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Abstract Single-cell RNA sequencing provides powerful insight into the factors that determine

each cell’s unique identity. Previous studies led to the surprising observation that alternative

splicing among single cells is highly variable and follows a bimodal pattern: a given cell consistently

produces either one or the other isoform for a particular splicing choice, with few cells producing

both isoforms. Here, we show that this pattern arises almost entirely from technical limitations. We

analyze alternative splicing in human and mouse single-cell RNA-seq datasets, and model them with

a probabilistic simulator. Our simulations show that low gene expression and low capture efficiency

distort the observed distribution of isoforms. This gives the appearance of binary splicing

outcomes, even when the underlying reality is consistent with more than one isoform per cell. We

show that accounting for the true amount of information recovered can produce biologically

meaningful measurements of splicing in single cells.

Introduction
Single-cell RNA sequencing (scRNA-seq) has provided impressive temporal resolution to our under-

standing of continuous biological processes such as cell differentiation (Wagner et al., 2016;

Tanay and Regev, 2017). It has uncovered hidden heterogeneity among cells and exposed the fac-

tors that determine each cell’s unique identity. One broad source of transcriptomic diversity is alter-

native splicing, and several studies have uncovered compelling evidence of changes in alternative

splicing among single cells during differentiation (Welch et al., 2016; Qiu et al., 2017; Song et al.,

2017; Huang and Sanguinetti, 2017).

A particularly surprising conclusion of several scRNA-seq studies was the observation that splicing

was often bimodal among supposedly homogeneous cells (Shalek et al., 2013; Marinov et al.,

2014; Song et al., 2017; Westoby et al., 2018). Individual cells had binary outcomes in splicing:

some cells always spliced in a particular cassette exon, and some cells never spliced in the exon, but

few cells showed truly intermediate inclusion within one cell. This unexpected result contrasted with

previous single molecule imaging studies of several alternative exons that showed that cell-to-cell

variability is minimized and tightly regulated by the splicing machinery in single cells (Waks et al.,

2011; Maamar et al., 2013). Curiosity about this result led to investigations of mechanisms that

might be responsible for stochastic splicing variability among apparently homogeneous cells, such

as variation in DNA methylation (Linker et al., 2019).
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We propose that the observed bimodality does not generally reflect a binary nature of splicing

biology, but rather, that it exposes a technical limitation of the scRNA-seq data that have been col-

lected so far. Because alternative isoforms of a gene share much of the same sequence, only the few

RNA-seq reads mapping to the exact alternative splice junctions, or to the alternative exon itself,

reveal its alternative splicing. When combined with the low mRNA capture efficiency of scRNA-seq

and the PCR amplification of small amounts of starting material into a full-length sequencing library,

these circumstances create the risk of bottlenecks that lose all but a few individual mRNAs of most

genes in each cell.

The limitations of scRNA-seq are a known obstacle to studying splicing in single cells (Arzalluz-

Luque and Conesa, 2018). Similar concerns have arisen with the use of scRNA-seq to infer allelic

expression; a careful analysis showed that stochastic patterns resulted from technical noise

(Kim et al., 2015). A recent study observed and modeled the high dropout rate of individual iso-

forms in scRNA-seq and advised that scRNA-seq is fundamentally unsuitable for measuring changes

in alternative splicing (Westoby et al., 2020). Others have implemented workarounds, for example

using sequence features to predict splicing outcomes in lieu of sufficient sequencing coverage

(Huang and Sanguinetti, 2017), or attempting to identify excess variance beyond technical noise

(Welch et al., 2016; Linker et al., 2019). These studies have identified true examples of differential

splicing in single cells, but they fundamentally do not explain how scRNA-seq limitations have

caused qualitative, not just quantitative, distortions in our understanding of alternative splicing.

Here, we show that scRNA-seq splicing data are consistent with a simple model (Figure 1). Con-

sider a particular cassette exon whose true pattern of exclusion follows a unimodal distribution of

isoform ratios across cells (i.e. most cells express both isoforms, with a ratio revolving around the

same mean). This distribution can be distorted by extreme information loss during library prepara-

tion and sequencing, creating the illusion that individual cells only produce one isoform or the other.

Our simulations make it clear that the reliability of splicing measurements is a function of the initial

amount of mRNA, the efficiency of its recovery, the underlying splicing rate, and further distortions

from PCR amplification of cDNA. These effects should be considered when interpreting previous

studies that used qualitative changes in the observed distribution of the splicing rates (Song et al.,

2017) or changes in their variance (Linker et al., 2019) as evidence for regulation of alternative splic-

ing. Considering the true amount of information available for a cassette exon can allow for accurate

observations of alternative splicing. Using a data normalization and filtering method to identify cas-

sette exons with sufficient information, we are able to draw biologically relevant conclusions about

alternative splicing in single cells.
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Figure 1. Bimodal vs unimodal models of cassette exon splicing. In the bimodal model, some cells consistently

splice in the exon, while others consistently skip it. After mRNA capture and sequencing, observations of 	 are

almost exclusively binary. In the unimodal model, individual cells express some mRNAs that splice in the cassette

exon and some that skip it. Low mRNA capture dramatically reduces the number of cells in which both isoforms

are observed, artificially inflating binary 	 values.

Buen Abad Najar et al. eLife 2020;9:e54603. DOI: https://doi.org/10.7554/eLife.54603 2 of 24

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.54603


Results
Our interest in splicing regulation led us to examine alternative splicing in several single cell differen-

tiation datasets from mice and humans that were generated with methods that recover sequence

from along the full length of mRNAs. To investigate the reported high variability of splicing between

cells more closely, we began by examining the splicing of cassette exons in a high-coverage mouse

scRNA-seq dataset (Chen et al., 2016), estimating their percent spliced-in as the fraction of splice

junction reads that show exon inclusion (out of all reads that cover the junction). We use 	̂ to denote

these estimated rates, while 	 denotes the actual rate as it is in the cell. For clarity, we define a sin-

gle 	̂ observation (which pertains to a specific cassette exon in an individual cell) as binary if it is

close to 0 or 1 (i.e. the respective cell tends to express transcripts that either include the exon or

exclude it, but not both). We then describe the distribution of an exon’s 	̂ across cells as bimodal

when its individual values are predominantly binary, where some cells have a 	̂ close to 1 (most

observed transcripts include the exon) and others have 	̂ close to 0 (most observed transcripts do

not include the exon). Strikingly, when we inspected several exons, we saw that they had more

binary outcomes in cells with fewer reads covering their splice junctions, while cells with more reads

were more likely to show non-binary 	̂ values (Figure 2a). We realized that this effect of coverage

may reflect a non-binary reality, since even if both isoforms are expressed in a certain cell, the likeli-

hood of observing both isoforms is reduced as the number of captured mRNAs decreases. In con-

trast, if the underlying distribution were indeed bimodal with binary modes, as previously proposed

(Shalek et al., 2013; Marinov et al., 2014; Song et al., 2017), then the read coverage would have

little effect on the proportion of binary 	̂ observations across cells.

To further explore this phenomenon, we extended our analysis to the full scRNA-seq datasets. In

all cases, we found a strong effect of coverage on the observed binary 	̂ in exons with intermediate

splicing (average 	̂ between 0.2 and 0.8). We consistently found that exons with low junction read

coverage had more binary 	̂ values and bimodal 	̂ distributions (Figure 2b,c; Figure 2—figure sup-

plement 1a,b). We found that the association between binary values and read coverage was not

observed in exons that are binary but not bimodal (i.e. nearly constitutively excluded or included

exons, with average 	̂ close to 0 or 1; Figure 2c). Taken together, these observations suggest that

the abundance of binary observations in exon inclusion patterns may reflect a distortion of an under-

lying unimodal splicing distribution (i.e. when cells in fact express both isoforms), rather than a truly

bimodal splicing pattern in the analyzed cells.

We then asked if the association of binary splicing outcomes with low read coverage could be

due to some biological consequence of low transcription, or if it was a technical consequence of

low sequencing coverage. We found that, among the cells in a single experiment, the cells with an

overall higher number of splice junction reads also tended to have a smaller fraction of exons with

binary values (Figure 2d, Figure 2—figure supplement 1b), suggesting an influence of technical

coverage rather than transcription level. We further considered the effect of biological variations in

transcription. Transcription at a single locus occurs in intermittent bursts of RNA synthesis (Raj and

van Oudenaarden, 2008), suggesting a possible effect of size and frequency of transcriptional

bursts on binary splicing. Using transcriptional bursting data from Larsson et al., 2019, we found

that genes with either high burst frequency or large bursts did exhibit fewer binary splicing observa-

tions (Figure 2—figure supplement 1c), but a linear regression showed that burst frequency and

size did not contribute to binary observations beyond the effect of read coverage (Figure 2—figure

supplement 1d). This suggests that transcriptional bursting contributes to splicing variability only by

determining the overall abundance of an mRNA, consistent with single-molecule fluorescence obser-

vations (Waks et al., 2011).

Simulations of RNA sequencing reveal technical sources of distortion of
splicing estimates
A simple probabilistic exercise shows the potential loss of splicing information during sequencing.

Single cell RNA-seq experiments that capture full-length transcripts have an estimated capture effi-

ciency of only ~10%, due to RNA degradation and inefficient reverse transcription (Marinov et al.,

2014; Grün et al., 2014; Ziegenhain et al., 2017; Qiu et al., 2017). For instance, a gene that

expresses 20 mRNA molecules in a cell might only have two mRNAs recovered, and if that gene is
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alternatively spliced with a true splicing rate 	 of 0.5, there is approximately a 50% chance that

those few recovered mRNAs will only represent one of the two isoforms that were originally present

in the cell (Figure 3—figure supplement 1a,b). As many genes are expressed at just a few RNA

molecules per cell, low recovery might affect many alternative splicing events (Shapiro et al., 2013;

Zenklusen et al., 2008). Furthermore, while the empirically observed 	̂ provides a maximum likeli-

hood estimate for the true splicing rate, the uncertainty of this estimate (i.e. the range of alternative

values with a nearly similar likelihood) decreases substantially with the number of observed mole-

cules (Figure 3—figure supplement 1c and Materials and methods). As a result, the probability that

the observed 	̂ is close to the true underlying 	 increases when more mRNA molecules are cap-

tured (Figure 3—figure supplement 1d).
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Figure 2. Splice junction read coverage is correlated with unimodality of splicing distributions. (a) Comparison of splice junction read coverage and

observed 	̂ for three cassette exons in the Chen dataset, with low (Cadm1 exon 8; chr9: 47829377–47829409), medium (Thyn1 exon 6, chr9: 27006801–

27006951), and high coverage (Rbm39 exon 3; chr2: 156178880–156178952). Each dot represents the 	̂ of that exon in one cell. (b) 	̂ distribution of the

300 highest coverage cassette exons with intermediate splicing (average 	̂ between 0.2 and 0.8) in each of the six analyzed datasets. Each row in the

heatmap shows the distribution of 	̂ for one exon across all cells. (c) Relationship between the average read coverage and proportion of binary

observations for each cassette exon in the Chen dataset. (d) Correlation between the total number of splice junction reads captured in each cell, and

proportion of cassette exons with intermediate splicing that show binary 	̂ in that cell.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Junction read coverage determines the proportion of binary observations in all analyzed datasets.
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Our theoretical reasoning above relied on a simple model where the number of observed mRNA

molecules (rather than number of reads) is known and the only distorting factor is a limited capture

efficiency. In practice, both of these assumptions are challenged due to additional factors, such as

PCR amplification and variability in the capture efficiency across cells. To investigate the pertinent

effects on 	̂ distributions in this more complex setting, we designed a probabilistic simulator of

alternative splicing in single cells (Figure 3—figure supplement 2). The model has two main compo-

nents: we begin by simulating the underlying molecular content of each cell, by drawing gene

expression levels and cassette exon splicing rates from a probabilistic model of cell state. We then

simulate the technical process of extracting data from each cell using single-cell RNA sequencing

with full transcript coverage. This part accounts for variability in capture rates, and the effects of

PCR amplification, fragmentation and sequencing. It relies on SymSim, a simulation tool for single-

cell RNA sequencing data (Zhang et al., 2019). The final product of our simulation is the number of

splice junction reads that either span or skip each exon in each cell. These numbers are distorted in

a way that reflects real nuisance factors. For instance, two reads could have originated from the

same molecule due to amplification effects.

We used our simulator to investigate how the observed inclusion (	̂) of cassette exons differs

from the underlying 	, under different average capture rates, and setting the other technical param-

eters to values that are characteristic of Smart-seq2 datasets (see Materials and methods). We con-

sidered either a binary-bimodal regime of 	 (i.e. both isoforms are expressed in the population, but

rarely by the same cell; Figure 1a), or a non-binary regime (cells tend to express both isoforms;

Figure 1b). We simulated splicing of cassette exons in 1500 genes, in a population of 300 single

cells. In the bimodal simulation, 500 exons were modeled to have alternative splicing with a bimodal

distribution across cells, and in the unimodal simulation, these 500 exons were modeled to have a

unimodal distribution. To reflect the patterns seen in real data, we also simulated splicing of 500

exons that were nearly constitutively included and 500 that were nearly constitutively skipped.

As expected, in the binary-bimodal simulation, the observed 	̂ reflected the underlying process

well, independent of the average capture efficiency (Figure 3a). In contrast, when we modeled a

non-binary splicing regime, the observed 	̂ distributions were strikingly similar to the splicing distri-

butions of cassette exons in real single-cell RNA-seq datasets (Figure 3b). Specifically, the loss of

information due to mRNA recovery and library generation led many of the observed 	̂ to become

binary, and their observed distribution across cells to become bimodal. This tendency again corre-

lated with coverage, whereby lowly covered exons showed the strongest effect, while exons with

high coverage maintained a non-binary, unimodal distribution. Consistently, in this non-binary

regime, the average of 	̂ was similar to the true average of 	, but the variance of 	̂ increased (Fig-

ure 3—figure supplement 1e,f). Furthermore, as in the real data sets (Figure 2c), we also found

that the dependency between read coverage and the chance of observing a binary 	̂ is more pro-

nounced in exons with an underlying 	 that is far from binary (Figure 3c–f), highlighting again that

such an association likely indicates an artifact.

To address the extent of the distortion from mRNA recovery, we ran the simulator with varying

capture efficiency and a fixed underlying 	 ¼ 0:5. We found that decreasing the average capture

efficiency dramatically increased the number of binary 	̂ observations, particularly for exons with low

expression, although even highly expressed genes suffered great distortion in the observed 	̂ when

the average capture efficiency was very low (Figure 3g). These results reinforced the hypothesis that

capture efficiency is a main technical factor that creates the appearance of bimodality in single-cell

splicing.

Finally, we estimated the chance of observing only one type of isoform in any given cell (i.e. a

binary 	̂) as a function of the underlying 	 and the number of transcripts that are present in the cell

(Figure 3h). For this analysis, we set an average mRNA capture rate of 10%. Our results delineate

the range of values in which an artifact is less expected. For instance, for an exon with 50% inclusion

rate, a non-binary estimate is more likely if the respective gene has at least 50 transcripts in the cell.

Notably, these estimates are more conservative than the theoretical analysis (Figure 3—figure sup-

plement 1a,b), due to the effect of the technical nuisance factors we modeled in this simulation.

Buen Abad Najar et al. eLife 2020;9:e54603. DOI: https://doi.org/10.7554/eLife.54603 5 of 24

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.54603


1000 10000

total SJ reads in cell

0.0

0.5

1.0

%
 e

x
o
n
s
 w

it
h
 b

in
a
ry

 Ψ

R = -0.67

0 1 10 100 1000

average SJ reads in exon

0.0

0.5

1.0

%
 c

e
ll
s
 w

it
h
 b

in
a
ry

 Ψ

0.0

0.2

0.4

0.6

0.8

1.0

a
v
e
ra

g
e
 e

x
o
n
 Ψ

True

Capture = a b

c d g

e f h

^ ^ ^ ^ ^ ^

^
^

^

^

0 0.5 1
Ψ

0 0.5 1
Ψ

25%

0 0.5 1
Ψ

10%

0 0.5 1
Ψ

5%

0 0.5 1
Ψ

2%

0 0.5 1
Ψ

1%

0.0 0.2 0.4 0.6 0.8 1.0

Relative frequency

S
im

u
la

te
d
 e

x
o
n
s
, 
ra

n
k
e
d
 b

y
 r

e
a
d
s

True

Capture = 

^ ^ ^ ^ ^ ^
0 0.5 1

Ψ
0 0.5 1

Ψ

25%

0 0.5 1
Ψ

10%

0 0.5 1
Ψ

5%

0 0.5 1
Ψ

2%

0 0.5 1
Ψ

1%

0.0 0.2 0.4 0.6 0.8 1.0

Relative frequency

S
im

u
la

te
d
 e

x
o
n
s
, 
ra

n
k
e
d
 b

y
 r

e
a
d
s

1 50 100 150 200

mRNA molecules

0.1

0.2

0.3

0.4

0.5

U
n
d
e
rl

y
in

g
 Ψ

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
b
in

a
ry

 Ψ̂
^

1% 5% 10%15%20%25%

Capture efficiency

E
x
o
n
s
 b

y
 e

x
p
re

s
s
io

n

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
b
in

a
ry

Ψ

^

^

100 1000 10000

total SJ reads in cell

0.0

0.5

1.0

%
 e

x
o
n
s
 w

it
h
 b

in
a
ry

 Ψ

R = -0.41

0 1 10 100 1000

average SJ reads in exon

0.0

0.5

1.0

%
 c

e
ll
s
 w

it
h
 b

in
a
ry

 Ψ

0.0

0.2

0.4

0.6

0.8

1.0

a
v
e
ra

g
e
 e

x
o
n
 Ψ

Figure 3. Simulations show that gene expression and capture efficiency influence the observed distribution of splicing. (a) Simulations of alternative

splicing and scRNA-seq under the binary-bimodal model, in which each cell produces one isoform or the other, but rarely both. As in Figure 2b, each

row of the histogram shows 	̂ for one intermediate exon across all cells. The observed 	̂ distribution is similar to the true 	 distribution, and its shape

is largely unaffected by capture efficiency. (b) Simulations with the non-binary, unimodal model, in which most cells present a mixture of the two

alternative isoforms. Exons with high expression have a unimodal distribution of true 	. Low capture efficiency results in an increase in binary

observations (only one isoform observed), leading to a distortion of the observed distribution of 	̂ to look bimodal. Only a handful of the highest

expressed exons maintain a unimodal distribution of 	̂. Fewer exons show unimodal splicing as the capture efficiency is reduced. (c) Under the binary-

bimodal model, exons with high coverage have slightly fewer binary 	 observations, and (d) simulated cells with a high number of total splice junction

reads have slightly fewer exons with binary 	̂. (e) Under the unimodal model, exons with intermediate splicing show a strong decrease in binary

observations as coverage increases, as seen in real data (Figure 2c). (f) Similarly, simulated cells with high read coverage have a decrease of the

proportion of binary 	̂. (g) Effect of capture efficiency on the proportion of binary observations of cassette exons with underlying 	 = 0.5. (h) Effect of

the initial number of mRNA molecules and underlying 	 on the proportion of binary 	̂ observations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Theoretical calculations and simulations of the effect of biological and technical factors in splicing observations.

Figure 3 continued on next page
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Accounting for mRNA recovery improves analysis of alternative splicing
We sought criteria that would identify reliable measurements of splicing in single cells and avoid dis-

tortions from low mRNA recovery. While ideally we should rely on the actual number of mRNA mole-

cules recovered, full-length RNA-seq experiments generally do not report an absolute mRNA count.

Previous studies assessed the quality of splicing observations based on the number of reads cover-

ing alternative splice junctions (Song et al., 2017; Linker et al., 2019), but the number of splice

junction reads is influenced by the extent of PCR amplification and sequencing depth, and so it does

not directly reflect the number of recovered mRNAs.

We realized that we could estimate the number of mRNA molecules that were captured into

cDNA by using the Census normalization approach proposed by Qiu et al., 2017. This method infers

a per-cell scaling factor between the relative abundance of each transcript, inferred from RNA-seq,

and the actual number of mRNAs recovered. We found that some datasets with many reads per cell,

such as the Song dataset (Song et al., 2017), nonetheless had few mRNAs recovered per cell

(Figure 4a, Figure 4—figure supplement 1c), which may explain the extensive splicing bimodality

in this dataset. The dataset with the highest recovery of mRNAs (Chen et al., 2016) indeed showed

less binary splicing (Figure 2b).

Next, we sought a threshold for mRNA recovery that would suppress spurious observations of

binary splicing. Our simulations and our analytical calculations suggested that, for a capture effi-

ciency of 10%, recovering 7–10 mRNA molecules would be more likely than not to capture both iso-

forms for exons with intermediate splicing (Figure 3h), and that the observed 	̂ would most likely

be within 0.1 of the real value (Figure 2—figure supplement 1d). In keeping with this, we saw in the

real data that exons with an average of at least 10 mRNAs recovered per cell generally had substan-

tially fewer binary observations (Figure 4b, Figure 4—figure supplement 1d; limited to exons with

average 	̂ between 0.05 and 0.95). Nonetheless, a subset of these exons still showed binary splicing

in most cells. These exons had few splice junction reads relative to the estimated mRNA count. We

expect that these represent anomalously low recovery of reads from the specific splice junctions of

interest, perhaps due to annotation errors or poor recovery of fragments with particular sequence

composition. We reasoned that a data-driven splice junction read criterion would prevent distortions

arising from this low read recovery. To find an appropriate read minimum, we determined the num-

ber of splice junction reads expected to arise from a cassette exon in each cell in different datasets,

based on that cell’s overall mRNA recovery (Figure 4c; see Materials and methods). This provided a

second filtering criterion: we excluded exons with fewer splice junction reads than would be

expected from 10 mRNAs, given that exon’s 	̂ and the coverage rate in that particular cell. This met-

ric is calculated for each exon separately, driven by the actual information in each cell, and it varies

substantially between datasets.

We then selected the exons from each cell that met the combined requirement of 10 mRNAs and

the splice junction reads that would arise from 10 mRNAs, and asked what effect this filter had on

binary observations of splicing. As an example, our filter removed seemingly spurious binary obser-

vations for alternatively spliced exon 8 of Cadm1 (Figure 4d). The observations that remained after

filtering showed a clear pattern of increased inclusion along pseudotime, with exon skipping in stem

cells and exon inclusion in fully differentiated neurons (Spearman’s rs = 0.52, p=1.2 � 107;

Figure 4e). The correlation between splicing observations and differentiation pseudotime

highlighted that cell type differences could contribute to observations of bimodality that are not the

result of an artificial inflation of binary observations, and this was an important factor to consider in

our analysis.

Bimodality in filtered exons is explained by differential splicing between cell
types
Earlier papers had reported a surprising amount of bimodal splicing within a cell type, with extensive

binary outcomes in individual cells, that is similar cells with different dominant isoforms. This

Figure 3 continued

Figure supplement 2. Schematic of scRNA-seq splicing simulator.
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Figure 4. Accounting for coverage biases reveals unimodal splicing distributions and differential splicing. (a) Estimated total mRNA molecules captured

per cell. (b) Estimated number of recovered mRNAs vs splice junction reads for cassette exons, averaged across cells. Each dot corresponds to an exon,

and its color indicates the proportion of cells in which it has a binary observation (only one isoform observed). We analyzed exons with average 	̂

between 0.05 and 0.95. (c) Per-cell splice junction coverage rate in each dataset. (d) Cadm1 exon 8 alternative splicing appears binary in many cells in

the Chen dataset. Correlation with lineage pseudotime: Spearman’s rs = 0.1. (e) Cadm1 exon after removing cells with fewer than 10 recovered Cadm1

mRNA molecules and fewer splice junction reads than expected from 10 mRNAs (grey). Spearman’s rs = 0.52. (f) PCA projection and clustering of single

cells in the Chen dataset, showing differentiation of mouse ES cells into neurons. Red line, lineage inferred with Slingshot. (g) Number of cassette exons

with observations from at least 10 mRNA reads in at least 50% of cells in any cluster. (h) Stacked histograms showing the distribution of observed 	̂ of

exons as in (g), in each cell cluster of the Chen dataset. Observations with fewer than 10 mRNA molecules were removed. We show exons with average

	̂ ranging from 0.1 to 0.9 per cluster. (i) QQ-plot comparing the quantiles of a uniform distribution (x-axis) with the quantiles of the distributions of

p-values from the Kruskal-Wallis test (y-axis). A diagonal line (gray dotted line) would mean the p-values are uniformly distributed. A lower area under

the curve indicates enrichment for low p-values. The point on the x-axis at which each line crosses the dotted red line indicates the proportion of

p-values that are below 0.05 in the distribution. (j) Fold enrichment of exons with a Kruskal-Wallis p < x in the set of exons selected with the mRNA-

based filter (blue), and exons selected with a flat read minimum filter (red). (k) Significance p-value of the enrichment, estimated with the

Figure 4 continued on next page
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suggested that some aspects of gene expression stochastically locked individual cells into producing

primarily molecules of one or the other isoform. However, our results so far suggest that much of

this observed variability may be an artifact of low mRNA recovery. In contrast, differences in splicing

between cells of different types are consistent with conventional mechanisms such as regulation by

cell-type-specific splicing factors. Therefore, when considering heterogeneous cell samples, large

shifts in splicing between cell types may result in truly bimodal 	. In contrast to the first scenario, we

would expect the corresponding observations 	̂ to remain bimodal even after low-quality data

points were removed.

We therefore sought to distinguish between these two scenarios and estimate the extent of

bimodal splicing within a cell type that is strongly supported by the data. Most of the datasets in our

analysis came from differentiation time courses, and so to examine homogeneous cell subsets, we

stratified the cells into groups indicative of their developmental stage. The groups were identified

by clustering the cells using the normalized sum of reads from every gene (i.e. not directly represent-

ing their variation in splicing; Figure 4f) and labeled based on expression of known marker genes

(Figure 4—figure supplement 1e).

We found that, prior to filtering, hundreds of exons with intermediate splicing (average 	̂

between 0.2 and 0.8) seemed to have at least weakly bimodal splicing distributions (using a heuristic

definition of at least 25% of cells with 	̂ � 0.25% and 25% with 	̂ � 0.75), a rate that roughly

matched previous descriptions (Song et al., 2017; Table 1). We then discarded the observations

that did not meet our filtering criteria, and retained for every cluster only those exons with observa-

tions remaining in at least 50% of cells (Figure 4g). With that filtering we found that most remaining

exons had fewer binary observations than the discarded exons (Figure 4—figure supplement 1f).

Figure 4 continued

hypergeometric test and adjusted for FDR. (l) Example exons that pass the overall filter criteria in the Chen dataset and have p<0.05 in the Kruskal-

Wallis test.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relationship between read coverage, captured mRNAs, and binarity in single cell datasets.

Figure supplement 2. Analysis of differential splicing among selected exons with the Kruskal-Wallis analysis of variance.

Figure supplement 3. Analysis of differential splicing among selected exons with the autocorrelation test.

Figure supplement 4. Distribution of 	̂ of example exons.

Table 1. Prevalence of bimodal splicing distributions before and after filtering.

Dataset Cell type cluster Cells Exons Bimodal % bimodal Selected
Selected
bimodal

% bimodal
selected p-val (adj)

Chen ES 217 446 118 26% 94 0 0% 3.3e-14

Chen Epi, early 98 402 107 27% 98 1 1% 9.3e-14

Chen Epi, late 104 516 136 26% 76 1 1% 1.1e-09

Chen Neuron, early 47 364 117 32% 43 0 0% 3.6e-08

Chen Neuron, late 22 517 146 28% 61 0 0% 1.1e-09

Lescroart Heart E6.75 172 286 77 27% 33 0 0% 2.0e-05

Lescroart Heart E7.25 341 291 78 27% 36 0 0% 8.0e-06

Trapnell Myoblast 00 hr 35 400 142 36% 41 0 0% 1.2e-08

Trapnell Myoblast 24 hr 89 251 97 39% 27 0 0% 1.2e-06

Trapnell Myoblast 48 hr 72 242 97 40% 32 1 3% 9.1e-07

Trapnell Myoblast 72 hr 35 252 101 40% 24 1 4% 5.1e-05

Song iPSC 62 616 269 44% 55 0 0% 3.3e-14

Song NPC 73 212 92 43% 28 1 4% 1.2e-06

Song MN 67 168 82 49% 19 4 21% 9.4e-03

Shalek BMDC 13 149 51 34% 27 1 4% 6.6e-05
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Furthermore, cell clusters had no or very few remaining exons with bimodal splicing distributions

(Figure 4h, Figure 4—figure supplement 1g,h, Table 1). For instance, in the Chen dataset, there

were two remaining cases of bimodality, and both seem to be the result of sex-specific splicing (Fig-

ure 4—figure supplement 1i). This trend persisted when reanalyzing all datasets and clusters using

a range of cutoffs for qualifying a splicing pattern as binary (Figure 4—figure supplement 1e).

Filtering improves the identification of differentially spliced exons
Finally, we asked if our filtering criteria could help identify biologically relevant changes in splicing

between cell types, by selecting exons whose biological variance is not overwhelmed by high techni-

cal variance. Focusing on three datasets with multiple cell type clusters (Chen, Trapnell, and Song),

we examined the effect of retaining only exons that passed our filter in at least 50% of cells in each

cluster. To avoid biases depending on the number of observations available for each remaining

exon, we retained all data points for these exons, rather than removing individual cell data points

that did not pass the filter. As a benchmark for comparison, we used a simpler criterion, akin to pre-

vious studies, of at least 10 splice junction reads in at least 50% of cells (Figure 4i). To focus on

exons with substantial alternative splicing, we omitted exons from this analysis that were consistently

excluded (average 	̂ < 0.05) or included (average 	̂ > 0.95) across all cells.

Taken together, these results challenge the idea that widespread bimodality among homoge-

neous cells arises from a binary nature of splicing in single cells, and instead suggest that splicing

bimodality reflects biological differences between cell types or subtypes. Indeed, experimental

observations of splicing bimodality support the importance of differences between cell types, rather

than stochastic differences between homogeneous cells. The two cases of splicing bimodality con-

firmed with smFISH by Song et al., 2017 both showed bimodality between two characterized cell

types. Similarly, Shalek et al., 2013 confirmed one case of splicing bimodality, in a gene whose

expression they showed to be a marker of a hidden difference between mature and maturing cells,

and so its splicing may reflect cell state difference at a wider context as well.

For each remaining exon in the two filtering schemes, we performed a Kruskal–Wallis one-way

analysis of variance, which assigned it a p-value (Materials and methods). This test determines if the

exon’s median 	 changed significantly between any clusters. Both filtering schemes enriched sub-

stantially for exons that show significant changes across different clusters, compared with the unfil-

tered set of all exons with average 	̂ between 0.05 and 0.95. Furthermore, the extent of enrichment

increased with the strictness of the differential splicing test (Figure 4i–k; Figure 4—figure supple-

ment 2). It is interesting to note that in the Chen dataset, the baseline (ten reads) filter was stricter

than the combined filter, retaining 66 vs. 198 exons and thus achieving high precision at the expense

of a lower recall. Indeed, due to the high mRNA recovery and low amplification in this dataset, our

combined filter required only seven splice junction reads, rather than ten as in the baseline scheme.

Conversely, in the Song dataset, which is predicted to have low mRNA recovery yet a large number

of reads, the baseline filter retained almost all exons, while the combined filter retained only 104 of

them, leading to significant over-representation of exons that are differentially spliced between clus-

ters. The results show how differences in mRNA recovery and amplification between datasets may

change the interpretation of an absolute number of reads. We corroborated these results using spa-

tial autocorrelation as a way of identifying informative exons, rather than the clustering and differen-

tial splicing analysis. The autocorrelation test builds on the work of DeTomaso et al., 2019 to

identify exons with a significantly high level of consistency in 	̂ among transcriptionally similar cells

(Figure 4—figure supplement 3).

Taken together, these results indicate that careful filtering of exons can help identify observations

that are consistent with the gene expression space and the stratification of cells into types, and are

thus likely more biologically meaningful (e.g. capturing known forms of regulation during differentia-

tion) (Figure 4l, Figure 4—figure supplement 4; Liu et al., 2018). The concept of ‘meaningful’ is

ascribed here to the observations, not the exons themselves, as there may be many additional exons

with relevant variation (e.g. stable differences between cell types) that is not reliably measured due

to low coverage. Indeed, the effects of the two filtering schemes and the differences between them

exemplify how technical factors may distort our view of the data and consequently, our understand-

ing of variation and regulation of splicing.
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Discussion
The surprising result that alternatively splicing is bimodal among single cells provoked curiosity and

speculation. Bimodal outcomes might reflect hidden cell subtypes, but the bimodality was seen even

among apparently homogeneous cells. Did splicing outcomes reflect some unknown, stochastic cell

state?

We have shown here that the bimodal patterns could have an entirely different explanation: pro-

found technical limitations of single cell RNA sequencing. A crucial limit on biologically meaningful

splicing observations in a single cell is the number of mRNAs available to inform the measurement.

This is determined both by the expression of the genes that contain the exons of interest, and by

the capture efficiency of the experiment. It is important to note that the depth of a sequencing

library does not necessarily reflect its quality. Along with low mRNA numbers, splicing observations

are also distorted by uneven amplification efficiency and cDNA overamplification. Increasing PCR

amplification cycles in an attempt to compensate for low capture efficiency has the risk of worsening

the technical distortion. Indeed, in our analysis, the dataset with the highest read count per cell actu-

ally had quite low mRNA recovery and large technical distortion, creating an appearance of bimodal

splicing (Song et al., 2017). Moreover, a qualitative change in the observed 	̂ distribution of an

exon between single cell subpopulations does not necessarily reflect a change in the underlying

splicing rate, as changes in gene expression and mRNA recovery between samples can create the

illusion of a splicing change.

Further developments in statistical analysis that carefully account for both missing and redundant

information due to low capture efficiency could make splicing observations in single cells more reli-

able. We set the foundation for such analysis by proposing a probabilistic process that describes the

biological and technical steps that generate single cell splicing data. We also introduced a simple

approach that builds on the Census normalization (Qiu et al., 2017) to estimate the number of

mRNAs recovered and the extent of artificial duplication of splicing information. This metric provides

a practical filter for identifying exons with sufficient information to analyze. On the experimental

side, improving the capture efficiency of scRNA-seq methods while moderating the extent of over-

amplification is crucial for increasing the subset of exons for which reliable observation can be made.

True biological insight into alternative splicing can indeed be found from high-quality scRNA-seq

data, and we hope that new methods will allow better understanding of splicing regulation, cell-to-

cell variation, and the importance of alternative splicing in defining cell fate (Hagemann-

Jensen et al., 2020; Gupta et al., 2018). However, some limitations are inherent to the situation.

Single cells express a limited number of mRNAs per gene; splicing observations in single cells will

always be inherently noisy reflections of the underlying biology.

Materials and methods
Analysis code is available at https://github.com/lareaulab/sc_binary_splicing. (Buen Abad Najar and

Lareau, 2020; copy archived at https://github.com/elifesciences-publications/sc_binary_splicing).

Analysis of single-cell RNA-seq datasets
Datasets
Six publicly available single cell RNA sequencing datasets were analyzed (Table 2). These datasets

are referenced with the first author’s name throughout this paper. For the Chen dataset, we selected

the four cell types used to represent developmental stages in Chen et al., 2016: mouse embryonic

stem cells cultured in 2i (ES2i) and LIF (ES), mouse EpiStem cells (Epi) and neurons. For the Lescroart

dataset, we limited the analysis to the cells derived from mouse wild-type strains. For the Trapnell

dataset, we only selected the runs that are annotated to have one cell per well.

Alignment, TPM quantification and 	 estimation
We aligned the reads of each dataset using STAR 2.5.3 (Dobin et al., 2013) with two-pass mode

and index overhang length adapted to the read length of each dataset. We used the hg38 genome

annotation for the human RNA-seq datasets, and the mm10 annotation for the mouse datasets.

Gene expression levels in transcripts per million (TPM) were calculated by running RSEM (Li and

Dewey, 2011) on the BAM files produced by the STAR alignment. We ran rMATS 3.2.5 (Shen et al.,
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2014) on bulk human and mouse RNA-seq datasets from cell types matching the scRNA-seq data-

sets (Chen et al., 2016; Hubbard et al., 2013; Busskamp et al., 2014; Trapnell et al., 2014) to find

all annotated cassette exon alternative splicing events in each cell type. Then we used the SJ.out.tab

files obtained from the scRNA-seq STAR alignment to obtain the splice junction reads compatible

with the list of cassette exons found by rMATS. For each cell i, we calculated the observed 	̂ of the

cassette exon j as:

	̂ij ¼
SJAij

SJAij
þ 2SJBij

where SJAij
correspond to the number of reads that cover the two splice junctions compatible with

cassette exon inclusion, and SJBij
are the reads that cover the splice junction compatible with its

exclusion. We also determined the coverage of an exon j in i as SJ ij ¼ SJAij
þ SJBij

. We used SJ ij and

	̂ij for the analyses shown in Figure 2.

Gene expression normalization and pseudotime inference
For the purpose of visualization and clustering of cells, we normalized the gene expression data.

First, we selected the genes with TPM > 20 in at least 20 cells. After filtering, we used SCONE

1.6.1 (Cole et al., 2019) to select the best normalization approach for the data. For improving

the normalization of the data, we used additional information for each cell, including the anno-

tated cell type and batch, total number of reads, housekeeping genes and genes that are

expected to change in the biological process that the dataset covers. We applied principal com-

ponent analysis (PCA) over the log-counts from the best SCONE normalization, and used the

first two principal components to infer pseudotime using Slingshot 1.0.0 (Street et al., 2018).

We used the cell type annotation as the cluster input for Slingshot, and manually indicated the

direction of the biological process. Single cells can be highly heterogeneous, even within cells

labeled to be in the same biological condition. To account for this variation, instead of relying

on the annotated cell type provided with each dataset, we used agglomerative clustering over

the PCA projection of the matrix of normalized gene expression to identify groups of similar

cells in the Chen, Trapnell and Song datasets. For the Trapnell and the Song dataset, we used

the number of cell types reported by the authors. In the Chen dataset, we noticed that the cells

annotated as neurons could form two well-defined clusters, with some of the cells presenting

expression profiles consistent with mature neurons. For this reason, we used five instead of four

clusters in the Chen dataset. In the Lescroart dataset, we used the original labels provided by

the authors because PCA over the normalized expression data separates the cells into two

groups. This analysis was not performed in the Shalek dataset due to its small number of cells.

Instead, we treated all the cells in this dataset as one single cluster. The Fletcher dataset was

not considered for the analysis that required clustering due to the low number of exon observa-

tions that pass the minimum mRNA requirements described below.

mRNA counts estimation with the Census approach
We performed our own implementation of the mRNA count estimation proposed in Census

(Qiu et al., 2017). The total number of transcript mRNAs in cell i is estimated as:

Table 2. Single-cell RNA-seq datasets.

Dataset Organism Biological process Cells No. ASE Mean reads/event Protocol Accession Reference

Chen mouse mES neuron differentiation 488 3276 3.1 Smart-seq2 GSE74155 Chen et al., 2016

Lescroart mouse cardiomyogenesis 598 3007 3.2 Smart-seq2 GSE100471 Lescroart et al., 2018

Trapnell human skeletal myogenesis 314 4457 14.4 Smart-seq GSE52529 Trapnell et al., 2014

Song human iPS motor neuron differentiation 206 5355 88.8 Smart-seq GSE85908 Song et al., 2017

Fletcher mouse olfactory neurogenesis 849 684 2.7 Smart-seq GSE95601 Fletcher et al., 2017

Shalek mouse bone-marrow-derived dendritic cells 18 380 213.4 Smart-seq GSE41265 Shalek et al., 2013
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Mi ¼
ni

FXi
ðx�i Þ�FXi

ð0:1Þ

where x�i is the mode of the log-transformed distribution of TPM values in cell i. As in Census, we

found x�i by fitting a Gaussian kernel density estimation to each distribution and finding its peak. We

also set 0.1 as is the minimum TPM below which it is assumed that no mRNA is present. ni is the

number of genes in cell i with an estimated TPM in the interval ð0:1;x�i Þ. FXi
is the cumulative distribu-

tion function of the TPM values in cell i. The original Census implementation also adjusts the mRNA

estimation by multiplying by 1

�, where � is the capture efficiency of the dataset estimated with RNA

spike-ins. Since for most datasets, we do not have a reliable way of estimating the capture efficiency,

we removed this adjustment from the equation, so that Mi in our estimation is not an estimation of

the amount of mRNAs present in the cell lysate as it is in Census, but an estimate of the mRNAs suc-

cessfully captured into cDNA.

We found that some datasets contained outlier cells with Mi much higher than the median

estimate (more than ten-fold increases). These outliers generally correspond to cells with a multi-

modal TPM distribution. An inflation in very low TPM values distorts the normalization by shrink-

ing the values of FXi
ðx�i Þ � FXi

ð�Þ, thus inflating the Mi values in these cells. Because the Census

method relies on a Gaussian kernel density estimation that performs inaccurately for multimodal

distributions, we excluded this handful of outliers from further analysis. In the Trapnell dataset,

we found that several cells had an unusually small number of recovered reads and genes

observed. We reasoned that this had the potential to skew the TPM estimations on which the

Census normalization depends (Figure 2—figure supplement 1b), so we excluded the cells in

the bottom 25% quantile of reads from the Census normalization and all downstream analyses

that depend on it.

Finally, the number of mRNA transcripts of gene g in cell i is calculated as:

Yig ¼ Xig �
Mi

106

where Xig is the expression of gene g in cell i expressed in TPM.

Nucleotide coverage and expected splice junction reads
Amplification in short-read library preparation can lead to multiple reads from the same sequence

fragment of a single mRNA molecule. To filter out exons with anomalously low read coverage, we

wanted to know the number of splice junction reads expected to originate from one exon junction in

a single mRNA, a number which differs in each cell and each experiment. We estimated the splice

junction coverage rate of each cell as the expected number of reads covering the splice junction of a

mRNA molecule:

Cj ¼ read coverage at each splice junctio of mRNAs in our sample

¼ constitutive splice junction reads in cell j

constitutive splice junctions of mRNAs in cell j

¼
P

k rjk
P

k jk �mjk

where Cj is the splice junction coverage rate, which is the number of reads expected to cover each

splice junction in cell j; rjk is the number of reads that map to all constitutive splice junctions of gene

k in cell j, as reported by STAR; jk is the number of constitutive splice junctions in a mRNA molecule

of gene k; and mjk is the Census estimate of captured mRNAs of gene k in cell j. To calculate the Cj

of each cell, we only considered the constitutive splice junctions of genes that were estimated to be

expressed in at least one mRNA molecule by the Census normalization. This calculation captures the

slight under-counting of splice junctions (relative to other positions) because of factors including

ambiguous read mapping.

We identified the constitutive splice junctions of the human and mouse transcriptome using

the Gencode hg38 and mm10 annotations respectively. For each organism, we identified the

splice junctions that occur in all protein coding isoforms of each protein coding gene. This
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resulted in a total of 59,477 constitutive splice junctions in the human genome, and 108,481 in

the mouse genome.

Then, based on the overall recovery of splice junction reads in a cell, the total expected splice

junction reads for a particular cassette exon i in cell j is estimated as:

SJEij
¼mij � ðexpected splice junctions per mRNAÞ �Cj

¼mij � ð1þ 	̂ijÞ �Cj

where SJEij
is the expected number of splice junction reads covering the splicing of exon i in cell j

(both for mRNAs that splice in or skip the exon). mij is the estimated number of mRNAs from the

gene containing the cassette exon i in cell j; 	ij is the observed splicing rate of exon i in cell j. The

expected number of splice junctions per mRNA is 1þ 	̂ij because one splice junction read is present

in mRNA molecules that skip the exon, and two in those that include it.

Filtering to select good quality observations
Simulations of the effect of the initial number of mRNA molecules of a gene and the underlying 	

suggest that an average of 44 mRNA molecules are necessary to have a 50% chance of making an

intermediate 	 observation when the underlying 	 is 0.5. This number goes up to 65 if the 	 is 0.2

or 0.8, and to 127 if the 	 is 0.1 or 0.9 (Figure 4—figure supplement 1f). Assuming a capture effi-

ciency of 10%, we rounded at 10 captured mRNA molecules as the lower threshold for a quality 	

observation.

In some cases, the number of observed splice junction reads is discordant with the estimated

number of mRNAs recovered. Therefore, we set a additional filter based on the number of reads

expected to come from 10 mRNA molecules that are informative about the splicing of a cassette

exon:

SJmij
¼ 10 � ð1þ 	̂ijÞ �Cj

Therefore, for every observation, we required at least 10 mRNAs of the gene captured, and

at least the number of reads that we expect if 10 mRNAs are informative. Notice that this mini-

mum will be unique to each observation (combination of cassette exon and cell), as it depends

on the cell-specific coverage rate, and the cell and exon specific observed 	̂.

Kruskal-Wallis test and filter evaluation
We evaluate the significance of splicing changes between different cell types, using the clusters

defined above, for the Chen, Trapnell, and Song datasets. For each exon, we asked if its

median 	̂ is different between clusters. In order to do this, we grouped the exon’s 	̂ observa-

tions by cluster and ran the Kruskal–Wallis test, which is a non-parametric one-way analysis of

variance across all clusters at once. We reported the p-value from each exon. A significant result

indicates that the exon has a significantly different median 	̂ in at least one cluster relative to

at least one other cluster, indicating cell type-associated differential splicing. A non-significant

result from the test suggests that the exon’s median 	̂ is not significantly different between any

pairs of clusters. The strictness of the differential splicing test was determined by setting differ-

ent p-value thresholds.

Autocorrelation test
We reasoned that exons with reliable estimation of their splicing rate would tend to have similar

observations (	̂) in cells that are transcriptionally similar to each other. To quantify this, we adapted

the autocorrelation test described in DeTomaso et al., 2019 to compute, for every exon, the similar-

ity in 	̂ amongst neighboring cells in the space of the top two principal components of the gene

expression space.

To calculate the autocorrelation score of one exon, first we normalized the 	̂ as follows:

	̂0
ij ¼

	̂ij �	j

Varð	̂jÞ

Buen Abad Najar et al. eLife 2020;9:e54603. DOI: https://doi.org/10.7554/eLife.54603 14 of 24

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.54603


where 	̂0
ij is the normalized 	̂ij of exon i in cell j; 	j is the average observed 	̂ of all the tested exons

in cell j, and Varð	̂jÞ is the variance of all observed 	̂ in cell j.

For each cell j, we identified all its k-nearest neighbors in the PCA projection of the normalized

gene expression. For each neighbor k, we calculated a similarity score as follows:

wjk ¼ exp
�d2jk

s2
j

 !

where djk is the Euclidean distance in the PCA projection between cell j and its neighbor k;

sj is the Euclidean distance from cell j to its farthest K-nearest neighbor. For all cells k that are

not neighbors of j, we set wjk ¼ 0. For each analyzed dataset, we set K to be half the total num-

ber of cells. The smart-seq and smart-seq2 datasets that we analyzed here contain orders of

magnitude fewer cells than the UMI-based datasets analyzed by DeTomaso et al., and we rea-

soned that the default setting of K ¼
ffiffiffiffi

N
p

might result in neighborhood sizes too small to ensure

stability in some datasets. In the datasets with fewer cells, K ¼ N
2

agreed better than K ¼
ffiffiffiffi

N
p

with the results of the Kruskal-Wallis test (Jaccard indexes: 0.52 and 0.45 respectively in the

Song dataset, 0.43 and 0.28 in the Trapnell dataset, and 0.51 and 0.54 in the Chen dataset).

For each exon i, we calculate the autocorrelation score as a variation of the Geary’s C statistic as:

C0 ¼ 1�
ðN� 1ÞPj

P

kwjkð	̂0
ij� 	̂0

ikÞ
2

2W
P

j ð	̂
0
ij �	

0
iÞ
2

where N is the total number of cells in the dataset, and W is the sum of all wij.

For each exon, we calculated an empirical p-value. To avoid bias from missing data and different

splicing rates, we binned all the exons by average 	̂ and percent of missing values. We grouped

exons with average 	̂ of: {(0.05�0.1&0.9�0.95), (0.1�0.2&0.8�0.9), (0.2�0.3&0.7�0.8),

(0.3�0.4&0.6�0.7), (0.4�0.6)}. We also binned exons with missing observations between:

{(50�60%), (60�70%), (70�80%), (80�90%), (90�100%)}.

For each bin, we randomized the values of the exons across the cells 20,000 times. We then calcu-

lated the autocorrelation score for all the randomized exons.

For each exon, we calculated its p-value as p ¼ xþ1

20;001, where x are all the randomized exons of the

same bin with a higher autocorrelation score.

Splicing change analysis and filter evaluation
We evaluated if a subset of exons is enriched for exons with low p-values indicating significant

change. We repeated this analysis for the p-values from the Kruskal-Wallis test and from the

autocorrelation test. For each x as a threshold of low p-values, we define:

1. M as the set of all exons.
2. m as the set of exons with p-value � x.
3. P as the exons in the selected subset.
4. p as the exons in the subset with p-value � x.

We then calculate the fold enrichment as follows:

enrichment¼ jMj � jpj
jPj � jmj

We then use the hypergeometric test to determine if the subset of selected exons is significantly

enriched for exons with p-values below the threshold. In our analysis, we tested x in a range between

0.1 and 0.00001, and corrected the p-values of the hypergeometric test for multiple testing using

the Benjamini-Hochberg correction.

In addition, we define:

1. p as true positives.
2. :m AND :P as true negatives.
3. :m AND P as false positives.
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4. m AND :P as false negatives.

Using these definitions, we calculate the precision, recall, specificity, accuracy and F1 score of the

filter for every x.

Linear regression on transcriptional burst kinetics
Transcriptional burst kinetics parameters (burst frequency and burst size) of mouse embryonic

stem cells were obtained from Larsson et al., 2019. The authors modeled these parameters

from cells from the Chen dataset (Chen et al., 2016). We selected 619 intermediate exons

observed in the ES2i cells that have binary observations (i.e., 	̂ = 0 or 1) in between 1% and

99% of the cells. For each exon, we calculated the logit of the proportion of cells that present

binary observations as the target variable. Additionally, we matched each exon to three predic-

tive features: the transcriptional burst size of its gene, the transcriptional burst frequency of its

gene, and its expression, represented as the average number of informative splice junction reads

that cover the exon. Each predictive feature was transformed by log10 þ1, and all variables were

scaled to its standard score. We trained a linear regression model to predict the logit of the

proportion of binary exons, using several combinations of the previously described predictive

features:

1. logitð	Þ~ burst size
2. logitð	Þ~ burst frequency
3. logitð	Þ~ size + freq + size � freq
4. logitð	Þ~ expression
5. logitð	Þ~ size + freq + exp + size � freq + size � exp + freq � exp

We evaluated each model by calculating the R2 score between the logitð	Þ and the regression

prediction.

Theoretical analysis of the observed 	̂ with limited capture rate
mRNA molecules are captured at a limited rate, approximated in some instances as 10% of the mol-

ecules in the cell. Under the assumption of uniform sampling of transcripts and isoforms, and assum-

ing the only nuisance factor is the limited capture rate, we formalize the probability for observing a

splicing ratio 	̂. We start by specifying this probability, assuming that we know the total number of

transcripts from the respective gene in the cell (m), the real splicing rate 	 and the number of cap-

tured molecules r (assuming that for any capture molecule we know if it includes the exon or not). In

that case:

Prð	̂ j 	; r;mÞ ¼

m	

r	̂

� �

mð1�	Þ
rð1� 	̂Þ

� �

m

r

� �

Note that for this calculation, the capture efficiency (c) is not needed, since we assume that we

know m and r. For a more useful analysis, we will next assume that only one of these variables is not

known (starting with m and then r).

In a more realistic scenario, r and c can be estimated (e.g. using Census), while m remains

unknown. We can therefore marginalize m to calculate:

Prð	̂ j 	; r;cÞ ¼
X

¥

m¼0

Prð	̂;m j 	; r;cÞ

¼
X

¥

m¼r

Prð	̂ j 	; r;c;mÞ �Prðm j r;cÞ

¼
X

¥

m¼r

Prð	̂ j 	; r;mÞ �Prðm j r;cÞ

To estimate Prðm j r;cÞ we note the following:
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Prðm j r;cÞ ¼ Prðr j c;mÞ �PrðmÞ
P

¥

m0¼0
Prðr j c;m0Þ �Prðm0Þ

¼ Prðr j c;mÞ
P

¥

m0¼0
Prðr j c;m0Þ

¼

m

r

� �

crð1� cÞm�r

P

¥

m0¼0
Prðr j c;m0Þ

where we model the probability of capturing r mRNA molecules as a binomial sample from m with

probability c. Note that the third transition is done under the assumption of a uniform prior on m.

To compute the denominator, we expand:

X

¥

m0¼0

Prðr j c;m0Þ ¼
X

¥

m0¼r

m0

r

� �

crð1� cÞm0�r

¼ cr
X

¥

k¼0

rþ k

r

� �

ð1� cÞk ¼ cr
X

¥

k¼0

ðrþ kÞ!
k!r!

ð1� cÞk

¼ cr
X

¥

k¼0

ð�1Þk
k!

ðrþ 1Þðrþ 2Þ . . . ðrþ 1þðk� 1ÞÞðc� 1Þk

¼ cr
X

¥

k¼0

1

k!
ð�ðrþ 1ÞÞð�ðrþ 2ÞÞ . . . ð�ðrþ kÞÞ1rþkþ1ðc� 1Þk

by Taylor series centered in 1 ¼ cr
1

crþ1
¼ 1

c

Thus,

Prð	̂ j	; r;cÞ ¼
X

¥

m¼r

Prð	̂ j 	; r;c;mÞ �Prðm j r;cÞ

¼
X

¥

m¼r

m	

r	̂

� �

mð1�	Þ
rð1� 	̂Þ

� �

m

r

� �

m

r

� �

crð1� cÞm�r

1

c

»

X

10r=c

m¼r

m	

r	̂

� �

mð1�	Þ
rð1� 	̂Þ

� �

� crþ1ð1� cÞm�r

In the last equation, we estimate the sum going only up to a large value of m, since its posterior

probability diminishes. In expectation m» r=c. We use ten times this value as the maximum.

We can use this equation to estimate the expected proportion of binary 	̂ observations (	̂=0 or

1) that is expected when we observe only r junctions from a splicing event with a given true rate 	

(Figure 3—figure supplement 1a). We can also estimate the chance to have an empirical 	̂ that is

at least within a certain delta (in absolute terms) from the real 	. Namely, we can estimate

Prð j 	̂�	 j <d j 	; r; cÞ (Figure 3—figure supplement 1d).

In another calculation of interest, one can ask how many mRNA molecules should a gene have in

a cell in order to correctly estimate the splicing rate, under a limited capture efficiency c. To estimate

it, we denote by d a binary variable indicating that the gene has been detected (i.e. r>0) and margin-

alize r in the following way:

Prð	̂ j	;c;m;dÞ ¼Prð	̂;d j 	;c;mÞ
Prðd j c;mÞ

Where
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Prð	̂;d j 	;c;mÞ ¼
X

m

r¼1

Prð	̂; r j 	;c;mÞ

¼
X

m

r¼1

Prð	̂ j 	;c;m; rÞ �Prðr j c;mÞ

¼
X

m

r¼1

m	

r	̂

� �

mð1�	Þ
rð1� 	̂Þ

� �

m

r

� � � m

r

� �

crð1� cÞm�r

¼
X

m

r¼1

m	

r	̂

� �

mð1�	Þ
rð1� 	̂Þ

� �

crð1� cÞm�r

and

Prðd j c;mÞ ¼ 1�ð1� cÞm

We use this in Figure 3—figure supplement 1b to plot the chances to see only one isoform

(binary 	̂) for a fixed 	 (set to 0.5) as a function of the number of molecules present in the cell (m).

Probabilistic simulator of splicing in single cell data
1) Biological process. We simulate the expression of 1500 hypothetical genes in 300 cells using Sym-

Sim, an in silico simulator of gene expression in single cells (Zhang et al., 2019); the expression of

gene g in cell i is annotated as Xi. We simulate one cassette exon j for each gene g. For each cas-

sette, exon j in cell i, we simulate an underlying splicing distribution 	ij as a Beta distribution with

exon-specific parameters aj and bj. The splicing of j in i is simulated as a binomial sampling from Xig

with probability 	ij. 2) Technical process. We simulate the capture, fragmentation and sequencing of

each transcript using a modified version of SymSim’s True2ObservedCounts function and a random

vector of transcript lengths. Finally, we subsample the obtained reads based on the transcript length

in order to simulate the coverage of informative splice junctions.

We simulate the splicing of cassette exons in a set of genes G expressed in a population of cells

N. For each gene g 2 G, we simulate the splicing of one cassette exon j. The inclusion of j forms the

isoform jA, while the exclusion of the exons forms the isoform jB. The production of mRNA molecules

from jA in a single cell i 2 N is determined by the total expression of g, and by the action of the splic-

ing machinery of i.

Biological process
Splicing from pre-mRNA transcripts in individual cells
For each alternatively spliced gene g in a cell i, we simulate the expression of g and the splicing of

its cassette exon.

Xig expression of gene g in n:
aj;bj splicing rate distribution parameters:
	ij ~Betaðaj;bjÞ
XAij

~BinomialðXig;	ijÞ
XBij

¼ Xig �XAij

	Tij ¼ XAij
=Xig

Xig represents the total number of pre-mRNA transcribed from each gene across all cells. We sim-

ulate the total counts using SymSim, an in-silico approach for simulation of single cell gene expres-

sion by accounting for the biological sources of variation (Zhang et al., 2019). 	ij referred to as the

underlying splicing rate, is the probability of splicing in the cassette exon j of gene g in cell i. Notice

that in this simulation, each gene g only has one cassette exon j. In a biological context, 	ij would

be determined by intrinsic attributes of the cassette exon inherent of g (e.g. sequence, secondary

structure, binding sites), and by the profile of splicing factors expressed in n. XAij
and XBij

are respec-

tively the counts of mRNA molecules from isoforms gA and gB in i. Notice that XAij
is a random bino-

mial sample from the total number of expressed pre-mRNA molecules of g in i with a probability 	ij,

as it has been modeled before (Waks et al., 2011; Xiong et al., 2011; Faigenbloom et al., 2015;
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Shen et al., 2014). 	Tij is the true isoform ratio that include cassette exon j in cell i, obtained as the

proportion of molecules of gene g that include the cassette exon j.

The distribution of 	ij across all cells i 2 N is modeled as a Beta distribution, which has been used

in previous studies of single cell splicing (Barash et al., 2010; Song et al., 2017; Linker et al.,

2019). In this model, the distribution is determined by the parameters aj;bj 2 ð0;¥Þ. The values of

these parameter determine the distribution of 	ij across all cells as follows:

. Unimodal with intermediate mode if aj;bj > 1.

. Unimodal with mode 1 if 0 < aj < 1 � bj.

. Unimodal with mode 0 if 0 < bj < 1 � aj.

. Bimodal with modes 0 and 1 if 0 < aj;bj; < 1.

. Uniform if aj ¼ bj ¼ 1.

Notice that
aj

ajþbj
¼ �ð	ijÞ. By controlling the aj;bj parameters we can compare the biological

underlying distribution of the exon splicing rate with the observed distribution of 	 inferred from

single cell RNA-seq data.

To compare the results of our simulations under the binary-bimodal (alternative isoforms are pres-

ent in the population, but rarely in the same cell; Figure 3a,c,d) and non-binary unimodal (both iso-

forms regularly appear in the same cell; Figure 3b,e,f) models of splicing, we simulated 500

alternatively spliced exons for each model. For the first model, we simulated the underlying splicing

distribution of each exon as bimodal Beta distributions. For the second model, we simulated the

underlying splicing distributions of each exon with unimodal Beta distributions with intermediate

mode. For each cassette exon j in cell i:

. Binary-bimodal splicing:

	Bij
~ BetaðaBj

;bBj
Þ

aBj
;bBj

~

1

Uniformð1;30Þ

. Non-binary unimodal splicing:

	Uij
~BetaðaUj

;bUj
Þ

aUj
;bUj

~

1

Uniformð1;30Þ

To simulate a realistic scenario in both models, we simulated 500 additional exons that are consis-

tently included, and 500 that are consistently excluded. For the consistently included exons, we sam-

pled the parameters for Unimodal Beta distributions with mode 1 as

aj ~Uniformð1; 30Þ; bj ~
1

Uniformð1; 5Þ

For the consistently excluded exons, we sampled the parameters for Unimodal Beta distributions

with mode 0 as

aj ~
1

Uniformð1; 5Þ ; bj ~ Uniformð1; 30Þ

Technical process
mRNA capture into cDNA
After simulating the production of mRNAs of distinct isoforms in single cells, we simulate the process

of capture and sequencing of mRNA molecules from XAij
and XBij

.

c expected capture efficiency

cIng drawn from truncated normal with mean c and variance 0:002
CIng ~ Binomial ðXIng ;cIngÞ

The process of mRNA capture is simulated using SymSim. CIng is the number of mRNA molecules
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of isoform I 2 fgA;gBg for gene g on cell n. This number is sampled from the total number of mole-

cules for isoform that are present in the cell. c is a parameter that determines the expected capture

efficiency. cIng is the specific probability of capture of isoform I of gene g in cell n, which is drawn

from a truncated normal distribution with mean c. The variance of the truncated normal distribution

is set at 0.002, which is the default variance in SymSim. The distribution is truncated at 0 and at 1.

RNA sequencing
Sequencing is also simulated using SymSim’s approach, which includes a length-dependent PCR

amplification bias modeled from experimental data.

lgB sampled from SymSim0s database
leA sampled from exon database

lgA ¼ lgB þ leA
RIng ¼ True2ObservedCountsðCIng ; lgI Þ

lgB is the length of the mRNA transcript of isoform gB of gene g, which represents the isoform that

skips the alternative exon. lgA is the length of the mRNA transcript of the isoform gA, which includes

the exon. We assigned the lengths to the excluded isoform by drawing without replacement from

SymSim’s transcript length database. leA is the length of the alternative exon included in isoform gA;

it is sampled without replacement from a database of skipped exon lengths from the human

genome. RIng is the total number of observed reads from isoform I of gene g in cell n obtained from

single cell RNA sequencing. These are obtained using the True2ObservedCounts function from Sym-

Sim with the modification previously described.

Splice junction coverage and observed 	 calculation
We also simulate the down-sampling from observing only reads that overlap the splice junctions that

are informative about the splicing of the cassette exon.

lr ¼ read length ðconstantÞ
jAg

¼ 4ðlr � 1Þ
lAg

jBg
¼ 2ðlr � 1Þ

lBg

SJIng ~ BinomialðRIng ; jIgÞ

lr corresponds to the constant read length from the sequencing process. SJIng is the number of

reads that cover informative splice junctions for isoform I 2 fgA;gBg for gene g in cell n, which are

sampled from the total number of reads covering the isoform. In order to account for variation in

read density along transcripts, we sample the splice junction reads of each event from a binomial

distribution with probabilities jAg
and jBg

, which are respectively the probabilities of a given read to

cover the splice junctions informative with isoform gA and gB. We derive these probabilities from the

length of the simulated reads, and the length of the transcript. Each read can be mapped to 2ðlr � 1Þ
positions in the transcript that overlap one splice junction. Thus, the probability of covering one

given splice junction is defined as the number of possible positions in the transcript that are informa-

tive for the splice junction, divided by the length of the transcript. jAg
is the probability to map to

any of the two splice junctions that are informative for isoform gA. jBg
is the probability to map to

one single splice junction, since there is only one junction informative for isoform gB. Coverage depth

variance might sometimes exceed the variance of the binomial distribution, such that the informative

reads for one isoform might be much more likely to be sequenced than the informative reads of the

other isoform in a given cell. In these situations, the technical variance of 	̂ and the number of spuri-

ous binary observations could be higher than modeled in these simulations.

Finally, the observed 	 is calculated as:

	̂ij ¼
SJAij

SJAij
þ SJBij

Buen Abad Najar et al. eLife 2020;9:e54603. DOI: https://doi.org/10.7554/eLife.54603 20 of 24

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.54603


Simulator variants for studying sources of variation
Gene expression and underlying 	
We tested the effect of the interplay between gene expression and the ratio of isoforms that contain

the cassette exon on the observed distribution of 	. For this test, we simulated a population of 300

single cells with 500 genes, indexed 1 to 500. For every cell i, the expression of gene g is fixed as

Xig ¼ g, where g 2 f1; 2; :::; 500g. That is, every gene had a different level of expression, and the

expression of every individual gene was constant across all cells. For each simulation, we fixed the

underlying splicing rate of all cassette exons across all cells. That is, for each cassette exon j of gene

g, in every cell, we set 	ij ¼ constant. We ran the simulator with different underlying splicing rates,

with 	ij 2 f0:01; 0:02; :::; 0:5g. For every simulation, we used an average capture efficiency c ¼ 0:1. We

ran 30 simulations for every fixed 	ij value. For every fixed 	ij and for every fixed expression level g,

we took the average proportion of cells with binary values (	̂ = 0 or 1) for the observed 	̂. That is,

we reported:

1

1500

X

30

sim¼1

X

300

i¼1

Ið	̂ij ¼ 1Þþ Ið	̂ij ¼ 0Þ

Gene expression and capture efficiency
We tested the effect of capture efficiency in 	 observations. To minimize the effect of the underlying

	 in the simulations, in this analysis we fixed the true splicing rate of all exons to 	Tng ¼ 0:5 (we

achieved this by setting XAij ¼ XBij ¼ 1

2
Xig). We ran simulations for each possible value for the average

capture efficiency in c 2 f0:01; 0:011; :::; 0:1g. For each tested average capture efficiency rate, we

ranked the alternative splicing events by the number of reads that cover the informative splice junc-

tions. For each alternative event, we observed the proportion of cells that present only one type of

isoform (either including the cassette exon or excluding it, but not both).
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