TY - JOUR TI - Structural and functional characterization of G protein–coupled receptors with deep mutational scanning AU - Jones, Eric M AU - Lubock, Nathan B AU - Venkatakrishnan, AJ AU - Wang, Jeffrey AU - Tseng, Alex M AU - Paggi, Joseph M AU - Latorraca, Naomi R AU - Cancilla, Daniel AU - Satyadi, Megan AU - Davis, Jessica E AU - Babu, M Madan AU - Dror, Ron O AU - Kosuri, Sriram A2 - Larhammar, Dan A2 - Aldrich, Richard W A2 - Fraser, James S A2 - Manglik, Aashish VL - 9 PY - 2020 DA - 2020/10/21 SP - e54895 C1 - eLife 2020;9:e54895 DO - 10.7554/eLife.54895 UR - https://doi.org/10.7554/eLife.54895 AB - The >800 human G protein–coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state- and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here, we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G protein signal transduction. We tested 7800 of 7828 possible single amino acid substitutions to the beta-2 adrenergic receptor (β2AR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for β2AR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we identify residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors. KW - functional genomics KW - deep mutational scanning KW - g protein KW - coupled receptors KW - structure function KW - massively parallel KW - reporter assays KW - cell signaling JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -