatomical investigation. This cognitive discrepancy

should be further elucidated using electrophysiological methods probing into the MTL

(Davidson et al., 2009; Foster and Wilson, 2006; Karlsson and Frank, 2009; Diba and Buzsáki,

2007) and the neocortices (Naya et al., 2017).

We observed one further interesting phenomenon here, which is that the monkeys are able to

detect contextual changes to facilitate TOJ. We show that the expedited TOJ in across-context con-

dition was facilitated by contextual details, which in turn results in an increased rate of rise of signal

towards memory decision in a drift-diffusion process. Humans studies show that contextual changes

lead to segmentation of ongoing information (Magliano et al., 2001; Hard et al., 2006). Our results

provide evidence consistent with event segmentation in the macaque monkeys and imply that these

monkeys might be capable of parsing the footage using contextual information, akin to what has

been shown in humans (DuBrow and Davachi, 2013; Sols et al., 2017; Ezzyat and Davachi, 2011;

Kwok and Macaluso, 2015b) and rodents (Panoz-Brown et al., 2016).

Memory replay is an elaborate mental process and our demonstration of a time-compressed, for-

ward replay-like pattern in the macaque monkeys, together with their primordial rigidity in com-

pressing the experienced past, provides promise for mapping the evolution of episodic memory in

our lineage.

Figure 5 continued

display. (C) Contextual change effect on the distribution of response latency for humans; data from Subject 1 was chosen for larger display. The red and

blue dashed lines show the best fits (maximum likelihood) of across-context trials and within-context trials, respectively (see also Supplementary file 3).
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Figure 6. Full GLM analysis including a number of variables that might affect reciprocal latency separately for within-context and across-context

conditions. (A) Monkey data. (B) Human data. We included ten regressors, namely, a binary regressor indicating whether the video category is primate

or non-primate (video category), a binary regressor indicating that a video is played forward or backward (play order), the repeated exposure of the trial

(Monkey: 1–5; Human: 1–2) (exposure), the physical location of the selected probe on screen (left or right) (touch side), time elapsed within a session

(elapsed time; to rule out fatigue or attentional confounds), chosen frame location, temporal similarity, SURF similarity as a perceptual similarity

measure (perceptual similarity), temporal distance between two probe frames, and response of subjects (correct/incorrect). In the monkeys, the results

confirm that chosen frame location is the most significant regressor in within-context trials, whereas perceptual similarity is the most significant

regressor in across-context trials. ***, p<0.001, **, p<0.01, *, p<0.05.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure 6 continued on next page
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Materials and methods

Subjects
Macaque monkeys
Six male rhesus macaques (Macaca mulatta) (5.49 ± 0.5 kg) with a mean age of 3.5 years at the start

of testing participated in this study. They were initially housed in a group of 6 in a specially built spa-

cious enclosure (max capacity = 12–16 adults) with enrichment elements such as a swing and climb-

ing structures present until the study began. The monkeys were then housed in pairs during

the experimentation period according to their social hierarchy and temperament. They were fed

twice a day with portions of 180 g monkey chow and pieces of fruits (8:30am/4:00pm). Water was

available ad libitum except on experimental days. They were routinely offered treats such as pea-

nuts, raisins and various kinds of seeds in their home cage for forage purpose. The monkeys were

procured from a nationally accredited colony located in the Beijing outskirts, where the monkeys

were bred and reared. The animals were thus ecologically naive to the natural wilderness and should

not have had any previous encounter with other creatures except humans and their companion. The

room in which they are housed is operated with an automated 12:12 (7am/7pm) light-dark cycle and

kept within temperate around 18–23˚C and humidity of 60–80%.

Human subjects
Seven participants (mean age = 19.57 ± 1.13, 6 female) took part in the experiment. The participants

were recruited from the undergraduate population in East China Normal University. The participants

provided informed consent and were compensated 400 RMB for their time.

The experimental protocol was approved by the Institutional Animal Care and Use Committee

(permission code: M020150902 and M020150902-2018) and the University Committee on Human

Research Protection (permission code: HR 023–2017) at East China Normal University. All experi-

mental protocols and animal welfare adhered with the ‘NIH Guidelines for the Care and Use of Labo-

ratory Animals’.

Training history and task performance
There were five stages of training on the TOJ task and the numbers of days per monkey are

reported in Table 2. With these extended periods of training, the monkeys’ performances were

unlikely to change over the course of the main experiment (see also Figure 7).

Apparatus and testing cubicle
Macaque monkeys
The testing was conducted in an automated test apparatus controlled by two Windows computers

(OptiPlex 3020, Dell). The subject sat, head-unrestrained, in a wheeled, specially made Plexiglas

monkey chair (29.4 cm � 30.8 cm � 55 cm) fixed in position in front of a 17-inch infrared touch-sensi-

tive screen (An-210W02CM, Shenzhen Anmite Technology Co., Ltd, China) with a refresh rate of 60

Hz. The distance between the subject’s head and the screen was kept at ~20 cm. The touch-sensitive

screen was mounted firmly on a custom-made metal frame (18.5 cm � 53.2 cm) on a large platform

(100 cm � 150 cm � 76 cm). Water reward delivery was controlled by an automated water-delivery

rewarding system (5-RLD-D1, Crist Instrument Co., Inc, U.S.) and each delivery was accompanied by

an audible click. An infrared camera and video recording system (EZVIZ-C2C, Hangzhou Ezviz Net-

work Co., Ltd, China) allowed the subject to be monitored while it was engaged in the task. The

entire apparatus was housed in a sound-proof experimental cubicle that was dark apart from the

background illumination from the touch screen.

Figure 6 continued

Figure supplement 1. GLM results on the effects of image similarity measures on reciprocal latency for within-context and across-context conditions

for (A) the monkeys and (B) humans, and (C) an example of SURF similarity.
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Figure 7. Sessional accuracy data expressed as proportion correct for each individual. (A) Monkey data. (B) Human data. No obvious increase in

performance was observed over the course of testing days in the experiment for either monkeys or humans.

Table 2. Number of days accrued in each training stage.

When we trained the two additional monkeys (Uranus and Neptune), we made them skip the 4th and

5th stages entirely. The performance patterns of these two monkeys were not different from

those of the initial four.

Monkeys Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Jupiter 12 39 16 65 51

Mars 29 7 15 48 42

Saturn 25 42 31 64 95

Mercury 13 38 17 61 49

Uranus 14 17 11 - -

Neptune 13 21 11 - -
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Human subjects
We used the same model of computers and touch-sensitive screens for the human participants. The

human subjects sat ~30 cm in front of another identical 17-inch infrared touch-sensitive screen, with

stimuli presented with the same computer used in the monkeys’ experiment.

Source of video materials and preparation
A collection of documentary films on wild animals was gathered from YouTube. The films were Mon-

key Kingdom (Disney), Monkey Planet (Episode 1–3; BBC), Planet Earth (Episode 1–11; BBC), Life

(Episode 1–10; BBC), and Snow Monkey (PBS Nature). In total, 28 hr of footage was gathered. We

applied Video Studio X8 (Core Corporation) to parse the footage into smaller segments. Experi-

menters then applied the following criteria to edit out ~2500 unique clips manually: 1) the clip must

contain a continuous flow of depiction of events (i.e., no scene transition); 2) at least one living crea-

ture must be included; 3a) at least one of the animals contained must be in obvious motion; 3b) the

trajectories of these motions must be unidirectional (i.e., no back and forth motion of the same sub-

ject); 4) clips with snakes were discarded. From this library, we then selected 2000 clips (all of 4 s – 6

s) for the final test, and a small number of additional clips were also prepared for the training stages.

Each of the monkeys was assigned with a pseudo-randomized remix of a unique 1000 video-trials

set from the 2000-video library, thus eliminating video idiosyncrasy associated with any experimental

conditions. For each individual monkey, the videos assigned to be in an experimental condition were

not used/shown in another condition, so that a particular monkey would only view that video repeat-

edly under the same condition.

Task and experimental procedure
We combined naturalistic material with a TOJ paradigm that is widely used in episodic memory

research (Templer and Hampton, 2013; Manns et al., 2007; Kwok and Macaluso, 2015c). In each

trial, the monkey initiated a trial by pressing a colored rectangle in the center of the screen (0.15 ml

water). An 8–12 s video (consisting of two 4–6 s clips) was then presented (0.15 ml water), and fol-

lowing a 2 s retention delay, two frames extracted from the video were displayed bilaterally on the

screen for TOJ. The monkeys were trained to choose the frame that was shown earlier in the video

(see Video 1). A touch to the target frame resulted in 1.5 ml water as reward, the incorrect frame

was removed, and the target frame remained alone for 5 s as positive feedback. A touch to the

incorrect frame removed both frames from the screen and blanked the screen for 20 s without water

delivery. As the monkeys could self-start the trials, we did not set an explicit inter-trial interval. Cor-

rection trial procedures were not used in the main test.

We collected 50 daily sessions of data. Each session contained 100 trials, giving us a 5000 trials

per monkey. The 5000 trials contained a break-down of four factors: Boundary (Within vs. Across),

Play Order (Normal vs. Reverse), Temporal distance (TD, 25 levels), and Exposure (R1–R5), giving

out a 2 * 2 * 25 * 5 within-subject design. The two frames for TOJ could be extracted from the same

clip (Within) or from distinct clips (Across). TD was an ordinal variable, with 25 levels ranging

between a minimum of 1000 ms (equivalent to 25 frames) and a maximum of 3880 ms (equivalent of

to frames). Each TD level increased progressively with three frames in each step. The ten lists con-

tained five lists of primate animals and five lists of non-primate animals (Category: Primate/Non-Pri-

mate). The six monkeys were counter-balanced in their order of receiving the two kinds of material:

three monkeys (Jupiter, Mars, and Saturn) were tested first on Non-Primate lists, whereas the other

three (Mercury, Neptune, and Uranus) were tested first on Primate lists. The whole experiment

lasted for 68 days. There were three blocks of reset (3 days, 9 days and 6 days) in-between testing

days. The task was programmed in PsychoPy2 implemented in Python.

The same experimental design was adopted by the human participants. They re-used the 6

unique video-trials/list sets and TOJ frames (one unique set per monkey) correspondingly for the

human subjects (the extra subject 7 re-used set 1). The only critical difference was that human partic-

ipants performed only two exposures (R1–R2) rather than five. Identically, each session contained

100 trials, and with 20 daily sessions of testing, we acquired 2000 trials per participant for analysis.
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Data analysis: modelling, temporal and perceptual similarity, and model
comparison
Trials with RT longer than 10 s (1.45%) or shorter than 0.7 s (2.47%) were excluded from the analy-

ses. Both correct and incorrect trials were entered for all analyses. For Neptune, data from one day

of primate list 5 (exposure 4) and from two days of primate lists 4 and 5 (exposure 5) were lost

because of machine breakdown and thus only 4700 trials were included for Neptune.

Representational similarity analysis (RSA)
To create RDMs for the representational pattern of response time, we evenly divided each video

into eight segments on the basis of chosen frame location and averaged the response times within

each segment for each monkey individually. For each matrix, we then computed the Euclidean dis-

tance of average response time for each pair of the segments. In order to show the relative distance

among all pairs of segments intuitionally, we further transformed the matrix by replacing each ele-

ment with the rank number in the distribution of all the elements, and linearly scaled into [0,1]. To

compare similarity between RT patterns and the candidate models, we computed Spearman correla-

tion between the model and group averaged RT RDMs with 100 randomized iterations by bootstrap-

ping. We then used two-sided Wilcoxon signed-rank test to test the null hypothesis that the

correlation between data RDM and the two hypothetical models are equal. The statistical threshold

was set at p<0.05 (FDR corrected).

LATER (linear approach to threshold with ergodic rate) modelling
The observations that the brain needs more time than that requires for nerves to transport informa-

tion and that trial-by-trial RTs vary considerably have stimulated researchers to make use of distribu-

tion of RT to examine mental processes (Magliano et al., 2001). Latency, as an indicator of decision

processes, provides a source of insight into the underlying decision mechanisms (Louie and Wilson,

2001; Karlsson and Frank, 2009; Diba and Buzsáki, 2007). The Linear Approach to Threshold with

Ergodic Rate (LATER) model is a widely used model that taps into these processes (Noorani and

Carpenter, 2016). The LATER model stipulates that the winner signals that reach threshold faster

would trigger the decision, resulting in shorter latency. Accordingly, changing the rate of rise would

cause the line to ‘shift’ along the abscissa without changing its slope. By contrast, lines plotted by

latency distribution would ‘swivel’ around an intercept when the threshold changes (Reddi and Car-

penter, 2000; Figure 5A). To explore the underlying mechanisms of different experiment condi-

tions, we plotted the reciprocal of RT (i.e., a multiplicative inverse of RT, 1/RT) as a function of their

z-scores, thus making the distributions follow a Gaussian distribution (Noorani and Carpenter,

2011). Hence, we fitted the main component for each condition. The main component is a ramp to

the threshold with rate of rise r. The distance between start level S0 and threshold ST is defined as �,

and the rate of rise r follows a Gaussian distribution of mean, �, and standard deviation, s1.

For model comparison, we fitted four different models to the data. The ‘null’ model fits

the RT from within-context vs. across-context conditions with the same parameters, implying no

effect of manipulation. The ‘two fits’ model set all the parameters to be free, which supposes

that the RTs of the two conditions are independent of each other. The ‘Shift’ model only allows the

slope of main component � to change according to different conditions on the assumption that the

manipulation will change the rate of rise. The ‘Swivel’ model only allows � to change according to

different conditions on the assumption that the subject sets different thresholds for different

conditions.

Generalized linear models (GLM)
We ran GLM to compare the effect sizes of independent variables on the dependent variable. The

mean (�) of the outcome distribution Y depends on the independent variables X, according to the

following formula:

E Yð Þ ¼ �¼ g�1 Xbð Þ

where Y is a distribution of outcomes, b is an unknown parameter to be estimated, and g is a link

function (Gaussian function). The dependent variable (Y) is reciprocal latency, and the independent

variables are as follows: a binary regressor indicating whether the video includes primate content or
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not, a binary regressor indicating that a video is played forward or backward, the five repetitions (or

two repetitions for humans) of the video-trials, physical location of the selected probe (left or right),

time elapsed within session, chosen frame location, temporal similarity, perceptual similarity (SURF),

temporal distance, and the response of the subjects (correct/incorrect).

Model comparison
To obtain the best fit among these models, we used Bayesian Information Criterion (BIC) as a crite-

rion for model selection among these four models. The formula for BIC is: BIC = �2(logL) + num-

Param* log(numObs), where L is the maximum likelihood for the model, and numParam and

numObs represent the number of free parameters and the number of samples, respectively. We

computed DBIC as the strength of the evidence, which indicates the extent to which the selected

model is superior to other models. Different ranges of DBIC show different level of evidence: a value

of DBIC larger than two shows positive evidence, and a value of DBIC larger than six indicates strong

evidence (Kass and Raftery, 1995).

Temporal similarity
For each trial, we calculated temporal similarity (TS) as an index of the discriminability of probe

frames. Temporal similarity between two probe frames extracted from the video is calculated by the

ratio of the two frames’ temporal separation between their occurrence in the video and the time of

testing. The temporal similarity of any two memory traces can be calculated as: TS = delay2/delay1,

where delay2 < delay1 (Brown et al., 2007).

Perceptual similarity
We made use of three main parameters to measure the perceptual dissimilarity between TOJ frames

for the GLMs. First, RGB-histogram is computed as the Sum-of Square-Difference (SSD) error

between image pairs for the three color channels (RGB). For each color channel, the intensity values

range from 0 to 255 (i.e., 256 bins), and we computed the total number of pixels at each intensity

value and then the SSD for all 256 bins for each image pair. The smaller the value of the SSD, the

more similar the two images (image pair) were. Second, for HOG similarity, we constructed a histo-

gram of directions of gradient over fixed-sized grids across the entire image. A vector is generated

from each grid cell and correlated with HOG features from another image. Third, Speeded Up

Robust Features (SURF) (Bay et al., 2008) uses Box Filter using integral images (Viola and Jones,

2004) to approximate Laplacian-of-Gaussian (LoG). Wavelet responses in both horizontal and vertical

directions are used to assign orientation in SURF. SURF consists of fixing a reproducible orientation

that is based on information from a circular region around the interest point. A descriptor vector is

generated around the interest point using the integral image, which matches with descriptor vectors

extracted from a compared image. SURF uses various scales and different orientation to identify

unique features or key-points in an image. If the same feature exits in another image that is

smaller or larger in size or even at a different orientation, SURF identifies that feature (or key-point)

as corresponding or similar in both images (Bay et al., 2008; see Figure 6—figure supplement 1C

for illustration). The Euclidean distance is used to measure the similarity between two descriptor vec-

tors from images.
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