Abstract

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Geoffrey MW Cook

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Catia Sousa

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Schaeffer

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Katherine Wiles

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Prem Jareonsettasin

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Asanish Kalyanasundaram

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Eleanor Walder

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Catharina Casper

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Serena Patel

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Pei Wei Chua

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Gioia Riboni-Verri

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Mansoor Raza

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Nol Swaddiwudhipong

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrew Hui

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Ameer Abdullah

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Saj Wajed

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Roger J Keynes

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    rjk10@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1557-7684

Funding

Medical Research Council

  • Geoffrey MW Cook
  • Roger J Keynes

Wellcome

  • Geoffrey MW Cook
  • Roger J Keynes

Spinal Research

  • Julia Schaeffer

Trinity College, University of Cambridge

  • Roger J Keynes

University of Cambridge

  • Geoffrey MW Cook
  • Catia Sousa
  • Julia Schaeffer
  • Katherine Wiles
  • Prem Jareonsettasin
  • Asanish Kalyanasundaram
  • Eleanor Walder
  • Catharina Casper
  • Serena Patel
  • Pei Wei Chua
  • Gioia Riboni-Verri
  • Mansoor Raza
  • Nol Swaddiwudhipong
  • Andrew Hui
  • Ameer Abdullah
  • Saj Wajed
  • Roger J Keynes

Rosetrees Trust

  • Geoffrey MW Cook
  • Julia Schaeffer
  • Roger J Keynes

The Anatomical Society

  • Eleanor Walder

Amgen Foundation Summer Scholarship

  • Gioia Riboni-Verri

The authors declare that the funders provided research equipment and laboratory consumables, as well as salary support for Julia Schaeffer, Eleanor Walder and Gioia Riboni-Verri.

Ethics

Animal experimentation: Chick embryos were used for this work, and all experiments were carried out at earlier developmental stages than those that require ethical approval.

Copyright

© 2020, Cook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,321
    views
  • 190
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Geoffrey MW Cook
  2. Catia Sousa
  3. Julia Schaeffer
  4. Katherine Wiles
  5. Prem Jareonsettasin
  6. Asanish Kalyanasundaram
  7. Eleanor Walder
  8. Catharina Casper
  9. Serena Patel
  10. Pei Wei Chua
  11. Gioia Riboni-Verri
  12. Mansoor Raza
  13. Nol Swaddiwudhipong
  14. Andrew Hui
  15. Ameer Abdullah
  16. Saj Wajed
  17. Roger J Keynes
(2020)
Regulation of nerve growth and patterning by cell surface protein disulphide isomerase
eLife 9:e54612.
https://doi.org/10.7554/eLife.54612

Share this article

https://doi.org/10.7554/eLife.54612

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.