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Abstract Antimicrobial resistance (AMR) is a global threat. A better understanding of how

antibiotic use and between-ward patient transfers (or connectivity) impact population-level AMR in

hospital networks can help optimize antibiotic stewardship and infection control strategies. Here,

we used a metapopulation framework to explain variations in the incidence of infections caused by

seven major bacterial species and their drug-resistant variants in a network of 357 hospital wards.

We found that ward-level antibiotic consumption volume had a stronger influence on the incidence

of the more resistant pathogens, while connectivity had the most influence on hospital-endemic

species and carbapenem-resistant pathogens. Piperacillin-tazobactam consumption was the

strongest predictor of the cumulative incidence of infections resistant to empirical sepsis therapy.

Our data provide evidence that both antibiotic use and connectivity measurably influence hospital

AMR. Finally, we provide a ranking of key antibiotics by their estimated population-level impact on

AMR that might help inform antimicrobial stewardship strategies.

Introduction
Antimicrobial resistance (AMR) of pathogenic bacteria progresses worldwide, imposing a consider-

able burden of morbidity, mortality and healthcare costs (Laxminarayan et al., 2013; Cassini et al.,

2019). AMR is increasingly recognized to emerge in various settings including agriculture

(Johnson et al., 2016) or polluted environments (Lübbert et al., 2017; Venter et al., 2017). How-

ever, hospitals continue to be important hotspots for AMR in clinically-relevant pathogens

(Chatterjee et al., 2018; David et al., 2019) due to the confluence of strong antibiotic selection

pressure, fragile patients, and highly resistant pathogens that can disseminate between wards and

facilities through patient transfers (Safdar and Maki, 2002; Snitkin et al., 2012). These conditions

result in hospitals becoming reservoirs of resistant bacteria (Clarivet et al., 2016; Cohen, 1992;

Pogue et al., 2013), which can later enter the community (Huttner et al., 2013).

The primary hospital-based strategies against AMR are antimicrobial stewardship, which aims to

lower the antibiotic pressure, and infection control whose goal is to reduce the transmission of
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pathogens (Manning et al., 2018). The need for such strategies is widely accepted but because they

are often implemented together, the relative importance of each is unclear (Chatterjee et al., 2018;

Goff et al., 2017). The details of how to best implement these strategies are hotly debated

(Lemmen and Lewalter, 2018), especially regarding which antibiotics should be restricted first as a

part of antibiotic stewardship strategies (Chastain et al., 2018) or the risk-benefit balance of screen-

ing-based patient isolation procedures to reduce transmission (Kardaś-Słoma et al., 2017;

Robotham et al., 2016). Designing effective antibiotic stewardship strategies has been hindered by

the paucity of evidence concerning which antibiotics exert the strongest selection pressure. Current

rankings of antibiotics for de-escalation and sparing strategies rely on expert consensus with partial

agreement (Weiss et al., 2015), themselves based on conflicting evidence (Acar, 1997;

Huttner et al., 2016). This is further complicated by the fact that the association between antibiotic

use and resistance is not uniform across pathogen species (Bell et al., 2014) or classes of antibiotics

(Niehus et al., 2020). Moreover, antibiotic consumption can also have long-term effects on the car-

riage of resistant bacteria within patients (Niehus et al., 2020).

Understanding the drivers of AMR at the hospital level requires consideration not only of the

selection pressure from antibiotics on individual patients, but also of the transmission and dissemina-

tion of drug-resistant pathogens in the patient population (Lipsitch, 2001; Lipsitch and Samore,

2002). However, we lack a quantitative understanding of the respective impacts of selection and

transmission on the incidence of AMR infections in hospitals. Observational studies of AMR usually

report on the proportion of resistant variants in a limited set of species, which conceals the overall

AMR burden and can make interpretation difficult when resistant variants apparently increase in pro-

portion while decreasing in incidence (Burton, 2009). Moreover, linking antibiotic use and AMR

prevalence at the population level is difficult due to the confounding effects of bacterial transmission

and the complexity of the ecological processes underlying AMR (review in Schechner et al., 2013).

Thus, studies of AMR in hospitals could benefit from ecological frameworks able to simultaneously

model the impact of antibiotic use and patient transfers on the incidence of infections with the most

relevant pathogens. Metapopulation ecology is such a framework. It was introduced by Levins, 1969

to explain the persistence of agricultural pests across a set of habitat patches, such as crop fields,

and refined by Hanski to account for the characteristics of patches, such as their size, and the con-

nectivity between them (Hanski, 1998; Hanski, 1994). The metapopulation concept, in which popu-

lations of organisms are spread across inter-connected patches with varying characteristics, is useful

to describe bacterial pathogens in a hospital network containing wards with different sizes and levels

of antibiotic pressure, connected by the transfers of infected patients. Models using the metapopu-

lation framework, beyond their frequent use in wildlife and conservation biology (Dolrenry et al.,

2014; Heard et al., 2015; MacPherson and Bright, 2011), have recently provided theoretical

grounds for pathogen persistence in the healthcare setting (Spagnolo et al., 2018). So far, however,

metapopulation models of hospital AMR have been applied to simulated rather than empirical data

(Spagnolo et al., 2018; Vilches et al., 2019).

Here, we used a metapopulation framework to model and isolate the population-level effects of

antibiotic use and inter-ward connectivity on the incidence of infections with major pathogen species

and their drug-resistant variants within a 357-ward hospital network, using detailed data

collected over the course of one year. Our objectives were: (1), to determine the respective impacts

of antibiotic use and connectivity on the incidence of infections with resistant pathogens at the pop-

ulation level; and (2), to compare the impacts of the use of specific antibiotics on the ward-level inci-

dence of AMR infections, after controlling for the effect of connectivity. Based on the association

patterns between the incidence of 17 pathogen variants and the use of 11 antibiotic classes, our

findings highlight both common patterns and species-specific behaviors of pathogens and provide a

ranking of key antibiotics by their estimated population-level impact on AMR.

Results

Distribution of bacterial pathogens and antibiotic use in a hospital
network
We analyzed pathogen isolation incidence in clinical samples, antibiotic use, and patient transfers in

357 hospital wards from the region of Lyon, France. Data for all three measures were collected
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during the same period from October 2016 to September 2017. The hospital network contained a

total of 4,685 beds. The median ward size was 12 beds (interquartile range, 5 to 20).

Ward-level data were aggregated from 13,915 infection episodes, defined as ward admissions

with �1 clinical sample positive for E. coli or one of the so-called ESKAPE pathogens (Enterococcus

faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas

aeruginosa and Enterobacter cloacae complex), collectively termed ESKAPE2 (Table 1). Pathogens

were grouped into species-resistance pattern combinations, namely 3rd-generation cephalosporin

(3GC)-resistant E. coli, E. cloacae complex and K. pneumoniae, carbapenem-resistant E. coli, E. cloa-

cae complex, K. pneumoniae, P. aeruginosa and A. baumannii, vancomycin-resistant E. faecium and

methicillin-resistant S. aureus (MRSA). Pathogen variants not falling into these resistance groups

were collectively referred to as the less-resistant variants (Table 1). The median yearly incidence of

infection episodes per ward was 24 (interquartile range, 7 to 55).

Infection episodes most frequently involved the less-resistant variants, especially E. coli, which

were also found in the largest number of wards (Table 1 and Figure 1—figure supplement 1). Resis-

tant variants were consistently less frequent than their less-resistant counterparts in all species (Fig-

ure 1—figure supplement 1). In enterobacteria (E. coli, K. pneumoniae and E. cloacae),

carbapenem-resistant variants were consistently less frequent than 3GC-resistant variants. Infections

with vancomycin-resistant E. faecium and carbapenem-resistant A. baumannii were exceptional, with

seven and twelve episodes respectively (Table 1).

To estimate the degree of concentration of each variant in the network, we calculated concentra-

tion indices defined as the probability that two random occurrences of the same variant originated

from the same ward, analogous to the asymptotic Simpson index (see Materials and methods). The

concentration index varies from 0% for a uniformly random distribution (each occurrence is in a dif-

ferent ward) to 100% for a maximally concentrated distribution (all occurrences are in the same

ward). The concentration of infection episodes was weak (<5%) for all variants, indicating a global

lack of clustering (Table 1). Concentration increased with resistance (~2-fold increase from the least

Table 1. Distribution of ESKAPE2 pathogen infection episodes in 357 hospital wards.

Species Resistance profile Acronym
No. of episodes (%),
n = 13,915

No. of wards (%),
n = 357

Concentration indexa (%)
(95% CI)

E. coli Susceptible to 3GC and
carbapenems

EC 6,303 (45.3) 328 (91.9) 0.6 (0.6, 0.7)

3GC-resistant 3GCREC 737 (5.3) 207 (58.0) 0.7 (0.6, 0.8)

Carbapenem-resistant CREC 24 (0.2) 24 (5.6) 1.4 (0.0, 3.9)

K. pneumoniae Susceptible to 3GC and
carbapenems

KP 1,133 (8.1) 249 (69.7) 0.7 (0.6, 0.8)

3GC-resistant 3GCRKP 530 (3.8) 175 (49.0) 0.9 (0.7, 1.0)

Carbapenem-resistant CRKP 43 (0.3) 32 (9.0) 1.7 (0.0, 3.5)

E. cloacae
complex

Susceptible to 3GC and
carbapenems

EB 277 (2.0) 140 (39.2) 1.0 (0.7, 1.3)

3GC-resistant 3GCREB 212 (1.5) 116 (32.5) 0.8 (0.5, 1.0)

Carbapenem-resistant CREB 102 (0.7) 74 (20.7) 0.7 (0.3, 1.1)

P. aeruginosa Carbapenem-susceptible PA 1,076 (7.7) 231 (64.7) 0.8 (0.7, 0.9)

Carbapenem-resistant CRPA 444 (3.2) 148 (41.5) 1.5 (1.2, 1.7)

A. baumannii Carbapenem-susceptible AB 96 (0.7) 61 (17.1) 1.3 (0.5, 2.1)

Carbapenem-resistant CRAB 12 (0.1) 10 (2.8) 3.0 (0.0, 9.8)

E. faecium Vancomycin-susceptible EF 503 (3.6) 133 (27.3) 1.4 (1.2, 1.6)

Vancomycin-resistant VREF 7 (<0.1) 7 (2.0) 0.0 (0.0, 9.6)

S. aureus Methicillin-susceptible SA 2,113 (15.2) 273 (76.5) 1.1 (1.0, 1.1)

Methicillin-resistant MRSA 303 (2.2) 151 (42.3) 0.7 (0.5, 0.9)

NOTE. aThe concentration index estimates the probability that two episodes taken at random occurred in the same ward. Here we report the concentra-

tion index as a percent (0–100%). 3GC, 3rd-generation cephalosporins.
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to the most resistant variant) in E. coli, K. pneumoniae, P. aeruginosa and A. baumannii, suggesting

an adaptation of resistant variants to more specific wards within the hospital network compared to

their less-resistant, less-concentrated counterparts. This pattern was not found in E. cloacae com-

plex, E. faecium or S. aureus, in which the concentration index remained comparable across resis-

tance categories.

Over the same period (October 2016 to September 2017), antibiotics were prescribed in 86.3%

of wards (Table 2), with a total consumption of 125.7 defined daily doses per year per bed (ddd/y/

b). Antibiotics usually suspected to select for AMR in the selected variants were grouped into 11

classes (Table 2). Antibiotics with comparatively rare use (e.g., rifampicin) were excluded. The distri-

bution of antibiotic use in the network was analyzed using the concentration index described above,

here representing the probability that two random drug doses were delivered in the same ward.

Antibiotic use was diffuse, with concentration indices < 4%, ranging from 0.8% for cefotaxime-ceftri-

axone and fluoroquinolones to 3.6% for oxacillin.

Antibiotic use and connectivity predict the incidence of drug-resistant
infections
We used multivariable generalized linear models (GLMs) within the metapopulation framework to

disentangle the influences of antibiotic pressure, connectivity, ward size, and ward type on the inci-

dence of infections with the selected pathogens and their resistant variants.

Connectivity quantifies the incoming flux of each pathogen variant in a downstream ward via the

transfer of infected patients from upstream wards. Practically, we estimated connectivity for each

variant and downstream ward as the sum of the direct transfers from each upstream ward multiplied

by the variant’s prevalence in that ward (see Materials and methods). Mean connectivity ranged

from 168.2 estimated introductions per year for less-resistant E. coli to 0.09 for vancomycin-resistant

E. faecium. Connectivity was always higher for the less-resistant variants compared to the resistant

variants, consistent with the higher prevalence of the former (Supplementary file 1 Table 1a).

Wards were characterized by their size (no. of beds) and type, representing patient fragility.

Ward type was coded as one of the following categorical variables: intensive care and blood cancer

units, progressive care units, and other wards. ‘Other wards’ was considered the reference category

Table 2. Distribution of the use of 11 antibiotics in 357 hospital wards.

Antibiotics Acronym
Prescription volume in ddd/y
(%)

No. of wards (%),
n = 357

Concentration indexa (%),
(95% CI)

Amoxicillin AMX 141,293 (24.0) 252 (70.6) 1.8 (1.7, 1.8)

Coamoxiclav AMC 78,072 (13.3) 247 (69.3) 1.0 (0.9, 1.0)

First- and second- generation cephalosporins 1GC/
2GC

12,915 (2.2) 191 (53.5) 1.2 (1.1, 1.3)

Non-antipseudomonal 3GCs, cefotaxime and
ceftriaxone

CTX/
CRO

53,406 (9.1) 259 (72.5) 0.8 (0.8, 0.9)

Antipseudomonal 3GCs, ceftazidime and
cefepime

CTZ/FEP 29,204 (5.0) 184 (51.5) 1.9 (1.8, 1.9)

Piperacillin-tazobactam TZP 27,593 (4.7) 198 (55.5) 1.9 (1.7, 1.9)

Carbapenems IPM/
MEM

25,093 (4.3) 204 (57.1) 1.5 (1.4, 1.6)

Oxacillin OXA 12,374 (2.1) 143 (40.1) 3.6 (3.1, 3.7)

Vancomycin and teicoplanin VAN/
TEC

25,376 (4.3) 206 (57.7) 1.5 (1.4, 1.5)

Fluoroquinolones FQ 52,549 (8.9) 249 (69.7) 0.8 (0.8, 0.8)

Aminoglycosides AMIN 12,745 (2.2) 207 (58.0) 1.9 (1.5, 1.9)

All antibioticsb - 589,014 (100) 308 (86.3) 0.8 (0.8, 0.8)

NOTE. aThe concentration index estimates the probability that two antibiotic ddds taken at random were prescribed in the same ward. Here we report the

concentration index as a percent (0–100%). bTotal consumption of systemic-use antibiotics (ATC class J01) including those not considered in the 11 specific

drug groups. 3GC, 3rd-generation cephalosporin; ddd, defined daily dose.
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in all models. In several pathogen variants, namely carbapenem-resistant E. coli, carbapenem-resis-

tant A. baumannii, and vancomycin-resistant E. faecium, the small sample size in one or several ward

categories prevented the inclusion of ward type as a model covariate.

We also considered that the distribution of infections across wards was a source of bias that

required a specific adjustment procedure (see Materials and methods). The local prevalence of spe-

cific infections (e.g., respiratory tract infections) in a ward influences both the antibiotic use and the

observed incidence of infections with a given pathogen, which might confound the relationship

between antibiotic use and incidence (Figure 1—figure supplement 2). However, the distribution of

infections would be difficult to represent as an adjustment covariate with a sufficiently small number

of categories. We used a proxy method to circumvent this issue. We assumed that the distribution

of infections directly influences the frequency and specimen types (e.g., respiratory vs. urinary tract

specimens) of microbiological samples in each ward. Under this assumption, we replaced the unrep-

resentable distribution of infections with a proxy variable summarizing the distribution of microbio-

logical samples. This proxy variable, which we refer to as the incidence control, was defined as the

ward-level incidence of a pathogen variant predicted by patterns of microbiological sampling alone.

As expected, the incidence control correlated with both antibiotic use and the incidence of infec-

tions in all prevalent variants (Figure 1—figure supplements 3 and 4). Of note, the incidence of

each variant also correlated with both antibiotic use (Figure 1—figure supplement 5) and connectiv-

ity (Figure 1—figure supplement 6) in bivariate analyses, except for the very rare A. baumannii and

E. faecium resistant variants. Hereafter, all models included the incidence control covariate to adjust

for the confounding effect of the distribution of infections.

The incidence of each pathogen variant was modeled in a separate multivariable quasi-Poisson

GLM (Figure 1). In these GLMs, global antibiotic use was associated with infection incidence in

seven pathogen variants independent of connectivity, ward size, and ward type (Figure 1), including

five resistant variants (3GC-resistant E. coli, 3GC-resistant K. pneumoniae, carbapenem-resistant K.

pneumoniae, 3GC-resistant E. cloacae, and carbapenem-resistant E. cloacae) and two less-resistant

variants (P. aeruginosa and E. faecium). The largest effect size was found in carbapenem-resistant K.

pneumoniae, in which every doubling of antibiotic use predicted a 47% increase in incidence (95%

confidence interval, 19% to 90%).

Connectivity predicted a higher incidence in all variants of P. aeruginosa and E. faecium, with a

stronger effect size in the resistant variants (11.5 and 43.7%, respectively) compared to their less-

resistant counterparts (6.1 and 15.3%). A significant association with connectivity was also found for

the less-resistant E. coli, although with a much smaller effect size (2.6%).

Ward characteristics only weakly predicted infection incidence compared to antibiotic use and

connectivity. Ward type, or patient fragility, predicted incidence in several variants, although with

large uncertainty margins. Interestingly, associations of incidence with intensive care and blood can-

cer units were negative (in E. coli, 3GC-resistant E. coli, 3GC-resistant E. cloacae, and MRSA) while

associations with progressive care units were positive (in 3GC-resistant K. pneumoniae and P. aerugi-

nosa). Ward size did not predict incidence in any variant.

Do associations between antibiotic use and resistance represent AMR
selection?
The metapopulation models illustrated in Figure 1 identified positive associations between total

antibiotic use in hospital wards and increased incidences of infections with the more resistant var-

iants of several species. Yet, a correlation with AMR does not necessarily establish a selective role of

antibiotics. For instance, a high incidence of resistant infections in a ward can increase antibiotic use

through prolonged or combined therapies (Schechner et al., 2013). Conversely, the prescription of

antibiotics always inactive against a variant is unlikely to be motivated by this variant’s incidence and

such antibiotics are more likely to provide a direct benefit to the resistant variant. Based on this

rationale, we propose stringent criteria to identify whether an association between the use of an

antibiotic and the incidence of a variant possibly reflects AMR selection (hereafter, possibly selective

associations; see Materials and methods). Under the hypothesis that antibiotic use is either a conse-

quence of AMR or spuriously correlated with AMR, the strength of an association between the use

of an antibiotic and the incidence of a variant should not depend on whether the association fulfills

the criteria for possible selection.
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To test this hypothesis, we identified possibly selective associations in our data and we examined

whether they were equally likely to be positive compared to other associations. We constructed

quasi-Poisson multivariable regression models where the total antibiotic use was replaced with the

use of specific antibiotics, along with the incidence control and connectivity covariates (Figure 2a

and b). Ward type and size, which were weak predictors of incidence in Figure 1 models, were

excluded to avoid introducing additional noise. The 17 variant-specific models each included all anti-

biotic groups as predictors, including antibiotic classes not expected to exert any direct selection

pressure on the variant, such as aminoglycosides on E. coli. The models yielded 187 coefficients of

Predicted % change of incidence

a

b

Not determined Not determined

Not determined Not determined

Not determined Not determined

Figure 1. Antibiotic use and connectivity predict the incidence of infection with ESKAPE2 pathogen variants.

Shown are the predicted percent changes in incidence (points) with 95% confidence interval (bars) for each variant

in each ward (n = 357) for every doubling of antibiotic use, connectivity (estimated no. of patients infected with the

same variant entering the ward), ward size (no. of beds), and ward type. All models were multivariable quasi-

Poisson regressions that included the incidence control covariate (see Materials and methods). Models involving

A. baumannii and E. faecium, which exhibited larger 95% confidence intervals due to smaller incidence of the

resistant variants, are shown with separate scales (panel b) for readability. In models of CREC, CRAB, and VREF

incidence, small sample size in at least one ward category prevented the inclusion of ward type as a covariate and

the estimation of the coefficient, marked as ‘not determined’. Variant acronyms are listed in Table 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Incidence of each variant during the study period.

Figure supplement 2. Directed acyclic graph representation of causal assumptions.

Figure supplement 3. Correlation of ward-level incidence control values with infection incidence in ESKAPE2
pathogen variants.

Figure supplement 4. Correlation of incidence control values with observed ward-level antibiotic consumption.

Figure supplement 5. Correlation of ward-level antibiotic consumption and infection incidence in ESKAPE2
variants.

Figure supplement 6. Correlation of ward-level connectivity and infection incidence in ESKAPE2 variants.
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which 19 (10.2%) represented possibly selective associations (see Materials and methods). The mean

percent change in incidence for every doubling of consumption volume in possibly selective associa-

tions was 6.5%, compared to 0.9% in other associations (95% CI of the difference of the means, 0.6

to 10.6%). Three of the four strongest possibly selective associations involved cefotaxime-ceftriax-

one, which selected for 3GC-resistant E. coli, K. pneumoniae and P. aeruginosa; the other involved

carbapenems selecting for carbapenem-resistant P. aeruginosa. Overall, the larger magnitude of the

coefficients of possibly selective associations suggests that the local, ward-level selection of drug-

resistant variants by antibiotics is measurably pervasive throughout our hospital network.

Quantifying the drivers of resistance to first-line sepsis therapy
From a clinical standpoint, the most immediate consequence of AMR is the failure to control sepsis

with empirical antibiotics, mainly carbapenems and the non-antipseudomonal 3GCs cefotaxime and

ceftriaxone. Because such failure can equally result from acquired or intrinsic resistance, the inci-

dence of intrinsically resistant pathogens such as E. faecium is of equal clinical importance as that of

pathogen variants with acquired resistance mechanisms. To examine the impact of antibiotics on

both intrinsic and acquired resistance, we modeled the cumulative incidence of infections with 3GC-

and/or carbapenem-resistant variants of the selected pathogens (see Materials and methods).

In these models, antibiotic use was the strongest predictor of the incidence of both carbapenem-

resistant (6.5% increase in incidence for every doubling of consumption volume, 95% CI, 2.5 to

11.0%) and 3GC-resistant infections (5.1% increase, 95% CI, 2.7 to 7.5%; Figure 3a). Connectivity

better predicted the incidence of carbapenem-resistant infections (4.8%, 95% CI, �0.4 to 10.7%)

compared with 3GC-resistant infections (1.0%, 95% CI, �2.3 to 4.5%), in line with the comparatively

stronger association of connectivity with the incidence of individual carbapenem-resistant variants

(Figure 1). Ward size had no measurable effect in either model. Carbapenem-resistant infections

were not associated with ward type, while 3GC-resistant infections were positively associated with

**_____
a

b

c

PS

PS

PS

PS

PS

PS

PS

PS

PS

PS

PS

PS

PS

PS

PSPS PS

Predicted % change of incidence per doubling of consumption volume

PS, possibly selective association

PS

PS

Figure 2. Possibly selective associations between the use of specific antibiotics and the incidence of infection with ESKAPE2 pathogen variants. Shown

are the predicted percent changes in incidence (points) with 95% confidence interval (bars) for each variant in each ward (n = 357) for every doubling in

the consumption volume of 11 antibiotic groups, based on multivariable quasi-Poisson regression models of the incidence of each variant in each ward

(n = 357) that included the connectivity and incidence control covariates (see Materials and methods). Associations classified as possibly selective

(n = 19) are indicated by a ‘PS’ mark. Models involving A. baumannii and E. faecium, which exhibited larger 95% confidence intervals due to smaller

incidence of the resistant variants, are shown with separate scales (panel b) for readability. (c), possibly selective associations had higher coefficients

compared to other associations. The center line indicates the median; box limits indicate the upper and lower quartiles; whiskers indicate the 1.5x

interquartile range; points indicate the individual coefficients. **p<0.01, two-sided Mann–Whitney U-test. Acronyms of pathogen variants and antibiotics

are listed in Tables 1 and 2, respectively.
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Predicted % change of incidence

a

b

c

Figure 3. Global and specific antibiotics consumption predict the incidence of infection with 3rd-generation cepalosporin- or carbapenem-resistant

ESKAPE2 pathogen variants. (a) Predicted percent change in incidence (points) with the 95% confidence interval (bars) of all 3GCR and CR infections for

every doubling of antibiotic use, connectivity (estimated no. of patients infected with the same variant entering the ward), ward size (no. of beds); and

ward type, based on quasi-Poisson regression models of the pooled incidence of 3GCR and CR infections in each ward (n = 357) that included the

incidence control covariate (see Materials and methods). (b) Predicted incidence and 95% confidence bands of infections with 3GCR and CR pathogen

variants depending on the consumption of CTX/CRO, IPM/MEM, and TZP, in models that included connectivity, the incidence control, and the

consumption of 8 other antibiotic groups as covariates. (c) Consumption patterns of CTX/CRO, IPM/MEM, and TZP per ward in the hospital network.

Variants classified as 3GCR were 3GCREC, 3GCRKP, CRKP, 3GCREB, CREB, PA, CRPA, AB, CRAB, EF, VREF, and MRSA; the CR category included

CREC, CRKP, CREB, CRPA, CRAB, EF, VREF, and MRSA. Acronyms of pathogen variants and antibiotics are listed in Tables 1 and 2, respectively.
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progressive care units and negatively associated with intensive care and blood cancer units

(Figure 3a). These findings provide an unambiguous link between population-level antibiotic use

and global resistance to empirical sepsis therapy that was robust to confounding by connectivity,

microbiological sampling patterns, and other ward characteristics.

To identify the antibiotics whose use was most strongly associated with global carbapenem and

cefotaxime-ceftriaxone resistance, we examined the effect of replacing the total antibiotic use in our

models with individual antibiotic classes, similar to Figure 2 models. Besides the consumption of

cefotaxime-ceftriaxone and carbapenems, the consumption of piperacillin-tazobactam was a strong

predictor of the incidence of both 3GC- or carbapenem-resistant infections (Table 3). To visualize

the independent associations of incidence with the use of cefotaxime-ceftriaxone, carbapenems and

piperacillin-tazobactam, we plotted the average ward-level infection incidence predicted by varia-

tions in the consumption volumes in models including the connectivity and incidence control covari-

ates (Figure 3b). The incidence of 3GC-resistant infections was predicted by the consumption of

cefotaxime-ceftriaxone (4.8% increase, 95% CI, 1.5 to 8.2%) but not carbapenems (1.4% increase,

95% CI, �1.7 to 4.6%). In the same vein, the use of carbapenems, but not 3GCs, predicted the inci-

dence of carbapenem-resistant infections, although with a wide uncertainty margin (5.1% increase,

95% CI, �0.6 to 11.1%). Strikingly, the use of piperacillin-tazobactam predicted the incidence of

both 3GC-resistant (5.9% increase, 95% CI, 2.9 to 9.0%) and carbapenem-resistant infections (10.3%

increase, 95% CI, 5.0 to 16.0%). In both models, the amplitude of the piperacillin-tazobactam coeffi-

cient outweighed those of all other antibiotics (Table 3). Overall, these results indicate a specific

association of cefotaxime-ceftriaxone and, to a slightly lesser extent, carbapenem use with resistance

to the same antibiotic group, but not other groups, and identify a major role of piperacillin-tazobac-

tam consumption in predicting the incidence of both 3GC- and carbapenem-resistant infections. To

propose a unified ranking of the population-level impact of antibiotics on 3GC and carbapenem

resistance, a final model was constructed by pooling all 3GC- and carbapenem-resistant variants

together (Table 3). In this model, piperacillin-tazobactam and cefotaxime-ceftriaxone had the largest

positive coefficients while 1GC/2GC and coamoxiclav had the largest negative coefficients (Table 3).

Discussion
Understanding the respective impacts of antibiotic use and connectivity on the incidence of drug-

resistant infections is essential for optimizing interventions against AMR. Pathogens whose incidence

is strongly predicted by antibiotic use might be most effectively targeted by antibiotic restrictions.

Table 3. Associations between the consumption volume of 11 antibiotics and the cumulative

incidence of 3GC- and/or carbapenem-resistant infections in 357 wards.

Predicted percent change in incidence (95% CI) per doubling of consumption volume

Antibiotics 3GCR incidence model CR incidence model 3GCR or CR incidence model

TZP 5.9 (2.9, 9.0) 10.3 (5.0, 16.0) 6.1 (3.1, 9.2)

CTX/CRO 4.8 (1.5, 8.2) 1.8 (-3.7, 7.6) 4.6 (1.4, 8.0)

AMX 2.7 (-1.5, 7.0) 3.6 (-3.4, 11.2) 2.7 (-1.4, 7.0)

CTZ/FEP 1.7 (-1.0, 4.5) 3.3 (-1.5, 8.3) 1.6 (-1.1, 4.4)

IPM/MEM 1.4 (-1.8, 4.7) 5.1 (-0.6, 11.1) 1.5 (-1.6, 4.8)

FQ 0.5 (-1.9, 2.9) �1.2 (-5.2, 3.0) 0.4 (-1.9, 2.8)

OXA �0.6 (-2.2, 1.1) �2.0 (-4.6, 0.7) �0.6 (-2.2, 1.0)

AMIN �1.7 (-4.3, 0.9) �1.1 (-5.4, 3.6) �1.7 (-4.3, 0.9)

VAN/TEC �2.3 (-4.9, 0.4) �3.8 (-8.3, 0.9) �2.3 (-4.9, 0.5)

1GC/2GC �2.1 (-4.0,–0.2) �2.3 (-5.4, 1.0) �2.1 (-4.0,–0.3)

AMC �4.1 (-7.0,–1.1) �5.8 (-10.6,–0.7) �4.1 (-7.0,–1.1)

NOTE. a Percent change was estimated from multivariable quasi-Poisson regression models that included the con-

nectivity and the incidence control covariates (see Materials and methods). 3GCR, 3rd-generation cephalosporins-

resistant infections; CR, carbapenem-resistant infections. Acronyms of antibiotics are listed in Table 2.
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On the other hand, infection control interventions might be most relevant against pathogens whose

incidence is predicted by connectivity. By applying a metapopulation framework to explain variations

in infection incidences across a large network of hospital wards, we found that both antibiotic use

and connectivity independently contribute to ward-level AMR in several pathogen species. Our study

also provides the first quantitative ranking of the predicted impact of several key antibiotics on the

global burden of drug-resistant infections in a hospital network.

While previous theoretical work based on modeling and simulation has predicted how patient

transfers contribute to AMR prevalence through pathogen dissemination, they have typically consid-

ered only a single resistant variant or used a generic simulated pathogen (Donker et al., 2017;

Donker et al., 2010; Vilches et al., 2019). Our study provides empirical evidence to support these

predictions in general, while identifying substantial variation in the response to connectivity between

different species and variants (Figure 1). In our closed network model of the hospital, the influence

of connectivity on the incidence of a pathogen variant is expected to be higher if the variant is

endemic to the hospital, its prevalence varies across wards, and changes from one variant category

to another are rare. If a variant is frequently introduced from outside of the network, the contribution

of within-network movements, hence of connectivity, to the prediction of the local incidence will be

diminished. The measured influence of connectivity should also be reduced if a variant frequently

undergoes transitions between resistance categories (e.g., by evolving or losing resistance) because

local emergence will affect incidence more strongly than inter-ward introduction.

Consistent with this theoretical interpretation of connectivity, we found that its influence was

strongest in the hospital-endemic pathogens P. aeruginosa and E. faecium (Blanc et al., 2007;

Wurster et al., 2016; Zhou et al., 2020). Intriguingly, MRSA incidence was not predicted by connec-

tivity. This is at odds with the classical perception of MRSA as typically nosocomial and, by exten-

sion, hospital-endemic. However, available evidence does not strongly support the qualification of

MRSA as a hospital-endemic pathogen in our setting. In France, the proportions of MRSA among S.

aureus are comparable in community and hospital settings, at about 10% (ECDC, 2019;

ONERBA France, 2018; Santé Publique France, 2019). MRSA population structures in hospitals

and the community are comparably dominated by the so-called ST8 Lyon clone which is equally

found in in- and outpatients (Dauwalder et al., 2008). Finally, MRSA infections were especially dif-

fuse in our network, with a concentration index even lower than that of the less-resistant S. aureus

infections (Table 1). Collectively, this does not support the conclusion that MRSA concentrates in

French hospitals compared to the community, which might explain why connectivity did not predict

MRSA incidence in our study.

The incidence of global carbapenem-resistant infections was strongly predicted by connectivity

(Figure 3), with an effect size comparable to that of antibiotic use, while connectivity did not predict

global 3GC-resistant infections. This suggests that reducing connectivity with infection control inter-

ventions could be more effective at preventing the spread of carbapenem-resistant pathogens

between wards compared to 3GC-resistant pathogens. Contrasting with hospital-endemic patho-

gens, connectivity was a comparatively weaker predictor for community-associated variants (3GC-

resistant E. coli and K. pneumoniae) that enter from outside the hospital network, and in variants

whose resistance is selected locally because they can frequently shift between susceptible and resis-

tant categories. Indeed, the weak association of connectivity with the incidence of resistant E. cloa-

cae complex variants, for instance, might be explained by the plasticity of their resistance profile,

facilitating their local selection. While resistance in E. coli and K. pneumoniae typically requires gene

acquisition (Manges et al., 2019; Wyres and Holt, 2016), E. cloacae complex can resist cephalo-

sporins and carbapenems through increased AmpC beta-lactamase and decreased porin expression

(Pavez et al., 2016; Babouee Flury et al., 2016; Lee et al., 2017). Such resistance emerges through

adaptation and de novo mutations that are rapidly selected from the local reservoir of susceptible

progenitors under antibiotic selection pressure (Hawken et al., 2018; Moradigaravand et al.,

2016).

Ecological studies have repeatedly identified associations between the use of antibiotics and

AMR prevalence, but such associations do not necessarily reflect AMR selection (Schechner et al.,

2013). Specific associations at the level of antibiotic and variant pairs are not all equally likely to

result from selection by antibiotics or from increased antibiotic use in response to AMR. Based on

medical and biological reasoning, we identified associations more likely to represent possible selec-

tion and showed that the average strength of these associations outweighed the others (Figure 2).
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Noteworthy, several associations with a sizeable strength could not be formally classified as possibly

selective but might reflect co-selection. The association of cefotaxime-ceftriaxone with carbapenem-

resistant variants in K. pneumoniae, but not in E. coli, possibly reflected selection for the highly fre-

quent 3GC-resistance in carbapenemase-producing K. pneumoniae. This contrasts with E. coli Oxa48
producers that frequently remain susceptible to 3GCs but resistant to piperacillin-tazobactam

(Huang et al., 2014), consistent with the strong association between the use of piperacillin-tazobac-

tam and the incidence of carbapenem-resistant E. coli infections (Figure 2a). These findings suggest

that the associations between antibiotic use and resistance preferentially reflected AMR selection by

antibiotics rather than adaptation of antibiotic use in response to AMR. However, this observation

does not eliminate temporal ambiguity between antibiotic use and resistance in our models. Further

research using, for instance, multi-state models or time-series analyses, may better clarify this

ambiguity.

Because intrinsic and acquired resistances to an antibiotic equally lead to treatment failure, we

modeled the pooled incidences of infections with 3GC- or carbapenem-resistant variants of the

ESKAPE2 pathogens, including those with intrinsic resistance. This approach allowed us to rank anti-

biotics by their potential association strength with global AMR. The use of piperacillin-tazobactam

and cefotaxime-ceftriaxone predicted 3GC resistance and the use of piperacillin-tazobactam pre-

dicted carbapenem resistance (Figure 3). The positive association of the use of piperacillin-tazobac-

tam with both 3GC- and carbapenem-resistant infections deserves further attention. Based on its in

vitro efficacy against extended-spectrum beta-lactamase (ESBL)-producing enterobacteria, piperacil-

lin-tazobactam has been repeatedly considered as an alternative drug of choice in carbapenem-spar-

ing strategies (Harris et al., 2015; Peterson, 2008). The strategy of replacing carbapenems with

piperacillin-tazobactam assumes: (1), that piperacillin-tazobactam is clinically as effective as carbape-

nems on piperacillin-tazobactam-susceptible pathogens; and (2), that AMR selection under piperacil-

lin-tazobactam pressure is weaker than under carbapenem pressure, as reflected by a recent

consensus-based ranking of beta-lactams for de-escalation therapy (Weiss et al., 2015). Yet, in sev-

eral recent reports including a multicenter randomized clinical trial, piperacillin-tazobactam treat-

ment of sepsis with ESBL-producing enterobacteria was associated with poorer outcomes compared

to carbapenem treatment (Harris et al., 2018; Ofer-Friedman et al., 2015; Tamma et al., 2015).

From an epidemiological standpoint, studies of the respective associations of piperacillin-tazobac-

tam and carbapenem use with AMR yielded conflicting results. At the population level, the incidence

of carbapenem-resistant enterobacteria was negatively associated with the use of piperacillin-tazo-

bactam in a 5 year, single-hospital trend analysis study (McLaughlin et al., 2013). At the patient

level, however, the exposure to piperacillin-tazobactam was associated with the acquisition of carba-

penem-resistant P. aeruginosa in a meta-analysis (Raman et al., 2018) and carbapenem-resistant

Gram-negative bacilli in a single-hospital prospective cohort study (Marchenay et al., 2015). If con-

firmed in other settings, our finding that piperacillin-tazobactam use correlates with both 3GC- and

carbapenem-resistant infections might call for a reevaluation of the rationale of recommending

piperacillin-tazobactam over other drugs for ecological reasons. As a note of caution, our observa-

tion that piperacillin-tazobactam use predicted a higher incidence of 3GC- and carbapenem-resistant

variants does not imply selection for acquired resistance through any specific mechanism such as car-

bapenemase production. We also note that the link between piperacillin-tazobactam use and global

resistance resulted from the accumulation of small, positive associations with most 3GC- and carba-

penem-resistant variants, including those with intrinsic resistance (Figure 2). Because of this, links

between piperacillin-tazobactam use and 3GC- or carbapenem-resistant infections might go unde-

tected in studies focusing on individual pathogen variants.

Our study has several limitations. First, we did not consider the role of healthcare workers in path-

ogen transmission, nor the role of direct patient admissions from the community. Second, although

our 3-level categorical coding of ward types captures variations in patient fragility within our study

system, such a coarse-grained classification could potentially leave residual confounding. Third, the

small sample sizes of resistant variants of E. faecium and A. baumannii limited our ability to draw

robust inferences regarding these variants and further studies are required to confirm these results

(Arias and Murray, 2012; Hsu et al., 2017). Finally, our findings reflect the AMR ecology of a West-

ern European area, with generally lower prevalences of carbapenemase-producing pathogens, van-

comycin-resistant E. faecium, and MRSA than in other regions of the world.
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To conclude, the modeling of the incidence of infections with seven major bacterial species and

their drug-resistant variants in hospital wards using a metapopulation framework indicates that both

antibiotic use and inter-ward connectivity may predict the burden of AMR in a variant-specific fash-

ion. This supports the need to tailor strategies against AMR to the targeted pathogen. Along with

novel hospital-level insights into the drivers of AMR, our work illustrates the application of the meth-

odological framework of metapopulation ecology to the problem of hospital AMR. Applying this

framework to other healthcare settings could help inform the local and regional antibiotic steward-

ship and infection control strategies.

Materials and methods

Data collection and compilation
We obtained data on infection incidence from the information system of the Institut des Agents

Infectieux, the clinical microbiology laboratory of the Hospices Civils de Lyon, a group of university

hospitals serving the Greater Lyon urban area (~1.4 million inhabitants) of France. For each ward

from October 1st, 2016 to September 30th, 2017, we extracted the number of clinical samples, after

exclusion of screening samples, positive for at least one of the ESKAPE2 species (as determined

using Vitek MS MALDI-ToF identification, bioMérieux), falling into one of the resistance variant cate-

gories defined in Table 1. Resistance was based on available results for susceptibility to, where

applicable, ceftriaxone, cefotaxime, ceftazidime, cefepime, imipenem, meropenem, oxacillin, and

vancomycin. Samples were deduplicated per patient, ward, and pathogen variant, so that only the

first sample positive for the same variant in the same ward was considered for each patient. Patients

positive for multiple variants and/or sampled from multiple wards were considered as multiple, dis-

tinct infection episodes. Antibiotic use in defined daily doses (ddd) of all systemic antibacterial drugs

(ATC classification term J01), as well as of specific (groups of) molecules defined in Table 2, were

extracted from the pharmacy department information system. For each pair of wards, the number of

patient transfers was extracted from the hospital information system along with, for each ward, the

number of beds, the type of medical activity and the number of patient admissions. Because of the

aggregated nature of the data, informed consent was not sought, in accordance with French regula-

tions. Our main response variable was the number of patients per ward infected with each pathogen

variant, expressed as incidence over 1y.

Controlling for microbiological sampling patterns
The estimation of a causal effect between antibiotic use and the incidence of infections with a given

pathogen variant is biased by variations in the distribution of infections across wards, because this

distribution influences both antibiotic prescriptions and microbiological sampling efforts. A causal

network representation of this situation is shown in Figure 1—figure supplement 2. The distribution

of infections is difficult to determine and to represent as a model covariate, preventing its direct

inclusion in our models. To circumvent this issue, the unrepresentable distribution of infections was

replaced with a proxy variable that we called the incidence control, designed to capture variations

of microbiological sampling frequencies and of the sampled anatomic sites (e.g. urinary vs. respira-

tory tract) across wards. Of note, ward size and type were also assumed to correlate with the infec-

tion distribution and to contribute to the proxy adjustment. However, the inclusion of ward size and

type had a negligible impact on model fit compared to the incidence control value, suggesting that

this latter variable captures most of the signal.

The incidence control was defined as the expected incidence of a pathogen variant explained by

microbiological sampling alone, under the assumption that the pathogen incidence is conditionally

independent of the ward given the sampled anatomic site. Anatomic sites were assigned to seven

site groups, namely, skin and soft tissues, respiratory tract, urinary tract, digestive tract, vascular

access devices, sterile sites (such as cerebrospinal fluid and peripheral blood cultures) and other

sites.

The incidence control was computed as follows for each pathogen variant in each ward. In this

section, wards are indexed by i ¼ 1; . . . ; 357, groups of anatomical sites are indexed by j ¼ 1; . . . ; 7,

and pathogen variants are indexed by k ¼ 1; . . . ; 17. For conciseness, we introduce the special case

k ¼ 0 to denote a sample not positive for any of the considered pathogen variants. Contrary to the
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incidence calculation described in the previous section, all samples were considered without dedupli-

cation to account for how repeated sampling increases the likelihood of pathogen detection.

First, for each pathogen variant k and group of anatomic sites j, we computed the average proba-

bility of variant detection aggregated for all wards in the network as

P Variant¼ kjSite¼ jð Þ ¼

P

357

i¼1

N Variant¼ k; Site¼ j; Ward¼ ið Þ

P

357

i¼1

N Ward¼ i; Site¼ jð Þ

where N Variant¼ k; Site¼ j; Ward¼ ið Þ is the number of samples in ward i taken from site j posi-

tive for the variant k (or, if k¼ 0, negative for all variants) and the denominator denotes all samples

taken irrespective of their result. For simplicity, we assumed independence between the pathogen

variants isolated from a same sample and between samples collected from a same patient. Of note,

most patients (n = 22,646 / 26,064; 86.9%) were sampled only once.

To account for repeated sampling, we considered the probability that M samples from a site j in

a patient remained negative for pathogen variant k,

P Variant 6¼ kjM;Site¼ jð Þ ¼ 1�P Variant¼ kjSite¼ jð Þ½ �M :

Sampling from multiple sites was represented using the vector notation M ¼ M1; . . . ;M7f g to

denote the respective numbers of samples taken from site groups 1 to 7. For instance,

M ¼ 1;0;2;0;0;0;0f g denotes 1 skin or soft tissue sample and 2 urinary samples. Using this notation,

the probability that all samples from all sites remained negative is,

P Variant 6¼ kjMð Þ ¼
Y

7

j¼1

P Variant 6¼ kjMj;Site¼ j
� �

;

and the probability that at least one sample was positive for variant k is,

P Variant¼ kjMð Þ ¼ 1�P Variant 6¼ kjMð Þ:

This relationship was used to calculate the expected incidence of variant k, that is the number of

patients with at least one sample positive for k, by considering in each ward i the number N i;Mð Þ of

patients with the same number of samples from each site M and the probability of being tested pos-

itive given M. The expected incidence of variant k in ward i was then defined as,

N Variant¼ kjWard¼ ið Þ ¼
X

M2W

N i;Mð Þ�P Variant¼ kjMð Þ

where W denotes the set of possible sample combinations.

Clearly, variations in the incidence control value between wards depend only on the number and

sites of microbiological samples taken, thus reflecting the incidence and types of bacterial infections

at ward-level independent of between-ward variations of pathogen community structure. Under our

assumption that the incidence control is a valid proxy to the unrepresentable distribution of infec-

tions in each ward, the incidence control should correlate both with antibiotic use and the incidence

of infections. Bivariate analyses confirmed that the incidence control correlated with the observed

cumulative incidence of all bacteria (R2=0.96, 95% CI, 0.95 to 0.96, Figure 1—figure supplement 3)

and, to a lesser extent, with the total antibiotic use (R2=0.34, 95% CI, 0.25 to 0.40, Figure 1—figure

supplement 4). These correlations remained substantial for most pathogen variants and specific

antibiotics. The incidence control was added as an adjustment covariate in all models predicting

infection incidence. The adjusted models, thus, predicted the incidence of infections in excess of

what would be expected based on variations in sampling intensity alone.

Connectivity and other ward characteristics
In ecology, habitat quality refers to the resources and conditions that allow individuals and popula-

tions to persist in a location (Hall et al., 1997), such as food or cover from predators (John-

son, 2005). We described the habitat quality of hospital wards for bacterial pathogens using
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explanatory variables adapted from Hanski’s metapopulation models (Hanski, 1998; Hanski, 1994),

namely patch size and connectivity, along with additional variables capturing patient fragility and

antibiotic selection pressure. We considered each ward within the hospital system as a distinct habi-

tat patch, i. We used the number of beds both as a measure of patch size (capturing the number of

patients available for colonization) and as a proxy for contact opportunities between patients within

the same ward.

The connectivity estimate was implemented as a proxy to the unobservable number of introduc-

tions of each variant in each ward during the study period (Donker et al., 2017). To estimate this

quantity, we measured directional, partial connectivity Sj,i from ward j to ward i as the number of

patients transferred directly from j to i, times the inferred probability that each patient tested posi-

tive for the variant. Partial connectivity, thus, was the expected number of positive patients trans-

ferred from j to i. Finally, connectivity for ward i was the sum of all directional connectivities, Si
=

P

jSj,i. This estimation procedure relies on simplifying assumptions, namely that all positive cases

are detected and remain positive upon transfer to the downstream ward; and that the probability

and destination ward of a patient transfer does not depend on infection.

Along with size and connectivity, wards were characterized by ward type based on patient fragil-

ity, and antibiotic consumption. Ward type was coded as a categorical variable with the following

three levels: general wards, intermediate (progressive) care units, and intensive care and blood can-

cer units. Antibiotic use was normalized by dividing by the number of beds in each ward and

expressed in ddd/bed/y.

Statistical analysis
The statistical unit was the individual ward (n = 357) in all analyses. We used the asymptotic Simpson

index (Simpson, 1949), also known as the Hunter-Gaston index (Hunter and Gaston, 1988), to

determine the probability that two random isolates of a given variant were isolated in the same

ward or that two random doses of a given antibiotic were delivered in the same ward. The index is

defined as [
P

ni (ni-1)]/[N (N-1)] where ni is the number of infection episodes (or antibiotic doses)

detected (or delivered) in ward i and Ni =
P

ni is the total number of infection episodes (or antibiotic

doses). In ecology, the Simpson index is typically used to measure biodiversity by estimating the

probability that two individuals from a sample belong to the same species (Simpson, 1949). Here,

we use this index to examine the distribution of sampling locations relative to the taxa, measuring

the probability that two infection episodes occur, or two antibiotic doses are consumed, in the same

ward. Hence, we used the term ‘concentration index’ to avoid confusion with a diversity measure.

The iNext R package was used to determine bootstrap-based 95% confidence intervals of the con-

centration index (Hsieh et al., 2016).

Models of infection incidence were constructed using multivariable quasi-Poisson regression of

the form

E Incidence jxð Þ ¼ exp Interceptþb1x1 þb2x2 þ . . .ð Þ; Var Incidenceð Þ ¼ � E Incidence jxð Þ

where E �ð Þ denotes expectation, x is the vector of predictors, such as antibiotic consumptions, the

b’s are model coefficients, Var �ð Þ denotes variance and � is the overdispersion parameter of the

quasi-Poisson model. The overdispersion parameter is used to relax the Poisson assumption of

equality of the expectation and variance of the response variable. We used the quasi-Poisson distri-

bution because we found evidence of both under- and overdispersion, as evidenced by fitted quasi-

Poisson dispersion parameters ranging from 0.24 (strong underdispersion, found for carbapenem-

resistant A. baumannii in Figure 1 model) to 2.5 (moderate overdispersion, found for less-resistant

E. faecium) (Supplementary file 1 Table 1b). We favored the quasi-Poisson model over the alterna-

tive, negative binomial model because the latter gives greater weight to smaller sites, whereas the

former gives greater weight to the larger sites (Ver Hoef and Boveng, 2007). In our application,

greater weight should be given to wards with greater incidence rather than to those with less.

We constructed a model for each variant. The response variable was the deduplicated patient

counts. All non-categorical explanatory variables including the incidence control, ward size, connec-

tivity and antibiotic use were log2-transformed before further analyses. To avoid negative infinity val-

ues from this transformation, all zeroes were first converted to half the minimum non-zero value.

This transformation was associated with better model fit (using the model structure of Figure 1), in
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terms of Akaike information criterion (with Poisson distribution), compared with: (1) replacing zeroes

with the minimum non-zero value before taking logs; (2) adding one to zero values before taking

logs; or (3) avoiding log transformation. The log2 transformed data were used for all subsequent

analyses.

To ease interpretation of model coefficients, we converted the raw coefficients b from all models

to percent changes in infection incidence, equal to 100� eb � 1

� �

. All analyses used R software ver-

sion 3.6.0.

Possibly selective associations between antibiotic use and resistance
We examined criteria to identify a priori possibly selective associations between antibiotic use and

resistance. The criteria were based on medical and biological considerations, namely, that antibiotics

inactive against a variant are unlikely to be prescribed in response to this variant’s prevalence; and

that antibiotics are most likely to select for a variant when resistance provides a specific advantage,

hence, when the variant is not resistant to more potent antibiotics (e.g., CTX/CRO is more likely to

select for PA than for CRPA in which carbapenem resistance provides no additional benefit under

CTX/CRO pressure). This rationale led to the following criteria: (1) the variant is always resistant to

the antibiotics of interest; (2) the variant is not resistant to antibiotics more potent (in terms of spec-

trum or efficacy) than the antibiotics of interest; and (3) the antibiotics of interest can be plausibly

used against the variant in empirical therapy. A total of 19 associations fulfilled the criteria for possi-

bly selective associations: 3GCREC with CTX/CRO; CREC with IPM/MEM; KP with AMX; 3GCRKP

with CTX/CRO; CRKP with IPM/MEM; EB with AMC; C3GREB with CTX/CRO and TZP; CREB with

IPM/MEM; PA with CTX/CRO; CRPA with IPM/MEM; SA with AMX; MRSA with C1G/C2G, OXA and

AMC; AB with CTX/CRO; CRAB with IPM/MEM; EF with CTX/CRO; and VREF with VAN/TEC. Of

note, the associations not fulfilling the criteria for possible selection can be interpreted as negative

controls in our models, and their coefficients are expected to be distributed around zero (null distri-

bution) in the absence of residual confounding. In line with this interpretation, the coefficients of

most of the negative control associations followed a near-zero-centered distribution (Figure 2c),

suggesting that residual confounding was negligible in the adjusted models.

Pooled analysis of CTX/CRO- and IPM/MEM-resistant variants
To model the cumulative incidences of 3GC- and carbapenem-resistant infections, pathogen variants

were pooled into resistance categories. When resistance to CTX/CRO or IPM/MEM was not deter-

mined by design (such as 3GC resistance in 3GCREC) or by intrinsic resistance (such as 3GC resis-

tance in E. faecium), variants were classified as resistant when the proportion of resistance in our

setting was above 80%. This less-stringent resistance criterion, compared to the criterion used to

determine possibly selective associations, was chosen to avoid the exclusion of variants that are

mostly resistant to an antibiotic group, which would bias pooled analyses. Applying the 80% thresh-

old for the proportion of resistance led to classifying CRKP and CREB as 3GC-resistant (91% and

93% 3GC resistance, respectively) but not CREC (61% 3GC resistance); and EF and VREF as carbape-

nem-resistant (84 and 100% carbapenem resistance, respectively, inferred from ampicillin resistance

[Weinstein, 2001]). Overall, the 3GCR category included 3GCREC, 3GCRKP, CRKP, 3GCREB, CREB,

PA, CRPA, AB, CRAB, EF, VREF, and MRSA; and the CR category included CREC, CRKP, CREB,

CRPA, CRAB, EF, VREF, and MRSA.
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Lübbert C, Baars C, Dayakar A, Lippmann N, Rodloff AC, Kinzig M, Sörgel F. 2017. Environmental pollution with
antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with
dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection 45:
479–491. DOI: https://doi.org/10.1007/s15010-017-1007-2, PMID: 28444620

MacPherson JL, Bright PW. 2011. Metapopulation dynamics and a landscape approach to conservation of
lowland water voles (Arvicola amphibius). Landscape Ecology 26:1395–1404. DOI: https://doi.org/10.1007/
s10980-011-9669-0

Shapiro et al. eLife 2020;9:e54795. DOI: https://doi.org/10.7554/eLife.54795 18 of 20

Research article Ecology Microbiology and Infectious Disease

https://doi.org/10.1016/S1473-3099(14)70950-8
https://doi.org/10.1016/S1473-3099(14)70950-8
http://www.ncbi.nlm.nih.gov/pubmed/25716293
https://doi.org/10.1001/jama.2018.12163
https://doi.org/10.1001/jama.2018.12163
http://www.ncbi.nlm.nih.gov/pubmed/30208454
https://doi.org/10.1093/cid/cix934
https://doi.org/10.1093/cid/cix934
http://www.ncbi.nlm.nih.gov/pubmed/29211819
https://doi.org/10.1111/ele.12463
https://doi.org/10.1111/ele.12463
http://www.ncbi.nlm.nih.gov/pubmed/26108261
https://doi.org/10.1111/2041-210X.12613
https://doi.org/10.1128/CMR.00042-16
http://www.ncbi.nlm.nih.gov/pubmed/27795305
https://doi.org/10.1093/jac/dkt367
http://www.ncbi.nlm.nih.gov/pubmed/24055766
https://doi.org/10.1128/JCM.26.11.2465-2466.1988
https://doi.org/10.1128/JCM.26.11.2465-2466.1988
http://www.ncbi.nlm.nih.gov/pubmed/3069867
https://doi.org/10.1186/2047-2994-2-31
http://www.ncbi.nlm.nih.gov/pubmed/24237856
https://doi.org/10.1016/j.cmi.2016.09.024
http://www.ncbi.nlm.nih.gov/pubmed/27693657
https://doi.org/10.1128/mBio.02214-15
https://doi.org/10.1128/mBio.02214-15
http://www.ncbi.nlm.nih.gov/pubmed/27073098
https://doi.org/10.1136/bmjopen-2017-017402
http://www.ncbi.nlm.nih.gov/pubmed/29102989
https://doi.org/10.1016/S1473-3099(13)70318-9
http://www.ncbi.nlm.nih.gov/pubmed/24252483
https://doi.org/10.1016/j.diagmicrobio.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/28336135
https://doi.org/10.1007/s15010-018-1137-1
http://www.ncbi.nlm.nih.gov/pubmed/29796739
https://doi.org/10.1093/besa/15.3.237
https://doi.org/10.1093/besa/15.3.237
https://doi.org/10.1086/319604
https://doi.org/10.3201/eid0804.010312
http://www.ncbi.nlm.nih.gov/pubmed/11971765
https://doi.org/10.1007/s15010-017-1007-2
http://www.ncbi.nlm.nih.gov/pubmed/28444620
https://doi.org/10.1007/s10980-011-9669-0
https://doi.org/10.1007/s10980-011-9669-0
https://doi.org/10.7554/eLife.54795


Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. 2019. Global extraintestinal pathogenic
Escherichia coli (ExPEC) Lineages. Clinical Microbiology Reviews 32:e00135. DOI: https://doi.org/10.1128/
CMR.00135-18, PMID: 31189557

Manning ML, Septimus EJ, Ashley ESD, Cosgrove SE, Fakih MG, Schweon SJ, Myers FE, Moody JA. 2018.
Antimicrobial stewardship and infection prevention-leveraging the synergy: a position paper update. American
Journal of Infection Control 46:364–368. DOI: https://doi.org/10.1016/j.ajic.2018.01.001, PMID: 29592832

Marchenay P, Blasco G, Navellou J-C, Leroy J, Cholley P, Talon D, Bertrand X, Gbaguidi-Haore H. 2015.
Acquisition of carbapenem-resistant Gram-negative bacilli in intensive care unit: predictors and molecular
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