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Abstract Fitness effects of mutations depend on environmental parameters. For example,

mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in

the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes.

We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on

experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and

previous observations on antibiotic resistance mutations. Our model generates a succession of

landscapes with predictable properties as antibiotic concentration is varied. The landscape is nearly

smooth at low and high concentrations, but the tradeoff induces a high ruggedness at intermediate

antibiotic concentrations. Despite this high ruggedness, however, all the fitness maxima in the

landscapes are evolutionarily accessible from the wild type. This implies that selection for antibiotic

resistance in multiple mutational steps is relatively facile despite the complexity of the underlying

landscape.

Introduction
Sewall Wright introduced the concept of fitness landscapes in 1932 (Wright, 1932), and for decades

afterwards it persisted chiefly as a metaphor, due to lack of sufficient data. This has changed consid-

erably in recent decades (de Visser and Krug, 2014; Hartl, 2014; Kondrashov and Kondrashov,

2015; Fragata et al., 2019). There are now a large number of experimental studies that have con-

structed fitness landscapes for combinatorial sets of mutations relevant to particular phenotypes,

such as the resistance of microbial pathogens to antibiotics (Weinreich et al., 2006; DePristo et al.,

2007; Marcusson et al., 2009; Lozovsky et al., 2009; Brown et al., 2010; Schenk et al., 2013;

Goulart et al., 2013; Mira et al., 2015; Palmer et al., 2015; Knopp and Andersson, 2018), and

the genomic scale of these investigations is rapidly growing (Wu et al., 2016; Bank et al., 2016;

Domingo et al., 2018; Pokusaeva et al., 2019). Mathematical modeling of fitness landscapes has

also seen a revival, motivated partly by the need to quantify and interpret the ruggedness of empiri-

cal fitness landscapes (Szendro et al., 2013; Weinreich et al., 2013; Neidhart et al., 2014;

Ferretti et al., 2016; Blanquart and Bataillon, 2016; Crona et al., 2017; Hwang et al., 2018; Kaz-

natcheev, 2019; Crona, 2020). Conceptual breakthroughs, such as the notion of sign epistasis

(where a mutation is beneficial in some genetic backgrounds but deleterious in others), have shed

light on how ruggedness can constrain evolutionary trajectories (Weinreich et al., 2005;

Poelwijk et al., 2007; Franke et al., 2011; Lobkovsky and Koonin, 2012; Zagorski et al., 2016).

Despite this progress, a limitation of current studies of fitness landscapes is that they focus mostly

on G� G (gene-gene) interactions, and little on G� G� E (where E stands for environment) interac-

tions, that is on how changes in environment modify gene-gene interactions. A few recent studies

have begun to address this question (Flynn et al., 2013; Taute et al., 2014; Gorter et al., 2018;
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de Vos et al., 2018). In the context of antibiotic resistance, it has been realized that the fitness land-

scape of resistance genes depends quite strongly on antibiotic concentration (Mira et al., 2015;

Stiffler et al., 2015; Ogbunugafor et al., 2016). This is highly relevant to the clinical problem of

resistance evolution, since concentration of antibiotics can vary widely in a patient’s body as well as

in various non-clinical settings (Kolpin et al., 2004; Andersson and Hughes, 2014). Controlling the

evolution of resistance mutants thus requires an understanding of fitness landscapes as a function of

antibiotic concentration. Empirical investigations of such scenarios are still limited, and systematic

theoretical work on this question is also lacking.

In the present work, we aim to develop a theory of G� G� E interactions for a specific class of

landscapes, with particular focus on applications to antibiotic resistance. The key feature of the land-

scapes we study is that every mutation comes with a tradeoff between adaptation to the two

extremes of an environmental parameter. For example, it has been known for some time that antibi-

otic resistance often comes with a fitness cost, such that a bacterium that can tolerate high drug con-

centrations grows slowly in drug-free conditions (Andersson and Hughes, 2010; Melnyk et al.,

2015). While such tradeoffs are not universal (Hughes and Andersson, 2017; Durão et al., 2018),

they certainly occur for a large number of mutations and a variety of drugs.

Tradeoffs can also arise in complex scenarios involving multiple drugs. It has been reported in

Stiffler et al., 2015 that certain mutations in TEM-1 b-lactamase are neutral at low ampicillin con-

centration but deleterious at high concentration, and that a number of the latter mutations also

eLife digest Drug resistant bacteria pose a major threat to public health systems all over the

world. Darwinian evolution is at the heart of this drug resistance: a mutation that allows bacteria to

divide in the presence of a drug appears initially in a single cell. This mutation makes this cell and its

descendants more likely to survive, so they can end up taking over the population.

The evolution of resistance can be thought of in terms of ‘bacterial fitness landscapes’. These

landscapes visualise the relationship between the mutations present in a population of bacteria and

how quickly the bacteria divide or reproduce. They are called landscapes because they can be

represented as a series of mountains and valleys. The peaks of this landscape represent

combinations of mutations that give bacteria the greatest chance of dividing (the greatest fitness). In

a landscape with multiple peaks, some peaks will be higher than others. If the landscape is smooth,

bacteria can easily acquire mutations for drug resistance. However, in a rugged landscape, bacteria

may get stuck at sub-optimal peaks, because the mutations that would enable them to reach a

higher peak would first lead them to losing fitness.

Several studies on the evolution of antibiotic resistance exist for specific bacteria and specific

drugs, but relatively little is known about the general properties of the underlying fitness

landscapes. Do these landscapes have features that can help explain the rapid evolution of high

levels of resistance?

Antibiotic resistance often comes at a cost – more resistant strains of bacteria tend to grow more

slowly when the drug is absent. To build a model of antibiotic resistance landscapes, Das et al.

performed growth experiments on several strains of Escherichia coli exposed to a drug called

ciprofloxacin. They measured how the rate at which the bacteria divided changed at different

antibiotic concentrations, and combined this with the observation about resistant strains growing

slower to formulate a mathematical model of antibiotic resistance landscapes. The landscapes that

resulted were found to be very rugged, but unexpectedly, the bacteria could still evolve to access all

fitness peaks. This means that landscape ruggedness does not constrain the evolution of resistance.

Understanding how and when resistance evolves is important both for the design of new drugs

and the development of treatment protocols. A specific prediction of the model is that resistance

evolution in fitness landscapes where resistant strains divide more slowly is reversible. This implies

that the bacteria could regain their susceptibility to treatment when the drug concentration

decreases, but this would depend on the specific bacteria and drug in question. More broadly, the

model provides a framework for addressing the evolution of resistance in clinical and environmental

settings, where drug concentrations vary widely in time and space.
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confer resistance to cefotaxime. Therefore in a medium with cefotaxime and a moderately high con-

centration of ampicillin, it is possible that these mutations will be deleterious at low cefotaxime con-

centrations but beneficial at high cefotaxime concentration. Fitness landscapes with adaptational

tradeoffs are therefore also of potential relevance to evolution in response to multi-drug

combinations.

Our starting point for investigating fitness landscapes induced by tradeoffs is the knowledge of

two phenotypes that are well studied – the drug-free growth rate (which we call the null-fitness) and

the IC50 (the drug concentration that reduces growth rate by half), which is a measure of antibiotic

resistance. These two phenotypes correspond to the two extreme regimes of an environmental

parameter, that is zero and highly inhibitory antibiotic concentrations. The function that describes

the growth rate of a bacterium for antibiotic concentrations between these two extremes is called

the dose-response curve or the inhibition curve (Regoes et al., 2004). When tradeoffs are present,

the dose-response curves of different mutants must intersect as the concentration is varied

(Gullberg et al., 2011). This is schematically shown in Figure 1. The intersection of dose-response

curves of the wild type and the mutant happens at point A, swapping the rank order between the

two fitness values. The intersection point is known as the minimum selective concentration (MSC),

and it defines the lower boundary of the mutant selection window (MSW) within which the resistance

mutant has a selective advantage relative to the wild type (Khan et al., 2017; Alexander and

MacLean, 2018).

When there are several possible mutations and multiple combinatorial mutants, a large number

of such intersections occur as the concentration of the antibiotic increases. This leads to a succession

of different fitness landscapes defined over the space of genotype sequences (Maynard Smith,

1970; Kauffman and Levin, 1987). Whenever the curves of two mutational neighbors (genotypes

that differ by one mutation) intersect, there can be an alteration in the evolutionary trajectory

towards resistance, whereby a forward (reverse) mutation now becomes more likely to fix in the pop-

ulation than the corresponding reverse (forward) mutation. These intersections change the rugged-

ness of landscapes and the accessibility of fitness maxima. In this way a rich and complex structure

of selective constraints emerges in the MSW. To explore the evolutionary consequences of these

constraints, here we construct a theoretical model based on existing empirical studies as well as our

own work on ciprofloxacin resistance in E. coli. Specifically, we address two fundamental questions:

(i) How does the ruggedness of the fitness landscape vary as a function of antibiotic concentration?

(ii) How accessible are the fitness optima as a function of antibiotic concentration?

We find that even when the null-fitness and resistance values of the mutations combine in a sim-

ple, multiplicative manner, the intersections of the curves produce a highly epistatic landscape at

intermediate concentrations of the antibiotic. This is an example of a strong G� G� E interaction,

where changes in the environmental variable drastically alter the interactions between genes.

Despite the high ruggedness at intermediate

concentrations, however, the topology of the

landscapes is systematically different from exist-

ing oft-studied random landscape models, such

as the House-of-Cards model (Kauffman and

Levin, 1987; Kingman, 1978), the Kauffman NK

model (Kauffman and Weinberger, 1989;

Hwang et al., 2018) or the Rough Mt. Fuji model

(Neidhart et al., 2014). For example, most fit-

ness maxima have similar numbers of mutations

that depend logarithmically on the antibiotic con-

centration. Importantly, all the fitness maxima

remain highly accessible through adaptive paths

with sequentially fixing mutations. In particular,

any fitness maximum (including the global maxi-

mum) is accessible from the wild type as long as

the wild type is viable. As a consequence, the

evolution of high levels of antibiotic resistance by

multiple mutations (Hughes and Andersson,

2017; Wistrand-Yuen et al., 2018;
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Figure 1. Schematic showing dose response curves of

a wild type and a mutant. To the left of the

intersection point A the wild type is selected over the

mutant, whereas to the right of A the mutant is

selected.
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Rehman et al., 2019) is much less constrained by the tradeoff-induced epistatic interactions than

might have been expected on the basis of existing models.

Results

Mathematical model of tradeoff-induced fitness landscapes
The chief goal of this paper is to develop and explore a mathematical framework to study tradeoff-

induced fitness landscapes. We consider a total of L mutations, each of which increases antibiotic

resistance. A fitness landscape is a real-valued function defined on the set of 2L genotypes made up

of all combinations of these mutations. A genotype can be represented by a binary string of length

L, where a 1 (0) at each position represents the presence (absence) of a specific mutation. Alterna-

tively, any genotype is uniquely identified as a subset of the L mutations (the wild type is the null

subset, that is the subset with no mutations).

In this paper, unless mentioned otherwise, we define the fitness f as the exponential growth rate

of a microbial population. The fitness is a function of antibiotic concentration. This function has two

parameters of particular interest to us – the growth rate at zero concentration, which we refer to as

the null-fitness and denote by r, and a measure of resistance such as IC50 which we denote by m.

Each single mutation is described by the pair ðri;miÞ, where ri and mi are the null-fitness and resis-

tance values respectively of the ith single mutant. We further rescale our units such that for the wild

type, r ¼ 1 and m ¼ 1. We consider mutations that come with a fitness-resistance tradeoff, that is a

single mutant has an increased resistance (mi>1) and a reduced null-fitness (ri<1) compared to the

wild type. To proceed we need to specify two things: (i) how the fitness of the wild type and the

mutants depend on antibiotic concentration, and in particular if this dependence exhibits a pattern

common to various mutant strains; (ii) how the r and m values of the combinatorial mutants depend

on those of the individual mutations. To address these issues we take guidance from two empirical

observations.

Scaling of dose-response curves
Marcusson et al., 2009 have constructed a series of E. coli strains with single, double and triple

mutations conferring resistance to the fluoroquinolone antibiotic ciprofloxacin (CIP), which inhibits

DNA replication (Drlica et al., 2009). In their study they measured MIC (minimum inhibitory concen-

tration) values and null-fitness but did not report dose-response curves. Some of the present authors

have recently shown that the dose-response curve of the wild-type E. coli (strain K-12 MG1655) in

the presence of ciprofloxacin can be fitted reasonably well by a Hill function (Ojkic et al., 2019).

Here we expand on this work and determine dose-response curves for a range of single- and dou-

ble-mutants with mutations restricted to five specific loci known to confer resistance to CIP

(Marcusson et al., 2009) (see Materials and methods). Figure 2A shows the measured curves for

the wild type, the five single mutants, and eight double-mutant combinations. The genotypes are

represented as binary strings, where a 1 or 0 at each position denotes respectively the presence or

absence of a particular mutation. If we rescale the concentration c of CIP by IC50 of the correspond-

ing strain, x ¼ c=IC50, and the growth rate by the null-fitness f ð0Þ, the curves collapse to a single

curve wðxÞ that can be approximated by the Hill function ð1þ x4Þ�1 (Figure 2B). The precise shape of

the curve is not important for further analysis in this paper. However, the data collapse suggests that

we can assume that the dose-response curve of a mutant with (relative) null-fitness r and (relative)

resistance m is

f ðcÞ ¼ rwðc=mÞ; (1)

that is, it has the same shape as the wild-type curve w except for a rescaling of the fitness and con-

centration axes. Similar scaling relations have been reported previously by Wood et al., 2014 and

Chevereau et al., 2015. A good biological understanding of the conditions underlying this feature

is presently lacking, but it seems intuitively plausible that the shape wðxÞ would be robust to changes

that do not qualitatively alter the basic physiology of growth and resistance.
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Limited epistasis in r and m
An interesting recent finding reported by Knopp and Andersson, 2018 is that chromosomal resis-

tance mutations in Salmonella typhimurium mostly alter the null-fitness as well as the MIC of various

antibiotics in a non-epistatic, multiplicative manner, that is if a particular mutation increases

(decreases) the resistance (null-fitness) by a factor k1, and another mutation does the same with a

factor k2, then the mutations jointly alter these phenotypes roughly by a factor of k1k2 (with a few

exceptions). We have done a similar comparison for the data on the null-fitness and MIC for E. coli

strains in Marcusson et al., 2009. We have analyzed a subset of 4 mutations for which the complete

data set for all combinatorial mutants is available from Marcusson et al., 2009. The data are shown

in Table 1. Out of 11 multiple-mutants, only 2 show epistasis in r and 4 show epistasis in m. More-

over, in all cases where significant epistasis occurs it is negative, that is the effect of the multiple

mutants is weaker than expected from the single mutation effects.

Formulation of the model
The above observations suggest a model where one assumes, as an approximation, that all the r

and m values of individual mutations combine multiplicatively. A genotype with n mutations

ðr1;m1Þ; ðr2;m2Þ; . . . ; ðrn;mnÞ has a null-fitness r and a resistance value m given by

r¼
Y

n

i¼1
ri and m¼

Y

n

i¼1
mi: (2)

Moreover, the dose-response curves of the genotypes are taken to be of the scaling form (Equa-

tion 1), where the function wðxÞ does not depend on the genotype. As indicated before, and without

any loss of generality, we choose units such that, for the wild type, r¼ 1 and m¼ 1. Therefore the

dose-response curve of the wild type is wðxÞ with wð0Þ ¼ 1, and choosing IC50 as a measure of resis-

tance, we have wð1Þ ¼ 1

2
. Henceforth, we refer to x simply as the concentration. We also recall that

the condition of adaptational tradeoff means that ri<1 and mi>1 for all mutations.

If the ri and mi values combine non-epistatically, and if the shape of the dose-response curve is

known, it is thus possible to construct the entire concentration-dependent landscape of size 2
L from
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Figure 2. Dose-response curves for E. coli in the presence of ciprofloxacin. Each binary string corresponds to a strain, where the presence (absence) of

a specific mutation in the strain is indicated by a 1 (0). The five mutations in order from left to right are S83L (gyrA), D87N (gyrA), S80I (parC), DmarR,

and DacrR. The names of the strains are given in Table 1. (A) Dose-response curves of the wild type, the five single mutants and eight double mutants.

Unlike the experiments reported in Marcusson et al., 2009, the mutants were grown in isolation rather than in competition with the wild type. (B) The

same curves, but scaled with the null-fitness and IC50 of each individual genotype. The dashed black line is the Hill function ð1þ x4Þ�1.
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just 2L measurements (of the ri and mi values of the single mutants) instead of the measurement of

2
L fitness values at every concentration. In practice we do not expect a complete lack of epistasis

among all mutations of interest, and the dose-response curve is also an approximation obtained by

fitting a curve through a finite set of fitness values known only with limited accuracy. However, the

fitness rank order of genotypes, and related topographic features such as fitness peaks, are robust

to a certain amount of error in fitness values (Crona et al., 2017), and our model may be used to

construct these to a good approximation.

Lastly, we require that the dose-response curves of the wild type and a mutant intersect at most

once, which implies that the equation wðxÞ ¼ rwð x
m
Þ with r>1 and m<1 has at most one solution. This

then also implies that the curves of any genotype s and a proper superset of it (i.e. a genotype

which contains all the mutations in s and some more) intersect at most once. This property holds for

all functions that have been used to represent dose-response curves in the literature, such as the Hill

function, the half-Gaussian or the exponential function, as well as for all concave function with nega-

tive second derivate (see Materials and methods for details).

Table 1. Epistasis in null-fitness and MIC for E. coli in the presence of ciprofloxacin

The table contains a combinatorially complete subset of the data reported by Marcusson et al.,

2009, composed of the four mutations S83L (gyrA), D87N (gyrA), marR, and acrR. The names of the

strains and values of null-fitness (in competition assays with the wild type) in the third column and

MIC (of ciprofloxacin) in the fifth column are obtained from Marcusson et al., 2009. The binary repre-

sentations follow the same convention as given in the caption of Figure 2. The fourth and sixth col-

umns are respectively the null-fitness and MIC values expected in the absence of epistasis. NA

denotes the cases where this is not applicable. The values in parentheses are error estimates. In the

third and fifth columns, the errors in the logðxÞ are calculated as jDxj
x
, where jDxj are the standard error

as calculated from the standard deviations reported in the paper. The errors in columns four and six

were estimated as
P

i
jDxij
xi

where the sum is over the mutations present in the combinatorial mutants.

The detectable cases of epistasis are marked in blue. Negative epistasis is found in all these cases.

Also, all the cases with epistasis correspond to two or more mutations that affect the same chemical

pathways.

Strain String Log null-fitness Non-epistatic Log MIC Non-epistatic

MG1655 00000 0.00 (±0.004) NA 0.00 (±0.35) NA

LM378 10000 0.01 (±0.016) NA 3.17 (±0.70) NA

LM534 01000 �0.01 (±0.018) NA 2.75 (±0.70) NA

LM202 00010 �0.19 (±0.020) NA 0.69 (±0.70) NA

LM351 00001 �0.094 (±0.014) NA 1.08 (±0.70) NA

LM625 11000 �0.030 (±0.011) 0.0 (±0.038) 3.17 (±0.70) 5.92 (±1.1)

LM421 10010 �0.15 (±0.019) �0.18 (±0.040) 4.13 (±0.70) 3.56 (±1.1)

LM647 10001 �0.051 (±0.013) �0.084 (±0.034) 3.44 (±0.70) 4.65 (±1.1)

LM538 01010 �0.19 (±0.020) �0.20 (±0.042) 4.13 (±0.70) 3.46 (±1.1)

LM592 01001 �0.083 (±0.015) �0.10 (±0.036) 3.16 (±0.70) 3.83 (±1.1)

LM367 00011 �0.20 (±0.026) �0.28 (±0.038) 2.06 (±0.70) 1.77 (±1.1)

LM695 11010 �0.24 (±0.017) �0.19 (±0.058) 3.85 (±. 70) 6.61 (±1.1)

LM691 11001 �0.073 (±0.013) �0.094 (±0.052) 3.85 (±. 70) 7.00 (±1.4)

LM709 10011 �0.24 (±0.027) �0.274 (±0.054) 4.54 (±. 70) 4.94 (±1.4)

LM595 01011 �0.51 (±0.051) �0.294 (±0.056) 4.54 (±. 70) 4.52 (±1.4)

LM701 11011 �0.42 (±0.037) �0.284 (±0.072) 4.83 (±. 70) 7.69 (±1.8)
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Properties of tradeoff-induced fitness landscapes
To understand the evolutionary implications of our model, we first describe how the fitness land-

scape topography changes with the environmental parameter represented by the antibiotic concen-

tration. Next we analyze the properties of mutational pathways leading to highly fit genotypes.

Intersection of curves and changing landscapes
We start with a simple example of L ¼ 2 mutations and a Hill-shaped dose-response curve

wðxÞ ¼ 1

1þx2 (Figure 3). At x ¼ 0, the rank ordering is determined by the null-fitness. The wild type has

maximal fitness, and the double mutant is less fit than the single mutants. As x increases, the fitness

curves start to intersect, and each intersection switches the rank of two genotypes. In the present

example we find a total of six intersections and therefore seven different rank orders across the full

range of x. This is actually the maximum number of rank orders that can be found by scanning

through x for L ¼ 2, see Materials and methods. The final fitness rank order (in the region G in

Figure 3A) is the reverse of the original rank order at x ¼ 0. Figure 3B depicts the concentration-

dependent fitness landscape of the 2-locus system in the form of fitness graphs. A fitness graph rep-

resents a fitness landscape as a directed graph, where neighboring nodes are genotypes that differ

by one mutation, and arrows point toward the genotypes with higher fitness (de Visser et al., 2009;

Crona et al., 2013).

A fitness graph does not uniquely specify the rank order in the landscape (Crona et al., 2017).

For example, the three regions C, D and E have different rank orders but the same fitness graph.

Because selection drives an evolving population towards higher fitness, a fitness graph can be

viewed as a roadmap of possible evolutionary trajectories. In particular, a fitness peak (marked in

red in Figure 3B) is identified from the fitness graph as a node with only incoming arrows. Fitness

graphs also contain the complete information about the occurrences of sign epistasis. Sign epistasis

with respect to a certain mutation occurs when the mutation is beneficial in some backgrounds but

deleterious in others (Weinreich et al., 2005; Poelwijk et al., 2007). It is easy to read off sign epis-

tasis for a mutation from the fact that parallel arrows (i.e. arrows corresponding to the gain or loss of

the same mutation) in a fitness graph point in opposite directions.

For example, in the graph for the region B there is sign epistasis in the first position, since the

parallel arrows 00 ! 10 and 01  11 point in opposite directions. Notice that in the current
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example, we start with a smooth landscape at x ¼ 0 (as seen in the fitness graph for region A), and

the number of peaks and the degree of sign epistasis both reach a maximum in the intermediate

region C+D+E. This fitness graph displays reciprocal sign epistasis, which is a necessary condition

for the existence of multiple fitness peaks (Poelwijk et al., 2011). Beyond the region E, the land-

scape starts to become smooth again, with only one fitness maximum and a lower degree of sign

epistasis. In the last region G, the landscape is smooth with only one peak (the double mutant 11)

and no sign epistasis.

These qualitative properties generalize to larger landscapes. To show this, we consider a statisti-

cal ensemble of landscapes with L mutations, where the parameters ri, mi of single mutations are

independently and identically distributed according to a joint probability density Pðr;mÞ. Figure 4

shows the result of numerical simulations of these landscapes for L ¼ 16. The mean number of fitness

peaks with n mutations reaches a maximum at xmaxðnÞ where to leading order log xmaxðnÞ~ nhlogmi,
independent of any further details of the system, as argued in Materials and methods. The asymp-

totic expression works well already for L ¼ 16 (see inset of Figure 4A). Figure 4B shows the mean

number of mutations in a fitness peak. This is well approximated by the curve n ¼ log x
hlogmi, showing that

the mean number of mutations in a fitness peak grows logarithmically with the concentration. This is

consistent with what we would expect from the variation in the number of peaks with n mutations as

shown in Figure 4A. The existence of a typical number of mutations in a fitness peak is one of the

distinctive features of our landscape, a feature typically lacking in other well-studied random land-

scape models. This property arises from the existence of adaptational tradeoffs. Since a high number

of mutations is beneficial at higher concentrations but deleterious at lower concentrations, it is clear

that there must be an optimal number of mutations at some intermediate concentration.

As another indicator of ruggedness, we consider the number of backgrounds in which a mutation

is beneficial as a function of x. At x ¼ 0, any mutation is deleterious in all backgrounds, whereas at

very large x it is beneficial in all backgrounds. Therefore there is no sign epistasis in either case. Sign

epistasis is maximized when a mutation is beneficial in exactly 1/2 of all backgrounds. Figure 5

shows the mean number of backgrounds nb (with n mutations each) in which the occurrence of a

mutation is beneficial, for two different values of n. The curves have a sigmoidal shape, starting from

zero and saturating at L
n

� �

, which is the total number of backgrounds with n mutations. The blue
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Figure 4. Fitness landscape ruggedness changes with drug concentration. (A) Number of fitness peaks as a

function of concentration for different numbers of mutations in the peak, n, and L ¼ 16. The dashed green curve is

the total number of fitness peaks, summed over n. The peaks were found by numerically generating an ensemble

of landscapes with individual effects distributed according to the joint distribution (8). For this distribution,

hlogmi ¼ 1:19645. Inset: The maximal number of peaks for a given value of n occurs at log xmaxðnÞ ¼ nhlogmi, and
grows exponentially with L. (B) Mean number of mutations in a fitness peak as a function of concentration x for the

same model. The black circles are the mean number of mutations in the fittest genotype. The green dashed line is
logðxÞ
hlogmi, where hlogmi ¼ 1:19645 as before.
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curve shows the mean total number of back-

grounds (with any n) in which a mutation is bene-

ficial, which has a similar shape. Since every

mutation in every background goes from being

initially deleterious to eventually beneficial, there

must be some x at which every mutation is bene-

ficial in exactly half the backgrounds. The inset of

Figure 5 shows that for backgrounds with n

mutations, the average concentration at which a

mutation is beneficial in 1/2 the backgrounds is

given by log x ’ nhlogmi, which is the same con-

centration at which the largest number of fitness

peaks were found in Figure 4. A derivation of

this relation is given in Materials and methods.

Similarly, when summed over all mutation num-

bers n, the fraction of beneficial backgrounds

reaches 1/2 around the same concentration at

which the total number of fitness peaks is maxi-

mal. Since the number of backgrounds is largest

at n ¼ L=2 for combinatorial reasons, this concen-

tration is approximately given by log x ’ L
2
hlogmi.

Complementary to these results about the

background dependence of the sign of muta-

tional effects, it can be shown that any two dis-

tinct sets of mutations occurring in any genetic

background show sign epistasis at some value of x. This is a consequence of the rank ordering prop-

erties of the landscapes that are described in the next subsection (see Materials and methods for a

proof). A special case is that any two single mutations occurring in the wild type background must

exhibit pairwise sign epistasis at some concentration.

Accessibility of fitness peaks
Having shown that tradeoff-induced fitness landscapes display a large number of fitness peaks at

intermediate concentrations, we now ask how these peaks affect the evolutionary dynamics. We

base the discussion on the concept of evolutionary accessibility, which effectively assumes a regime

of weak mutation and strong selection (Gillespie, 1984). In this regime the evolutionary trajectory

consists of a series of fixation events of beneficial single-step mutations represented by a directed

path in the fitness graph of the landscape (Weinreich et al., 2005; Franke et al., 2011). We say that

a genotype is accessible from another genotype if a directed path exists from the initial to the final

genotype.

The accessibility of peaks in a fitness landscape is determined by the rank ordering of the geno-

types. We now show that the rank orders of tradeoff-induced fitness landscapes are constrained in a

way that gives rise to unusually high accessibility. Consider two distinct sets of one or more muta-

tions Ai and Aj that can occur on the genetic background W, and the four genotypes W ; WAi; WAj

and WAiAj, where a concatenation of symbols represents the genotype which contains all the muta-

tions referred to by the symbols. The ordering condition (derived in Materials and methods) says

that whenever W is the fittest among these four genotypes, WAiAj must be the least fit, and when-

ever WAiAj is the fittest, W must be the least fit. For the case of two single mutations this situation is

illustrated by the fitness graphs in Figure 3B, where the background genotype W ¼ 00 is the fittest

in the first segment A and the genotype WAiAj ¼ 11 is the fittest in the last segment G. The ordering

condition has the immediate consequence that for all environments x, the fittest genotype is always

accessible from the background genotype W . If the fittest genotype is one of the single mutants

(segments B, C, D and F), then it is of course accessible. If it is the double mutant WAiAj (segment

G), then the background genotype must be the least fit genotype (from the ordering condition), and

therefore WAi and WAj should be fitter than W. Then WAiAj is accessible from the wild type through

the path W ! WAi ! WAiAj and the path W ! WAj ! WAiAj.
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Figure 5. The mean number of genetic backgrounds nb
in which a mutation is beneficial depends on the

concentration. The numerically computed mean

number is shown in the blue curve. We also computed

the mean nb for genetic backgrounds with a fixed a

number n of mutations. The results for two of these

values, n ¼ 5 and n ¼ 8 are also shown. The inset shows

these values of mean nb as a fraction of the total

number of backgrounds with n mutations.
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To fully exploit the consequences of the ordering property we need to introduce some notation.

Let s be a genotype with n mutations. We define a subset of s as a genotype with l mutations, l � n,

which are all contained in s as well. Likewise, a superset of s is a genotype with l mutations, l � n,

that contains all the mutations in s. With this, the ordering condition can be seen to imply that the

superset of a fitness peak is accessible from its own supersets. For example, if W is the fittest geno-

type, then WAi is a superset of it, and because of the ordering condition, WAi must be fitter than its

superset WAiAj, and therefore accessible from it. Similarly, it is easy to show that the subset of a fit-

ness peak is accessible from its own subsets. This property can be generalized and constitutes our

main result on accessibility of fitness peaks.

Accessibility property: Any genotype S that is a superset of a local fitness peak s is accessible

from all the superset genotypes of S. Similarly, any genotype S0 that is a subset of a local fitness

peak s is accessible from all the subset genotypes of S0.
The proof is given in Materials and methods. Three particularly important consequences are:

. Any fitness peak is accessible from all its subset and superset genotypes.

. Any fitness peak is accessible from the wild type. This is because the wild type is a subset of
every genotype.

. For the same reason, when the wild type is a fitness peak (e.g., at x ¼ 0), it is accessible from
every genotype, and is therefore also the only fitness peak in the landscape. The same holds
for the all-mutant when x is sufficiently large, since it is a superset of every genotype.

These properties are illustrated by the fitness graph in Figure 6. We assume for some environ-

ment x that the landscape has (at least) two peaks at the genotypes 1001 (marked in red) and 0111

(marked in blue). The colored arrows point towards mutational neighbors with higher fitness and are

enforced by the accessibility property.

The edges without arrowheads are not constrained by the accessibility property and the corre-

sponding arrows (which are not shown in the figure) could point in either direction. Consider the

genotype 0111 (marked in blue). It is accessible from all its subsets, namely 0000, 0010, 0010, 0001,

0110, 0101 and 0011, following the upward pointing blue arrows. These subsets are in turn accessi-

ble from their subsets. For example, 0011 is accessible from all its subsets – 0000, 0010, and 0001.

The fitness peak is also accessible from its superset 1111. The same property holds for the other fit-

ness peak. The subsets or supersets may access the fitness peaks using other (unmarked) paths as

well, which would include one or more of the

undirected lines in conjunction with some of the

arrows. Moreover, other genotypes, which are

neither supersets nor subsets, may also access

these fitness peaks through paths that incorpo-

rate some of the undirected edges.

A fitness peak together with its subset and

superset genotypes defines a sub-landscape with

remarkable properties. It is a smooth landscape

with only one peak which is accessible from any

genotype via all direct paths, that is paths where

the number of mutations monotonically increases

or decreases. For example, the fitness peak 1001

is accessible from the all-mutant 1111 by the two

direct paths – 1111!1101!1001 and

1111!1011!1001. Likewise, the peak 0111 is

accessible from its subset 0001 via the paths

0001!0101!0111 and 0001!0011!0111. In

general, a peak with n mutations is accessible

from a subset genotype with m mutations by

ðn� mÞ! direct paths, and from a superset geno-

type with m mutations by ðm� nÞ! direct paths.

This gives a lower bound on the total number of

paths by which a fitness peak is accessible from a

subset or superset genotype.

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 01111011

1111

0000

Figure 6. A fitness graph of a landscape with L ¼ 4

mutations, illustrating the accessibility property. There

are two fitness peaks, 1001 (red) and 0111 (blue). The

fitness peaks are accessible from all their subset and

superset genotypes following the paths marked by the

arrows.
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Importantly, the accessibility property formu-

lated above holds under more general conditions

than stipulated in the model. We show in Materi-

als and methods that it holds whenever the null

fitness and resistance values of the mutations, r

and m, do not show positive epistasis. This is a

weaker requirement than our original assumption

of a strict lack of epistasis in these two

phenotypes.

In this context it should be noted that the rank

orderings forbidden by the ordering condition all

show positive epistasis for the fitness values,

whereas all the allowed orderings can be con-

structed without positive epistasis. Therefore, any

landscape where positive epistasis in fitness is

absent will also display the accessibility property.

However, whereas the lack of positive epistasis is

a sufficient condition, it is not necessary. In partic-

ular, our model does allow for cases of positive

epistasis in the fitness values.

Reachability of the fittest and the
most resistant genotype
The preceding analyses have shown that within

the mutant selection window, where mutants with

higher fitness than the wild type exist, every fitness peak is accessible from the wild type. This

includes in particular the fittest genotype at a given concentration. However, in general there will be

many peaks in the fitness landscape, and it is not guaranteed that evolution will reach the fittest

genotype. One can ask for the probability that the fittest genotype is actually accessed under the

evolutionary dynamics, which we call its reachability. We assume that the dynamics is in the strong

selection weak mutation (SSWM) regime, and the population is large enough such that the fixation

probability of a mutant with selection coefficient s is 1� e�2s for s>0, and 0 for

s � 0 (Gillespie, 1984). In our setting the selection coefficient is s ¼ f1
f0
� 1, where f1 is the growth

rate of a mutant appearing in a population of cells with growth rate f0.

Figure 7 shows the numerically obtained reachability for L ¼ 10, averaged over the distribution

Pðr;mÞ given in Equation (8). The reachability of the highest peak is 1 at very low and very high con-

centrations, since there is only peak, the wild type or the all-mutant, at these extremes. The reach-

ability is lower at intermediate concentrations, where there are multiple peaks, all of which are

accessible from the wild type. The dashed blue line is the mean of the reciprocal of the total number

of fitness peaks, and is therefore the mean reachability of fitness peaks. The reachability of the high-

est peak follows the qualitative behavior of the mean reachability, but remains higher than the mean

reachability everywhere. The green curve is the reachability of the most resistant genotype, that is

the all-mutant. It is extremely low at low and moderate concentrations and grows steeply and satu-

rates quickly at a very large concentration. The all-mutant genotype is less-than-average reachable

everywhere except at very high concentration, when it is the only fitness peak and accessible from

every other genotype.

We have compared the reachability to that of two other widely studied landscape models. One is

the House-of-Cards (HoC) model (Kauffman and Levin, 1987; Kingman, 1978), where each geno-

type is independently assigned a fitness value drawn from a continuous distribution. The reachability

is found to be around 0.018, an order of magnitude smaller than the lowest reachability seen in the

tradeoff-induced landscape. The mean number of fitness maxima in the HoC landscape is 2
L

Lþ1, which

in this case is approximately 93.1, much higher than the maximum mean number of peaks in the

tradeoff-induced landscape (inset of Figure 7). We would therefore naturally expect a smaller frac-

tion of adaptive walks to terminate at the fittest peak. A more illuminating comparison is with the

NK model (Kauffman and Weinberger, 1989; Hwang et al., 2018). Here, once again, L ¼ 10, and
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Figure 7. Reachability of fittest genotype and most resistant genotype. The same model as

in the previous subsection has been used, with L ¼ 10. Inset shows the mean number of

fitness peaks as a function of concentration. Dotted horizontal lines show comparisons to the

HoC model and an NK model with the same number of mutations. These models were

implemented using an exponential distribution of fitness values.
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the mutations are divided into two blocks of 5 mutations each. As per the usual definition of the

model, the fitness of a genotype is the sum over the contributions of each of the 10 mutations, and

the contribution of each mutation depends only the state of the block to which it belongs. The fit-

ness contribution of each mutation for any state of the block is an independent random number. The

mean number of fitness maxima here is ’ 28:44 (Perelson and Macken, 1995; Schmiegelt and

Krug, 2014), which is comparable to the maximum mean number in the tradeoff-induced landscapes

(see inset of Figure 7). Nonetheless, the reachability of the fittest peak (dotted pink line) is found to

be nearly 4 times smaller than the lowest reachability in our landscape. We found that in a fraction

of about 0.64 of the landscapes, the fittest maximum is not reached in any of 32000 dynamical runs,

indicating the absence of an accessible path in most of these cases (Schmiegelt and Krug, 2014;

Hwang et al., 2018). In contrast, an evolutionary path always exists to any fitness peak in the trade-

off-induced landscapes, as we saw in the previous subsection. This endows the tradeoff-induced

landscapes with the unusual property of being highly rugged and at the same time having a much

higher evolutionary reachability of the global fitness maximum compared to other models with simi-

lar ruggedness.

Discussion
Fitness landscapes depend on the environment, and gene-gene-interactions can be modified by the

environment. Systematic studies of such G� G� E interactions are rare, but they are clearly of rele-

vance to scenarios such as the evolution of antibiotic resistance, where the antibiotic concentration

can vary substantially in space and time. In this paper we have explored the structure of such land-

scapes in the presence of tradeoffs between fitness and resistance. We summarize the main findings

of our work.

. We have shown experimental evidence that the dose-response curves of various mutant strains
of E. coli to the antibiotic ciprofloxacin have the same shape, except for a rescaling of the fit-
ness and concentration values. If this shape is known, the fitness of a strain can be estimated
at any antibiotic concentration simply by measuring its null-fitness and IC50 (or MIC). This
makes it possible to construct empirical fitness landscapes at any antibiotic concentration from
a limited set of data.

. Under the assumptions of our model the degree of epistasis, particularly sign epistasis, is low
for zero and high antibiotic concentrations, but it is nevertheless high in the intermediate con-
centration regime. The number of local fitness peaks scales exponentially in the number of
mutations at these concentrations. Epistasis is often discussed as a property intrinsic to muta-
tions and their genetic backgrounds, with limited consideration of environmental parameters.
But in the landscapes studied here, the environmental parameter is of paramount importance,
since changes in it can dramatically alter gene-gene interactions.

. The expected number of mutations in a fitness peak increases logarithmically with the antibi-
otic concentration. This implies that, at a given concentration, the highly fit genotypes that
make up the fitness peaks carry an optimal number of mutations that arises from the tradeoff
between fitness cost and resistance.

. Despite the high ruggedness, the landscape displays strong non-random patterns. A rank
ordering condition between sets of mutations holds at all concentrations. A remarkable and
unexpected consequence of this is that any fitness peak is evolutionarily accessible from the
wild type.

. It is well known from experimental studies of antimicrobial resistance evolution that highly
resistant genotypes often require multiple mutations which can be acquired along different
evolutionary trajectories. Epistatic interactions constrain these trajectories and are generally
expected to impede the evolution of high resistance. We find that strong and complex epi-
static interactions inevitably arise in the mutant selection window, but at the same time the
evolution of the most resistant genotype (the identity of which changes with concentration)
remains facile and can occur along many different pathways.

All of these conclusions follow from three basic assumptions that are readily generalizable beyond

the context of antimicrobial resistance evolution: the existence of tradeoffs between two marginal

phenotypes that govern the adaptation at extreme values of an environmental parameter; the scal-

ing property of the shape of the tradeoff function; and the condition of limited epistasis for the mar-

ginal phenotypes. How generally these assumptions are valid is a matter of empirical investigation.
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We have shown that they hold for certain cases, and the interesting evolutionary implications of our

results indicate that more empirical research in this direction will be useful.

In the case of antimicrobial resistance, there can be fitness compensatory mutations (Levin et al.,

2000; Brown et al., 2010; Durão et al., 2018) that do not exhibit any adaptational tradeoffs. These

mutations are generally found in a population in the later stages of the evolution of antibiotic resis-

tance, which implies that they emerge in a genetic background of mutations with adaptational trade-

offs. An understanding of tradeoff-induced landscapes is therefore a prerequisite for predicting the

emergence of compensatory mutations. While compensatory mutations are expected to facilitate

the evolution of high resistance (Hughes and Andersson, 2017), our study shows that the acquisi-

tion of multiple resistance mutations may readily occur even if compensatory mutations are absent.

In the formulation of our model we have assumed for convenience that the marginal phenotypes

combine multiplicatively, but this assumption is in fact not necessary for all our results. As shown in

Materials and methods, our key results on accessibility only require the absence of positive epistasis.

These results therefore hold without exception for the combinatorially complete data set in Table 1,

where epistasis is either absent or negative. More generally, our analysis remains valid in the pres-

ence of the commonly observed pattern of diminishing returns epistasis among beneficial mutations

(Chou et al., 2011; Schoustra et al., 2016; Wünsche et al., 2017). We expect our results to hold

approximately even when there is a small degree of epistasis (positive or negative) in r and m, but

we do not explore that question quantitatively in this paper.

A strict absence of epistasis, while certainly not universal, can be expected to occur under certain

generic circumstances. Assuming that we deal with a single antibiotic that has a single target

enzyme, we can think of two situations that could lead to a multiplicative behavior of the IC50: (i) Sin-

gle mutations occur in different genes that affect the concentration of the antibiotic-target enzyme

complex through independent mechanisms. (ii) Single mutations occur in the same gene but their

effect is multiplicative due to the nature of antibiotic-enzyme molecular interactions. An example of

scenario (i) would be a combination of mutations in the target gene (reduction of the binding affin-

ity), its promoter (increase in expression), genes regulating the activity of efflux pumps and porins

(decrease in intracellular concentration of the antibiotic), or genes controlling the level (increase in

concentration) or activity of drug-degrading enzymes. These mechanisms are ‘orthogonal’ to each

other, in the sense that they modify independent pathways within the cell. If each of them affects

the concentration of the antibiotic-target complex through first-order kinetics, their cumulative effect

will be multiplicative in terms of the IC50s of single mutations.

In the case of ciprofloxacin and E. coli (Figure 2 and Table 1), we expect mutations in gyrA (tar-

get) to be orthogonal to mutations in acrR and marR (efflux pumps). This is borne out by the

observed multiplicativity of the IC50 (Table 1). In contrast, we expect scenario (ii) to apply if the sin-

gle mutations affect different parts of the antibiotic-enzyme binding site independently. This is not

the case for two particular mutations in gyrA studied here – S83L and D87N (see cases of epistasis in

Table 1). An example for scenario (ii) are the two mutations P21L and A26T in the gene encoding

the enzyme dihydrofolate reductase, which increase the resistance to trimethoprim in a multiplicative

way in the absence of other mutations (Palmer et al., 2015). If the antibiotic has more than one tar-

get, multiplicativity would not generally hold. In particular, topoisomerase IV (gene parC) is a sec-

ondary target for ciprofloxacin with much weaker affinity than gyrase. Therefore, mutations in parC

do not contribute to resistance unless there is already a mutation in gyrA. As a consequence, in con-

trast to the mutants listed in Table 1, combinations containing parC display positive epistasis

(Hughes and Andersson, 2017).

The co-existence of high ruggedness and high accessibility found in the tradeoff-induced land-

scapes studied here is counterintuitive, and to the best of our knowledge fitness landscape models

with this property have not been described previously. The situation is depicted schematically in Fig-

ure 8. The first landscape is smooth with a single peak that must be accessible from everywhere

else. The second landscape is rugged, and each fitness peak is typically accessible from a few geno-

types only. This is the typical picture of a rugged fitness landscape with limited accessibility, as it

would be predicted by simple statistical models such as the HoC, NK or rough Mt. Fuji models

(Szendro et al., 2013; Neidhart et al., 2014; Hwang et al., 2018). The landscapes we describe

here belong to a third type, where a high number of peaks are accessible from a high number of

genotypes, creating overlapping ‘valleys’ from which a population may evolve towards different local

fitness maxima. Moreover, not only are fitness peaks accessible from all their subset and superset
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genotypes, but there are many direct paths leading up to each peak. This appears contrary to the

expectation that in landscapes with high epistasis, accessibility should be facilitated through muta-

tional reversions, that is, indirect paths (DePristo et al., 2007; Palmer et al., 2015; Wu et al., 2016;

Zagorski et al., 2016).

We conclude with some possible directions for future work. Our model provides a principled

framework for predicting how microbial fitness landscapes vary across different antibiotic concentra-

tions. This could be exploited to describe situations where the antibiotic concentration varies on a

time scale comparable to the evolution of resistance, either due to the degradation of the drug or

by an externally imposed treatment protocol (Marrec and Bitbol, 2018). In this context it would be

of particular interest to include compensatory mutations that lack the tradeoff between growth and

resistance, since such mutations are expected to strongly affect the extent to which resistance can

be reversed (Andersson and Hughes, 2010). Significant extension of the theory is required if the

drug concentration varies on a faster time scale comparable to the growth time of the microbial

population, in which case the concept of a concentration-dependent fitness would need to be

reconsidered.

From the broader perspective of evolutionary systems with adaptational tradeoffs mediated by

an environmental parameter, our study makes the important conceptual point that it is impossible to

have non-epistatic fitness landscapes for all environments. Using the terminology of Gorter et al.,

2016, the tradeoffs enforce reranking G� E interactions which in turn, as we have shown, induce

sign-epistatic G� G interactions at intermediate values of the environmental parameter. Notably,

this general conclusion does not depend on the scaling property of the tradeoff function. It would

nevertheless be of great interest to identify instances of scaling for other types of adaptational

tradeoffs, in which case the detailed predictions of our model could be applied as well.

Materials and methods

Experiments
Bacterial strains
We used strains from Marcusson et al., 2009 (courtesy of Douglas Huseby and Diarmaid Hughes).

The strains are isogenic derivatives of MG1655, a K12 strain of the bacterium E. coli, with specific

point mutations or gene deletions in five different loci: gyrA:S83L, gyrA:D87N, parC:S80I, DmarR,

and DacrR. There are 32 possible combinations of these alleles, but we only used the wild type, sin-

gle mutants (five strains) and double mutants (8 strains of 10 possible combinations): LM179 (00000),

LM378 (10000), LM534 (01000), LM792 (00100), LM202 (00010), LM351 (00001), LM625 (11000),

LM862 (10100), LM421 (10010), LM647 (10001), LM1124 (01100), LM538 (01010), LM592 (01001),

LM367 (00011). A binary sequence after the strain’s name represents the presence/absence of a par-

ticular mutated allele (order as in the above list of genetic alterations).

Figure 8. Accessibility and ruggedness in different types of fitness landscapes. The first two landscapes

correspond to the typical cases of smooth and rugged landscapes. The third figure describes landscapes with

adaptational tradeoffs, where high ruggedness coexists with high accessibility.
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Growth media and antibiotics
LB growth medium was prepared according to Miller’s formulation (10 g tryptone, 5 g yeast extract,

10 g NaCl per litre). The pH was adjusted to 7.2 with NaOH, and autoclaved at 121˚C for 20 min.

Ciprofloxacin (CIP) solutions were prepared from a frozen stock (10 mg/ml ciprofloxacin hydrochlo-

ride, pharmaceutical grade, AppliChem, Darmstadt, in sterile, ultra-pure water) by diluting into LB to

achieve the desired concentrations.

Dose-response curves
We incubated bacteria in 96-well clear flat bottom micro-plates (Corning Costar) inside a plate

reader (BMG LABTECH FLUOstar Optima with a stacker) starting from two different initial cell densi-

ties (half a plate for each), and measured the optical density (OD) of each culture every 2–5 min to

obtain growth curves. Plates were prepared automatically using a BMG LABTECH CLARIOstar plate

reader equipped with two injectors connected to a bottle containing LB and a bottle with a solution

of CIP in LB. The injectors were programmed to create different concentrations of CIP in each col-

umn of the 96 well plate. The injected volumes of the CIP solution were 0, 20, 25, 31, 39, 49, 62, 78,

98, 124, 155, 195 ml, and an appropriate volume of LB was added to bring the total volume to 195

ml per well. Since different strains had MICs spanning almost two decades of CIP concentrations, we

used a different maximum concentration of the CIP solution for each strain (approximately 1.5–2

times the expected MIC). Bacteria were diluted from a thawed frozen stock 103 and 104 times in

PBS (phosphate buffered saline buffer), and 5ml of the suspension was added to each well (103 dilu-

tion to rows A-D, 104 dilution to rows E-H). We used one strain per plate and up to four plates per

strain (typically 1–2). After adding the suspension of bacteria to each well, the plates were immedi-

ately sealed with a transparent film to prevent evaporation, and put into a stacker (37˚C, no shaking),

from which they would be periodically fed into the FLUOstar Optima plate reader (37˚C, orbital shak-

ing at 200 rpm for 10 s prior to OD measurement). We then used the time shift method to obtain

exponential growth rates for each strain and different concentrations of CIP, see Ojkic et al., 2019

for further details.

Mathematical methods
Rank orders and fitness graphs
The total number of possible rank orders with L mutations is 2

L!, which is 24 for L ¼ 2. Not all these

rank orders, however, can be realized as one scans through x. Since any two curves intersect at most

once, the maximum number of distinct rank orders that can be reached is the rank order at x ¼ 0

plus the total number of possible intersections, which is 2
L

2

� �

¼ 2
L�1ð2L � 1Þ. Thus the upper bound

on the number of rank orders found by scanning through x is 2
L�1ð2L � 1Þ þ 1, which is smaller than

2
L! for L � 2.

It is also instructive to determine the number of fitness graphs that can be found by varying x for

a system with L mutations. This can be computed as follows: At x ¼ 0 every mutation is deleterious,

and every mutational neighbor with one less mutation is fitter; but due to the tradeoff condition, at

sufficiently large x every mutation is beneficial and any mutational neighbor with one less mutation is

less fit. In order for this reversal of fitness order to happen, the dose-response curves of any two

mutational neighbors must intersect at some x. Therefore, the number of fitness graphs generated is

equal to the number of distinct pairs of mutational neighbors, which is 2L�1L, and the number of dis-

tinct fitness graphs encountered is 2
L�1Lþ 1 . For L ¼ 2, this number is 5, as seen in the example in

the main text.

Condition for two dose-response curves to intersect at most once
Consider two DR curves characterized by ðr;mÞ and ðr0;m0Þ, where r<r0 and m>m0. We need to show

that for the commonly observed cases, the curves rwð x
m
Þ and r0wð x

m0Þ intersect at most once. First,

notice that it is sufficient to prove this for the case r0 ¼ 1;m0 ¼ 1, because any rescaling of the x and

w axes does not alter the number or ordering of intersection points. Therefore we require r<1 and

m>1.
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Let us consider the case where the dose-response curve is of the form of a Hill function, that is

wðxÞ ¼ 1

1þxa, with a>0. The intersection of curves happens at the solution of wðxÞ ¼ rwð x
m
Þ, which we

denote by x�ðr;mÞ. In this case the solution is given by

x�ðr;mÞ ¼ 1� r

r� 1

ma

 !1

a

which is positive and unique if rma>1; otherwise no solution with x�>0 exists. It is similarly easy to

show that at most one intersection point exists for exponentials, stretched exponentials, and half-

Gaussians.

The property also holds for any concave dose-response curve with w00ðxÞ<0. We prove this as fol-

lows. Any intersection point x� is the solution of

Fðx�Þ ¼ r

where FðxÞ � wðxÞ
wð x

m
Þ. We will show that FðxÞ is monotonic and therefore the above equation has at most

one solution. We have

F0ðxÞ ¼w0ðxÞwð x
m
Þ� 1

m
wðxÞw0ð x

m
Þ

wð x
m
Þ2

;

and F0ðxÞ has the same sign as the numerator NðxÞ ¼w0ðxÞwð x
m
Þ� 1

m
wðxÞw0ð x

m
Þ. Since wðxÞ is a decreas-

ing function and m>1, wð x
m
Þ>wðxÞ> 1

m
wðxÞ. When w00ðxÞ<0, we also have w0ðxÞ<w0ð x

m
Þ. Since w0ðxÞ<0, this

implies jw0ðxÞj>jw0ð x
m
Þj, and NðxÞ<0. Therefore FðxÞ is monotonically decreasing.

Proof of the accessibility property
To derive the ordering condition, let us start with the simplest case of two single mutations Ai; Aj

occurring on the wild type background. There are correspondingly four different genotypes W, WAi,

WAj, WAiAj, which are listed in decreasing order of fitness at x ¼ 0. Let the intersection of the DR

curves of two genotypes s1 and s2 occur at x ¼ Xs1 ;s2
. Then XW ;WAj

is given by the solution x�ðrj;mjÞ
of

wðxÞ ¼ rjwð
x

mj

Þ;

and XWAi;WAiAj
is given by the solution of

riwð
x

mi

Þ ¼ rirjwð
x

mimj

Þ:

This last equation can be re-written as

wðx0Þ ¼ rjwð
x0

mj

Þ;

where x0 ¼ x
mi
. Comparing this with the first equation above, we have

XWAi;WAiAj
¼miXW ;WAj

>XW ;WAj
: (3)

This equation tells us that whenever the double mutant is fitter than one of the single mutants,

the wild type must be less fit than the other single mutant. Consequently, when the double mutant

is fitter than both the single mutants, the WT must be less fit than both the single mutants. In other

words, the number of single mutants fitter than the wild type cannot be less than the number of sin-

gle mutants less fit than the double mutant. This is the ordering condition given in the main text.

Any ordering that violates this condition is a forbidden ordering. For greater clarity, we list all the

possible forbidden orderings (up to interchange of indices i and j).
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W>WAi>WAiAj>WAj

W>WAiAj>WAi>WAj

WAiAj>W>WAi>WAj

WAiAj>WAi>W>WAj

(4)

Although we showed this for two single mutations in the wild type background, the same argu-

ments hold for any two sets of mutations in any background, since the succession of orderings is

independent of the rescalings of the fitness and concentration axes. To put it more precisely, W, Ai

and Aj are any three non-overlapping sets of mutations, where Ai and Aj are non-empty sets.

Next we use this to prove the accessibility property. Let s have n mutations. It is sufficient to

prove that (i) any superset of s with m or fewer mutations is accessible from all its own supersets with

m or fewer mutations, for all m � n (the statement follows from the case m ¼ L); and that (ii) any sub-

set of s with m0 or more mutations is accessible from any of its own subsets with m0 or more muta-

tions, for all m0 � n (the statement corresponds to m0 ¼ 0). We prove this by induction.

Firstly, we notice that the case m ¼ n is trivial, since s is of accessible from itself. For the case of

supersets, our base case is m ¼ nþ 1, and the assertion above holds because s is a local fitness

peak, and therefore accessible from all its supersets with nþ 1 mutations, which are of course acces-

sible from themselves.

Now we prove the induction step. Assume that all supersets of s that have m or fewer mutations

(where m � n) are accessible from all their supersets with m or fewer mutations. Consider a superset

S of s with m mutations, and denote it by S ¼ sA, where A is the set of mutations in S not present in

s. By assumption, s is accessible from S. In the following, we use the notation s1>s2 to indicate that

a genotype s1 is fitter than a genotype s2 (we use the ’<’ and ’=’ signs in a similar way). Therefore,

we have s>S ¼ sA.

Now consider any superset of S with mþ 1 mutations, where the additional mutation not con-

tained in S is denoted B. Then this superset can be denoted by SB ¼ sAB. We must have s>sB since

s is a local fitness peak. We now have the relation s>sA;sB. Therefore we must have sAB<sA;sB,

for otherwise we violate the ordering condition. Now since SB ¼ sAB<sA ¼ S, S must be accessible

from SB, proving that any superset with m mutations is accessible from any of its supersets with

mþ 1 mutations. This completes the proof of the induction step.

The proof for the case of subsets is essentially the same, utilizing the symmetry between the wild

type and the double mutant in the ordering condition.

The accessibility property follows entirely from the ordering condition, and hence any landscape

that obeys the ordering condition will obey the theorem. The ordering condition follows from

XW ;WAi
<XWAj;WAiAj

, as obtained in Equation 3. However, this same inequality obtains under more gen-

eral conditions. To see this, let us define the null-fitness of the double mutant WAiAj as rij, and the

resistance of the double mutant as mij. The dose-response curves of W and WAj intersect at

XW ;WAj
¼ x�ðrj;mjÞ, whereas the curves for WAi and WAiAj intersect at

XWAi;WAiAj
¼mix

�ð rij
ri
;
mij

mi

Þ:

Now it is easy to show that x�ðr;mÞ is a decreasing function of both r and m. Therefore

XWAi;WAiAj
>XW ;WAj

holds if rij � rirj and mij �mimj.

Number of local fitness peaks
When dealing with complex fitness landscapes with parameters that can vary across species and

environments, a useful strategy is to model the fitness effects as random variables that are chosen

from a probability distribution (Kauffman and Levin, 1987; Szendro et al., 2013; Hwang et al.,

2018). In the limit of large system size L, many properties emerge that are independent of the

details of the system. In practice, even relatively small system sizes are often approximated well by

results obtained in the asymptotic limit.

The mean number of peaks with n mutations in the tradeoff-induced landscapes is

KnðxÞ ¼ L

n

� �

QnðxÞ;
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where L
n

� �

is the total number of genotypes with n mutations, and QnðxÞ is the probability that a

genotype with n mutations is a fitness maximum at antibiotic concentration x. Then the total number

of peaks at x is
P

nKnðxÞ. Let the resistance of a genotype s be M ¼Qn
i¼1mi, and likewise its null-fit-

ness be R¼Qn
i¼1 ri. The genotype s is a local fitness maximum if it is fitter than all its subsets with

n� 1 mutations and all its supersets with nþ 1 mutations.

To find the concentration at which the curves of s and its neighboring genotypes intersect, we

start with the simplest case of the dose-response curves of the wild type and a single mutant ðr;mÞ.
These curves intersect at the solution x�ðr;mÞ of wðxÞ ¼ rwð x

m
Þ, which is a decreasing function of r

and m. The wild type is fitter than the single mutant when x< x�ðr;mÞ. Now the intersection of the

DR curves of a genotype s with n mutations and a subset with n� 1 mutations that lacks the muta-

tion ðri;miÞ occurs at the solution of

wð x

ðM
mi
Þ Þ ¼ riwð

x

ðM
mi
Þmi

Þ

which is read off as M
mi
x�ðri;miÞ. Likewise, the intersection of the DR curves of s and a superset with

nþ 1 mutations that contains the additional mutation ðrj;mjÞ occurs at Mx�ðrj;mjÞ. Therefore s is a fit-

ness maximum if

x�ðri;miÞ
mi

<
x

M
<x�ðrj;mjÞ (5)

for all i and j with 1� i<n and n<j� L. Alternatively,

logmi� logx�ðri;miÞ> logM� logx> � logx�ðrj;mjÞ: (6)

Let us consider the regime where L;n� 1. Then logM ~nhlogmi; if logx is smaller than OðnÞ, it is
clear that the second inequality is almost certainly satisfied whereas the probability of the first

inequality is vanishingly small. Both the probabilities are finite if logx~nhlogmi. Thus the probability

of s being a fitness peak is maximized when logx¼ logðMÞþh, where h~Oð1Þ and depends on the

details of the distribution Pðr;mÞ. Thus the mean number of fitness peaks with n mutations is maximal

at xmaxðnÞ where to leading order logxmaxðnÞ~nhlogmi, independent of any further details of the

system.

The total number of genotypes with n mutations is L
n

� �

, and log L
n

� �

’ LHð�Þ, where � ¼ n
L
, and

Hð�Þ ¼�½� log�þð1� �Þ logð1� �Þ�: (7)

The mean number of fitness maxima can be found by multiplying this with Qn. One may expect

Qn to be exponentially small in L, since a total of L inequalities (as indicated in Equation 6) need to

be satisfied. However, this is complicated by the fact that the probabilities of the inequalities being

satisfied are not independent. The correlations between the inequalities would depend on the distri-

bution of Pðr;mÞ and the dose-response curve. If the correlations are sufficiently weak, one might still

expect to find an exponential scaling in large L. To leading order L
n

� �

is itself exponential in L, and if

the probability that a genotype is a fitness peak is exponentially small in L, we expect the mean

number of peaks Kn to be exponential in L as well. This is supported by the scaling shown in the

inset of Figure 4A.

For the simulation results shown in the main text we chose a joint distribution of the form

Pðr;mÞ ¼ PðrÞPðmjrÞ ¼ 6rð1� rÞðm� 1
ffiffi

r
p Þe�ðm� 1

ffi

r
p Þ
: (8)

The conditional distribution PðmjrÞ is a shifted gamma distribution. The shift ensures that the

curves of a background genotype and a mutant intersect.

Sign epistasis
Sign epistasis with respect to a certain mutation occurs when the mutation is beneficial in one back-

ground but deleterious in another. We first show that any two distinct sets of mutations on any

genetic background display sign epistasis at some value of the scaled concentration x. Consider a
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genetic background W, and two distinct sets of mutations A1 and A2 (which share no mutations with

each other or W). At x ¼ 0 we have W>A1; A2 and WA1A2<WA1; WA2. As x increases, W must become

less fit than either WA1 or WA2 before WA1A2 becomes fitter than either of these (by the ordering

condition). Without loss of generality, let us assume that W becomes less fit than WA1 before it

becomes less fit than WA2. At this point, we must have W<WA1 and WA2>WA1A2. This means that, in

the wild type background, A1 is beneficial in the absence of A2 but deleterious in the presence of A2,

indicating pairwise sign epistasis.

To quantify the amount of sign epistasis for large L and n, we next ask for the number of back-

grounds nb in which a mutation is beneficial at concentration x. If one considers only those back-

grounds that have n mutations, then nb would depend both on n and x. In a statistical ensemble of

landscapes, one may compute the probability Pb that a mutation is beneficial in a background with n

mutations, and of course hnbi ¼ Pb
L
n

� �

. In the limit of large L and n, Pb exhibits some universal proper-

ties to leading order. When log x>nhlogmi, we are in the regime of high concentration relative to n,

and we expect a mutation to be beneficial. We find that to leading order Pbð�; xÞ ¼ 1, with correc-

tions that are exponentially small in n. When log x<nhlogmi, we are at concentrations that are too low

to prefer additional mutations, and Pb is exponentially small in n. When log x ¼ nhlogmi, we are at the

threshold concentration where a new mutation becomes beneficial. Here we find that Pb ’ 1

2
. For

large L we therefore expect a steep transition from 0 to 1 as the concentration crosses the threshold

value (see inset of Figure 5).

Consider a mutation ðr;mÞ in a background with n mutations ðr1;m1Þ; ðr2;m2Þ . . . ðrn;mnÞ. The muta-

tion is beneficial in this background if

m1m2 . . .mnx
�ðr;mÞ<x (9)

Taking logarithms, we have

� logx�ðr;mÞ>
X

n

i¼1
logmi� logx: (10)

Define �¼ logx
L

and �¼ n
L
, and z¼� logx�ðr;mÞ. Then the above inequality becomes

z

n
>
1

n

X

n

i¼1
logmi�

�

�
: (11)

Let the distribution of z be PðzÞ, and let CzðzÞ ¼
R

¥

z
PzðxÞ dx. Define the random variable

!¼ 1

n

Pn
i¼1ðlogmi� �

�Þ, and denote its distribution Pð!Þ. Then the probability that a mutation is benefi-

cial in a background with n mutations is

Pbð�;�Þ ¼
Z

¥

�¥
Pð!Þ Czðn!Þ d!: (12)

The mean number of backgrounds with n mutations in which a mutation is beneficial is

nbð�;�Þ ¼ Pbð�;�Þ L
n

� �

. Note that h!i ¼ h�i� �
� where �¼ logm. When n� 1, Czðn !Þ ’ 1 for !<0 and

Czðn !Þ ’ 0 for !>0, with a sharp transition from 1 to 0 that happens within a region of width

~Oð1=nÞ of the origin. Also for large n, Pð!Þ is sharply peaked around h!i over a region of width

Oð1= ffiffiffi

n
p Þ.

When h!i<0, Czðn!Þ ’ 1 over this entire region, as observed before. Thus to leading order,

Pbð�; �Þ ¼ 1. The mean number of backgrounds in which a mutation is beneficial is

nbð�; �Þ ¼ Pbð�; �Þ L
�L

� �

.

nbð�;�Þ ’
ffiffiffiffiffiffi

2p

L

r

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p eLHð�Þ (13)

where Hð�Þ is defined in Equation 7. Therefore
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lognb ’ LHð�Þ (14)

to leading order.

When h!i>0, the dominant contribution to the integral in (Equation 12) comes from ! � 0, since

Czðn!Þ quickly drops from 1 to zero for !>0. Further, since Czð!Þ ’ 1 for !<0 (except for a region of

width Oð1=nÞ around ! ¼ 0, as observed before), we can approximate logPbð�; �Þ simply by the prob-

ability that !<0. Then

logPbð�;�Þ ’�nIð�
�

�
Þ

where I is the large deviation function of �m, and

lognbð�;�Þ ’ L½Hð�Þ� �Ið� �

�
Þ�:

This implies that nb is reduced by a factor that is exponentially small in L compared to Equa-

tion 14, and therefore the fraction of backgrounds in which a mutation is beneficial is very small.

Finally, when h!i ¼ 0, that is � ¼ n
L
h�i, Pð!Þ is centered at the origin and decays over a width

Oð1= ffiffiffi

n
p Þ. For !>0, Czðn!Þ is 0 except over a much smaller width Oð1=nÞ to the right of the origin,

whereas for ! � 0, it is 1 except for a small region of width Oð1=nÞ left of the origin. Thus the domi-

nant contribution to the integral in Equation 12 comes from ! � 0, and as before, Pb can be approx-

imated by the probabilitythat ! � 0. Due to the central limit theorem, Pð!Þ is approximately

Gaussian and therefore symmetric around ! ¼ 0, and therefore Pb ’ 1

2
. Consequently, we should

have

nbð�;�Þ ’
1

2

ffiffiffiffiffiffi

2p

L

r

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p eLHð�Þ;

which is 1/2 times the total number of backgrounds given by Equation 13. This proves that the con-

centration where the mutation is beneficial in half of the backgrounds is given by h!i ¼ 0 or

logx¼ nhlogmi for large L and n.
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