Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics

  1. Jonathan Oesterle
  2. Christian Behrens
  3. Cornelius Schröder
  4. Thoralf Hermann
  5. Thomas Euler
  6. Katrin Franke
  7. Robert G Smith
  8. Günther Zeck
  9. Philipp Berens  Is a corresponding author
  1. University of Tübingen, Germany
  2. The Natural and Medical Sciences Institute, Germany
  3. University of Pennsylvania, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/54997/elife-54997-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Oesterle
  2. Christian Behrens
  3. Cornelius Schröder
  4. Thoralf Hermann
  5. Thomas Euler
  6. Katrin Franke
  7. Robert G Smith
  8. Günther Zeck
  9. Philipp Berens
(2020)
Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
eLife 9:e54997.
https://doi.org/10.7554/eLife.54997