Abstract

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Geoffrey MW Cook

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Catia Sousa

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Schaeffer

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharine Wiles

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Prem Jareonsettasin

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Asanish Kalyanasundaram

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Eleanor Walder

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Catharina Casper

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Serena Patel

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Pei Wei Chua

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Gioia Riboni-Verri

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Mansoor Raza

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Nol Swaddiwudhipong

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrew Hui

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Ameer Abdullah

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Saj Wajed

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Roger J Keynes

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    rjk10@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1557-7684

Funding

Medical Research Council

  • Geoffrey MW Cook
  • Roger J Keynes

Wellcome

  • Geoffrey MW Cook
  • Roger J Keynes

Spinal Research

  • Julia Schaeffer

Trinity College, University of Cambridge

  • Roger J Keynes

University of Cambridge

  • Geoffrey MW Cook
  • Catia Sousa
  • Julia Schaeffer
  • Katharine Wiles
  • Prem Jareonsettasin
  • Asanish Kalyanasundaram
  • Eleanor Walder
  • Catharina Casper
  • Serena Patel
  • Pei Wei Chua
  • Gioia Riboni-Verri
  • Mansoor Raza
  • Nol Swaddiwudhipong
  • Andrew Hui
  • Ameer Abdullah
  • Saj Wajed
  • Roger J Keynes

Rosetrees Trust

  • Geoffrey MW Cook
  • Julia Schaeffer
  • Roger J Keynes

The Anatomical Society

  • Eleanor Walder

Amgen Foundation Summer Scholarship

  • Gioia Riboni-Verri

The authors declare that the funders provided research equipment and laboratory consumables, as well as salary support for Julia Schaeffer, Eleanor Walder and Gioia Riboni-Verri.

Ethics

Animal experimentation: Chick embryos were used for this work, and all experiments were carried out at earlier developmental stages than those that require ethical approval.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Publication history

  1. Received: December 19, 2019
  2. Accepted: May 23, 2020
  3. Accepted Manuscript published: May 26, 2020 (version 1)
  4. Accepted Manuscript updated: May 28, 2020 (version 2)
  5. Version of Record published: June 3, 2020 (version 3)
  6. Version of Record updated: June 12, 2020 (version 4)

Copyright

© 2020, Cook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,145
    Page views
  • 164
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Geoffrey MW Cook
  2. Catia Sousa
  3. Julia Schaeffer
  4. Katharine Wiles
  5. Prem Jareonsettasin
  6. Asanish Kalyanasundaram
  7. Eleanor Walder
  8. Catharina Casper
  9. Serena Patel
  10. Pei Wei Chua
  11. Gioia Riboni-Verri
  12. Mansoor Raza
  13. Nol Swaddiwudhipong
  14. Andrew Hui
  15. Ameer Abdullah
  16. Saj Wajed
  17. Roger J Keynes
(2020)
Regulation of nerve growth and patterning by cell surface protein disulphide isomerase
eLife 9:e54612.
https://doi.org/10.7554/eLife.54612

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Francisco Xavier Galdos, Carissa Lee ... Sean Wu
    Research Article

    During mammalian development, the left and right ventricles arise from early populations of cardiac progenitors known as the first and second heart fields, respectively. While these populations have been extensively studied in non-human model systems, their identification and study in vivo human tissues have been limited due to the ethical and technical limitations of accessing gastrulation stage human embryos. Human induced pluripotent stem cells (hiPSCs) present an exciting alternative for modeling early human embryogenesis due to their well-established ability to differentiate into all embryonic germ layers. Here, we describe the development of a TBX5/MYL2 lineage tracing reporter system that allows for the identification of FHF- progenitors and their descendants including left ventricular cardiomyocytes. Furthermore, using single cell RNA sequencing (scRNA-seq) with oligonucleotide-based sample multiplexing, we extensively profiled differentiating hiPSCs across 12 timepoints in two independent iPSC lines. Surprisingly, our reporter system and scRNA-seq analysis revealed a predominance of FHF differentiation using the small molecule Wnt-based 2D differentiation protocol. We compared this data with existing murine and 3D cardiac organoid scRNA-seq data and confirmed the dominance of left ventricular cardiomyocytes (>90%) in our hiPSC-derived progeny. Together, our work provides the scientific community with a powerful new genetic lineage tracing approach as well as a single cell transcriptomic atlas of hiPSCs undergoing cardiac differentiation.

    1. Developmental Biology
    2. Neuroscience
    Simone Rey, Henrike Ohm ... Christian Klämbt
    Research Article

    Neuronal information conductance often involves the transmission of action potentials. The spreading of action potentials along the axonal process of a neuron is based on three physical parameters: The axial resistance of the axon, the axonal insulation by glial membranes, and the positioning of voltage-gated ion channels. In vertebrates, myelin and channel clustering allow fast saltatory conductance. Here we show that in Drosophila melanogaster voltage-gated sodium and potassium channels, Para and Shal, co-localize and cluster in an area resembling the axon initial segment. The local enrichment of Para but not of Shal localization depends on the presence of peripheral wrapping glial cells. In larvae, relatively low levels of Para channels are needed to allow proper signal transduction and nerves are simply wrapped by glial cells. In adults, the concentration of Para increases and is prominently found at the axon initial segment of motor neurons. Concomitantly, these axon domains are covered by a mesh of glial processes forming a lacunar structure that possibly serves as an ion reservoir. Directly flanking this domain glial processes forming the lacunar area appear to collapse and closely apposed stacks of glial cell processes can be detected, resembling a myelin-like insulation. Thus, Drosophila development may reflect the evolution of myelin which forms in response to increased levels of clustered voltage-gated ion channels.