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Abstract Defensive system activation promotes heightened perception of threat signals, and

excessive attention to threat signals has been discussed as a contributory factor in the etiology of

anxiety disorders. However, a mechanistic account of attentional modulation during fear-relevant

processes, especially during fear generalization remains elusive. To test the hypothesis that social

fear generalization prompts sharpened tuning in the visuocortical representation of social threat

cues, 67 healthy participants underwent differential fear conditioning, followed by a generalization

test in which participants viewed faces varying in similarity with the threat-associated face. We

found that generalization of social threat sharpens visuocortical tuning of social threat cues,

whereas ratings of fearfulness showed generalization, linearly decreasing with decreasing similarity

to the threat-associated face. Moreover, individuals who reported greater anxiety in social

situations also showed heightened sharpened tuning of visuocortical neurons to facial identity cues,

indicating the behavioral relevance of visuocortical tuning during generalization learning.

Introduction
Selectively perceiving and differentially responding to cues associated with threat versus safety is a

fundamental function of the vertebrate brain. The dysregulation of these functions is at the core of

many psychiatric problems. Over the past decade, basic and applied researchers interested in men-

tal health have focused on the contribution of dysfunctional associative learning mechanisms to the

etiology of anxiety disorders (Dymond et al., 2015). Given its intuitive relation with exaggerated

fear and anxiety, the process of overgeneralization—showing threat responses to safety cues that

resemble threat-associated stimuli—has been of particular interest. However, previous clinical and

translational work has yielded contradictory findings. While some authors observed overgeneraliza-

tion in patients with anxiety disorders (Kaczkurkin et al., 2017; Lissek et al., 2014b; Lissek et al.,

2010), others did not (Ahrens et al., 2016; Tinoco-González et al., 2015). This lack of convergent

findings may be due to the fact that different physiological systems respond differently to varying

similarity with a fear stimulus.

When individuals are in a state of fear, defensive mechanisms are activated with the goal of

engaging in adaptive action, for example in fighting or escaping the threat. This defensive engage-

ment is indexed by somato-visceral measures, such as fear-potentiated startle, skin conductance,

and cardiovascular responses (Boecker and Pauli, 2019; Bradley and Lang, 2000). These measures

have been considered in previous fear generalization experiments (Ahrens et al., 2016;

Lissek et al., 2010; Torrents-Rodas et al., 2013), with mixed results regarding the nature and
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variability of fear generalization across a range of cues varying in similarity with a threat cue

(Ahrens et al., 2016). In addition to preparing autonomic and motor efferent systems for action,

defensive mobilization also includes heightened sensory processing, that is, perception and atten-

tion to threat (Robinson et al., 2013). In line with this notion, a substantial body of research has

shown that stimuli predicting threat are attended more than neutral cues, and that heightened atten-

tion toward threatening stimuli is pronounced in patients with anxiety disorders (Bar-Haim et al.,

2007). At the same time, several studies focused on the importance of perceptual discriminability of

threatening stimuli (Struyf et al., 2017; Zaman et al., 2019). As a consequence, excessive attention

to threatening stimuli has been discussed as causal or contributory in the etiology of anxiety disor-

ders (Clark and Wells, 1995; Rapee and Heimberg, 1997). Direct neurophysiological evidence of

heightened attention to threat in clinical disorders is scarce, however, and findings of both height-

ened and diminished attention have been reported. The absence of a mechanistic account and lack

of direct unequivocal evidence of attention dysfunction may be a result of the using indirect meas-

ures of attention to threat. The present study uses electrophysiological measurements from visual

cortex to test mechanistic hypotheses derived from the structure and function of the human visual

system.

Direct visuocortical responses to a specific stimulus may be quantified with the steady-state visu-

ally evoked potential (ssVEP, Müller et al., 1998). The ssVEP is an oscillatory neuronal response to

stimuli that are periodically modulated in luminance. Heightened ssVEP amplitudes mark increased

visuocortical activation and can be used to index attentional processes. For example, attended fea-

tures (Müller et al., 2006) and selective spatial attention (Müller et al., 1998) facilitate visuocortical

activation compared to unattended features and

locations. SsVEPs are also sensitive to emotional

processes and show increased amplitudes for

emotional compared to neutral stimuli

(Keil et al., 2003; Kemp et al., 2002;

McTeague et al., 2011). Therefore, they provide

a promising method for testing hypotheses

regarding changing perception and attention as

participants undergo fear generalization learning

(Wieser et al., 2016). The amplitude of the

ssVEP differentiates threat from safety signals,

being selectively heightened for conditioned

threat cues (reviewed in Miskovic and Keil,

2012). Building on these findings,

McTeague et al., 2015 utilized ssVEPs to study

population-level tuning of orientation-selective

neurons in the primary visual cortex during fear

generalization. In the neuroscience literature,

tuning functions are often used to to describe

differences in sensitivity of a response (neural or

behavioral) along a physical feature gradient. For

example, orientation tuning functions denote

how neurons in the retinotopic visual cortex

selectively respond to specific orientations (see

Figure 1). At the population level, especially

with scalp record fields, information regarding

the tuning of individual neurons is obscure.

Changes in the preferential tuning of popula-

tion-level responses along a feature gradient can

however be assessed with suitable research

designs: To examine the extent to which aversive

learning affects the population-level orientation

tuning reflected in ssVEPs, McTeague et al.,

2015 used high-contrast grating stimuli differing

in orientation as conditioned stimuli. During pre-

Figure 1. Different tuning functions during aversive

learning. The flat grey line depicts relative (behavioral

or neural) responses along a physical feature gradient

during pre-conditioning. The black curve shows a

possible tuning function for lateral inhibition after

aversive conditioning as seen in orientation-selective

neuronal populations in the visual cortex

(McTeague et al., 2015). Relative responses are

enhanced for the specific feature associated with the

aversive event and supressed for the most similar

features. In contrast, the purple curve depicts a

gradually decreasing generalization gradient observed

in self-report and somato-visceral indices of

generalization learning.
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conditioning, the ssVEP amplitude evoked by each orientation was the same, resulting in a flat tun-

ing curve. During acquisition, only the grating stimulus in the middle of this stimulus continuum was

paired with an aversive noise (i.e. the CS+). After several conditioning trials, the CS+ prompted

enhanced visuocortical engagement, accompanied by a suppression of the grating orientations with

highest similarity to the CS+. This tuning pattern, which contrasts with the gradually decreasing gen-

eralization gradient observed in self-report and somato-visceral indices of learning, suggests lateral

inhibitory interactions among orientation-selective neuronal populations in the visual cortex.

In the present study, we tested the hypothesis that sensory systems, when presented with a simi-

larity gradient around a social threat stimulus, undergo changes to sharpen their tuning properties

toward the relevant feature. Paralleling work on orientation-selective neurons discussed above, we

expected amplification of visuocortical responses to the threat-associated face and a selective sup-

pression of responses to the face most similar to the threat-associated face, reflecting inhibitory

interactions between neuronal populations that represent facial features. This hypothesis is

grounded in work showing substantial evidence for single-unit and population level (LFPs, fMRI) tun-

ing in face-specific areas in the human and primate brain (Freiwald and Tsao, 2010; Freiwald et al.,

2009; Gilaie-Dotan and Malach, 2007; Leopold et al., 2006; Loffler et al., 2005). These studies

have demonstrated that there are neurons and neuronal populations in face-sensitive cortical areas,

like the occipital face area (OFA) and the fusiform face area (FFA), which show gradual responses to

varying facial identify, often referred to as ‘tuning’ to facial identities (Chang and Tsao, 2017). Here,

we examine the malleability of population-level tuning as observers learn to associate one identity

along a gradient of morphs with an aversive outcome. To further establish the behavioral relevance

of visuocortical tuning, we also examine the extent to which such sharpened visuocortical tuning is

associated with interindividual differences in social anxiety.

Results

Habituation
Steady-state visually evoked potentials (ssVEPs)
To induce ssVEPs, two different facial stimuli (CS+ and CS-) were presented with a flickering fre-

quency of 12 Hz (see Figure 2). After converting the electrocortical signal to current source density

(CSD) estimates and transforming it into the frequency-domain, the signal-to-noise ratio (SNR) was

calculated by dividing the power of the driving frequency by the mean of the spectral power at six

adjacent frequency bins, leaving out the two immediate neighbors. The resulting SNRs were pooled

across eight sensor locations over the occipital pole for statistical analyses. During habituation, the

linear mixed model analysis including the within-factor CS-type (two levels: CS+ vs CS-) and social

anxiety as a continuous between-variable revealed a significant main effect for social anxiety, indicat-

ing that higher social anxiety was associated with higher ssVEP-SNRs in general and a non-significant

trend for CS-type (CS+: M = 3.61, SD = 1.91; CS-: M = 3.39 SD=1.77). There was no CS-type x social

anxiety interaction (see Table 1).

Valence and arousal ratings
The linear mixed model analysis of valence ratings revealed neither a significant main effect of social

anxiety nor a CS-type x social anxiety interaction (see Table 1). However, subjects rated the CS- as

slightly more unpleasant than the CS+, (CS+: M = 4.60, SD = 1.22; CS-: M = 4.99 SD=1.25). With

regard to arousal ratings, there was no significant effect for CS-type (CS+: M = 3.69, SD = 1.61; CS-:

M = 3.58 SD=1.58), social anxiety, or CS-type x social anxiety interaction. This result points out that

none of the two faces elicited more arousal at the beginning of the experiment.

Acquisition
SsVEPs
After the CS+ had been paired with the US (see Figure 2), linear mixed model analyses for ssVEPs

yielded a main effect of CS-type and a small effect of social anxiety, demonstrating that subjects

reacted with higher amplitudes to the CS+ (M = 3.69, SD = 1.80) compared to the CS- (M = 3.33,

SD = 1.56, see Figure 3a) and that higher social anxiety was associated with higher amplitudes in

general (see Table 2). There was no significant CS-type x social anxiety interaction.
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Valence and arousal ratings
After acquisition, there was a significant main effect of CS-type for both valence and arousal ratings

(see Table 2), demonstrating that subjects rated the CS+ as more unpleasant (M = 6.42, SD = 1.41)

and more arousing (M = 6.51, SD = 1.63) compared to the CS- (unpleasantness: M = 4.73, SD = 1.34;

arousal: M = 3.69, SD = 1.94, see Figure 3c and d). Main effects of social anxiety and CS-type x

social anxiety interactions were not significant.

US expectancy rating
The analysis detected a main effect of CS-type (see Table 2), with higher US expectancy ratings for

the CS+ (M = 72.09, SD = 21.71) compared to the CS- (M = 8.66, SD = 18.74), underlining that the

experimental manipulation was effective (see Figure 3b). There was no effect of social anxiety or

CS-type x social anxiety interaction.

Figure 2. Experimental design. Habituation, acquisition and generalization phase are illustrated. Stimuli were randomly presented for 3 s during each

of the three parts of the experiment. The US consisted of a 1500 ms presentation of the respective CS+ face displaying a fearful expression, which was

accompanied by a 95 dB shrill female scream. The assignment of face to CS+/CS- was counterbalanced between participants.

Table 1. Results of the linear mixed model analyses during habituation.

ssVEP-SNRs:

CS-Type F(1,65)=3.18 p=0.079 R2=0.047 CI = [.000,. 187]

Social anxiety t(65)=2.18 p=0.033 b = 0.48 SE = 0.21

CS-Type x Social anxiety F(1,65)=0.69 p=0.408 R2=0.011 CI = [.000,. 112]

Valence:

CS-Type F(1,65)=4.07 p=0.048 R2=0.059 CI = [.001,. 207]

Social anxiety t(65)=1.34 p=0.186 b = �0.15 SE = 0.12

CS-Type x Social anxiety F(1,65)=1.16 p=0.285 R2=0.018 CI = [.000,. 130]

Arousal:

CS-Type F(1,65)=0.34 p=0.562 R2=0.005 CI = [.000,. 096]

Social anxiety t(65)=1.24 p=0.221 b = 0.21 SE = 0.17

CS-Type x Social anxiety F(1,65)=2.18 p=0.145 R2=0.032 CI = [.000,. 162]
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Generalization
Steady-state visually evoked potentials
During the generalization test, four additional faces (GS1 – 4) were presented by morphing the two

faces of the previous phases together in 20% steps, with the GS1 being the most similar to the CS+

and the GS4 being the most similar to the CS- (see Figure 2). The CS-type (six levels: CS+ vs GS1 vs

GS2 vs GS3 vs GS4 vs CS-) x social anxiety linear mixed model provided a main effect of CS-type

and a marginal effect of social anxiety (see Figures 4 and 5a and Table 3). Post-hoc contrasts indi-

cated significant differences between GS4 vs CS-, t(325) = 2.94, p=0.003, GS3 vs CS-, t(325) = 3.24,

p=0.001, and CS+ vs CS-, t(325) = 2.17, p=0.031, but not between GS2 vs CS-, t(325) = 1.75,

p=0.081, and GS1 vs CS-, t(325) = 0.82, p=0.411. However, the omnibus-test revealed no stimulus

type x social anxiety interaction.

To follow up on the frequentist statistics and to seek converging evidence from a Bayesian per-

spective, we compared the fit of a lateral inhibition pattern to a quadratic and linear trend, using

weighted predictors in Bayesian linear models (see Figure 6). To this end, we constructed weight

vectors that reflected the predictions of the alternative hypotheses for the experimental conditions.

This approach allowed us to leverage the specific model predictions under the lateral inhibition, gen-

eralization, and linear hypotheses, and to quantify the fit between the empirical data and model pre-

dictions in one test across all conditions. The lateral inhibition pattern was expressed as the

difference of two Gaussians (weights: +2,–2, +0.5, +1, +0.5,–2 for CS+, GS1, GS2, GS3, GS4, CS-),

paralleling previous studies on visuocortical tuning (Antov et al., 2020; McTeague et al., 2015).

Figure 3. Boxplots and means (diamonds) of the (a) 12 Hz ssVEP signal-to-noise ratios (SNR) during the acquisition

phase and mean US expectancy (b), arousal (c), and unpleasantness ratings (d) after acquisition.

Stegmann et al. eLife 2020;9:e55204. DOI: https://doi.org/10.7554/eLife.55204 5 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.55204


The quadratic (weights: +2.5334, +1.0934,–0.0267, �0.8267,–1.3067, �1.4667) and linear (weights:

+2.5, +1.5, +0.5,–0.5, �1.5,–2.5) trend were modeled after the analyses of the linear and quadratic

component of the generalization gradient, which are commonly employed in the fear generalization

literature (Ahrens et al., 2016; Lissek et al., 2014a; Lissek et al., 2014b). In a first step, each Bayes-

ian model was compared to the ‘random intercept only’ model (null model, 0), before transitive

Bayes factors were calculated to obtain the relative evidence of one model over another. These tran-

sitive Bayes factors allow a direct comparison between the competing models. For a summary of

resulting Bayes factors for each candidate main effect, interaction and predictor weight model see

Table 4. The main effect of weighted CS-type received support for the lateral inhibition pattern

only, BFLa1/0 = 13.26, but not for the quadratic, BFQ1/0 = 0.14, or linear trend, BFLi1/0 = 0.13. Further

including a main effect of social anxiety did not lead to substantially increased support for the lateral

inhibition pattern, BFLa2/La1 = 1.38, the quadratic, BFQ2/Q1 = 1.08, or linear trend, BFLi2/Li1 = 1.36. The

strongest evidence could be found for the full interaction model (SNR ~CS type + social anxiety +

CS-type x social anxiety) and the lateral inhibition pattern, BFLa3/0 = 57.32, which substantially

extends the support of the main effects model, BFLa3/La2 = 3.13, suggesting that the accentuation of

the lateral inhibition pattern increased with higher social anxiety. By contrast, the full interaction

models for the Quadratic, BFQ3/0 = 0.11, and Linear trend, BFLi3/0 = 0.38, still yielded less evidence

Table 2. Results of the linear mixed model analyses during acquisition learning.

ssVEP-SNRs:

CS-Type F(1,65)=5.50 p=0.022 R2=0.078 CI = [.003,. 235]

Social anxiety t(65)=2.00 p=0.050 b = 0.37 SE = 0.19

CS-Type x Social anxiety F(1,65)=1.57 p=0.168 R2=0.013 CI = [.000,. 118]

Valence:

CS-Type F(1,65)=49.51 p<0.001 R2=0.432 CI = [.271,. 587]

Social anxiety t(65)=0.80 p=0.424 b = 0.09 SE = 0.12

CS-Type x Social anxiety F(1,65)=0.00 p=0.982 R2=0.000 CI = [.000,. 075]

Arousal:

CS-Type F(1,65)=91.13 p<0.001 R2=0.584 CI = [.447,. 705]

Social anxiety t(65)=0.05 p=0.959 b = 0.01 SE = 0.16

CS-Type x Social anxiety F(1,65)=1.29 p=0.259 R2=0.020 CI = [.000,. 135]

US expectancy:

CS-Type F(1,65)=323.15 p<0.001 R2=0.833 CI = [.771,. 884]

Social anxiety t(65)=0.17 p<0.867 b = �0.30 SE = 1.77

CS-Type x Social anxiety F(1,65)=0.15 p=0.736 R2=0.002 CI = [.000,. 083]

Figure 4. Mean scalp topographies of the 12 Hz ssVEP signal-to-noise ratios to the conditions during the generalization test.
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than the null model (see Figure 6). Importantly, by comparing the main and interaction effect mod-

els of each contrast against the same random intercept model, it was possible to derive the relative

evidence of the lateral inhibition model over the quadratic and linear trend (see Table 4, last two

columns). Results for the full interaction model demonstrated that the lateral inhibition model is 858

times more likely than the quadratic trend model and 502 times more likely than the linear trend

model.

To follow up on the interaction of CS-type and social anxiety and to demonstrate the effect of

social anxiety on the accentuation of the lateral inhibition pattern, we performed an additional

regression analysis. In a first step, we calculated a visuocortical tuning index on subject level, which

is the scalar product of the weights of the lateral inhibition model (2, –2, 0.5, 1, 0.5, –2) and the

respective individual ssVEP responses. This visuocortical tuning index increases with a stronger

accentuation of the lateral inhibition pattern and decreases if individual responses deviate from the

pattern. For comparison, we calculated similar indices for the quadratic and linear trend. In a second

step, we analyzed a linear regression model with social anxiety as predictor and the ssVEP indices as

depended variables (see Figure 7). The regression analysis revealed a moderate, positive correlation

between social anxiety and the visuocortical tuning index, r(65) = .288, p = 0.018, BF1/0 = 3.65, con-

firming that the accentuation of the lateral inhibition pattern increased with higher social anxiety,

while the weak correlations between social anxiety and the index for the quadratic, r(65) = .146,

p = 0.238, BF2/0 = 0.52, or linear trend, r(65) = .137, p = 0.268, BF3/0 = 0.49, missed significance and

did not receive support from Bayesian-analyses.

Figure 5. Generalization test: (a) Mean 12 Hz signal-to-noise ratios (SNR) ±SEM of the ssVEP during the generalization test. (b) Mean US-expectancy, (c)

arousal and, (d) unpleasantness ratings ± SEM after generalization. Prediction intervals are shown for the mean ±1 SD of the SPAI covariate to illustrate

the influence of social anxiety.
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Valence and arousal ratings
The linear mixed models of the ratings yielded a significant main effect of CS-type for both valence

and arousal ratings (see Table 3). Following the procedure of the ssVEP analysis, follow-up contrasts

were calculated. With regard to arousal (see Figure 5c), subjects differentiated among the CS- and

the CS+ plus three GS: CS- versus CS+, t(325) = 14.93, p<0.001, CS- versus GS1, t(325) = 10.28,

p<0.001, CS- versus GS2, t(325) = 5.24, p<0.001, and CS- versus GS3, t(325) = 3.12, p=0.002, but

not CS- versus GS4, t(325) = 1.06, p=0.290. For valence ratings (see Figure 4d), results showed dif-

ferences between CS- and CS+, t(325) = 10.95, p<0.001, CS- and GS1, t(325) = 7.14, p<0.001, CS-

and GS2, t(325) = 3.41, p<0.001, and CS- and GS3, t(325) = 2.06, p=0.040, but not between CS-

and GS4, t(325) = .64, p=0.526. These results suggest that all subjects transferred their fear

response reflected in both valence and arousal ratings from the CS+ to three GSs. In addition, there

were no main effects of social anxiety nor CS-type x social anxiety interactions.

US expectancy ratings
US expectancy analysis revealed a main effect of CS-type (see Figure 5b and Table 3). Post-hoc con-

trasts yielded significant effects for the comparison of CS- versus CS+ t(325) = 13.73, p<0.001; GS1:

t(325) = 8.88, p<0.001; and GS2: t(325) = 3.84, p<0.001. The differences between CS- and GS3: t

(325) = 1.69, p=0.091, and CS- and GS4, t(325) = 1.14, p=0.254, were not significant. As found in

valence and arousal ratings, subjects showed an enhanced tendency to generalize their conditioned

fear reaction, indicated by the fact that they expected the GS1 and GS2 to be followed by the US,

although they had never been paired with the US. The main effect of social anxiety and the CS-type

x social anxiety interaction were not significant.

Discussion
The goal of the present study was to test the hypothesis that aversive generalization learning

prompts sharpened representations of facial identity, reflecting inhibitory interactions between neu-

ronal populations that represent facial features associated with threat versus safety. Second, we lev-

eraged interindividual differences in social anxiety to examine whether the sharpened visuocortical

tuning to facial identity is heightened in those characterized by higher social anxiety. For this

Table 3. Results of the linear mixed model analyses during generalization learning.

ssVEP-SNRs:

CS-Type F(5,325)=3.39 p=0.009 R2=0.045 CI = [.020,. 111]

Social anxiety t(65)=1.94, p=0.056 b = 0.40 SE = 0.21

CS-Type x Social anxiety F(5,325)=1.57 p=0.167 R2=0.024 CI = [.009,. 080

Valence:

CS-Type F(5,325)
=35.83

p<0.001 R2=0.355 CI = [.286,. 436]

Social anxiety t(65)=0.17 p<0.867 b = 0.13 SE = 0.12

CS-Type x Social anxiety F(5,325)=1.83 p=0.107 R2=0.027 CI = [.011,. 086]

Arousal:

CS-Type F(5,325)
=66.80

p<0.001 R2=0.507 CI = [.443,. 574]

Social anxiety t(65)=1.12, p=0.267 b = �0.12 SE = 0.18

CS-Type x Social anxiety F(5,325)=0.71 p=0.618 R2=0.011 CI = [.005,. 060]

US expectancy:

CS-Type F(5,325)
=57.30

p<0.001 R2=0.469 CI = [.402,. 540]

Social anxiety t(65)=1.37 p=0.174 b = �2.79 SE = 2.03

CS-Type x Social anxiety F(5,325)=0.97 p=0.435 R2=0.015 CI = [.006,. 067]
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purpose, steady-state visually evoked potentials (ssVEPs) as well as valence, arousal and US expec-

tancy ratings were recorded in a fear conditioning and generalization paradigm with social cues.

Crucial for the later generalization test, successful fear conditioning was indexed in both ssVEP

amplitude and arousal, valence and US expectancy ratings during acquisition, and social anxiety was

not associated with stronger discrimination between conditioned stimuli or generally increased rat-

ings. Thus, the CS+ during acquisition elicited increased visuocortical responses reflecting enhanced

sensory engagement (Stegmann et al., 2019a; Wieser et al., 2014c). However, during habituation

and acquisition, subjects with higher social anxiety showed overall amplified visuocortical responses

to the face stimuli, which is in line with the notion of generally heightened sensitivity to facial expres-

sions in social anxiety disorder (McTeague et al., 2018) and has been observed previously in
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Figure 6. Bayesian model fit: Topographical distributions of the Bayes Factor for comparing the main effect model ‘SNR ~ CS-type’ to the null model

for each contrast. Weights used for the contrasts are displayed at the bottom row. Natural log-transformed BFs are illustrated, so that positive values

display support for the full effect model while negative values display support for the null model.

Table 4. Summary of the Bayesian linear model analysis.

BFM/0 Model Lateral inhibition Quadratic trend Linear trend Inhibition vs quadratic
Inhibition vs
Linear

M1: SNR ~ CS-type 13.26 0.14 0.13 104.17 97.62

M2: SNR ~ CStype + SA 18.33 0.15 0.17 105.49 125.16

M3: SNR ~ CS type + SA + CS-type x SA 57.32 0.11 0.38 858.52 502.184

Bayes factors of main and interaction effect models (M1 – M3) compared to the ‘random intercept only’ model (Null model) for the lateral inhibition pattern

(weights: +2,–2, +0.5, +1, +0.5,–2 for CS+, GS1, GS2, GS3, GS4, CS-), quadratic trend (weights: +2.5334, +1.0934,–0.0267, �0.8267,–1.3067, �1.4667) and

linear trend (weights: +2.5, +1.5, +0.5,–0.5, �1.5,–2.5). The last two columns display direct model comparisons between the lateral inhibition pattern to the

quadratic or linear trend by dividing respective BFs for each main and interaction effect model. SA, social anxiety.
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patients with SAD using ssVEPs (McTeague et al., 2011) and in high socially anxious individuals

using ERP components (Mühlberger et al., 2009) as markers of early perceptual processing.

During fear generalization, ratings of arousal, valence and US expectancy monotonically dimin-

ished with decreasing similarity to the CS+, indicating that subjects transferred their fear response

from the threat signaling face to similar faces, although those had not been associated with the aver-

sive outcome. These results corroborate previous studies on conditioned generalization, which dem-

onstrated gradual, monotonic, generalization effects for subjective ratings (Lissek et al., 2008;

McTeague et al., 2015; Stegmann et al., 2019b), somato-visceral measures, such as fear-potenti-

ated startle (Lissek et al., 2008), skin conductance responses (Stegmann et al., 2019b; Torrents-

Rodas et al., 2013) and heart rate (Ahrens et al., 2016) and electrocortical responses, that is, late

positive potentials (Nelson et al., 2015).

Importantly, the visuocortical responses did not show a monotonic generalization gradient, but

instead displayed a response pattern consistent with sharpening of the threat face representation.

The amplitude of the ssVEPs – in contrast to the ratings – did not gradually diminish with increasing

distance from the CS+. Instead, ssVEP amplitude for the CS+ was increased, but followed by an

immediate reduction for the closest GS (GS1), and a slow increase in response to the remaining GSs,

before it was again reduced for the learned safety cue (CS-). This observation is consistent with the

response pattern of orientation sensitive neurons in the visual cortex during a fear generalization

paradigm with enhanced visuocortical engagement to the CS+ and a suppression of the grating ori-

entations with the highest similarity to the CS+ (McTeague et al., 2015). In line, the Bayesian analy-

ses demonstrated that the observed ssVEP generalization data more likely corresponds to the lateral

inhibition model compared to the null model, which received more support from the Bayesian analy-

ses than the quadratic or linear trend model.

Together, these findings suggest that there is a dissociation in the aversive generalization pat-

terns of sensory compared to efferent and autonomic systems, which is consistent with the idea that

fear generalization is an active and multifaceted process that integrates a wide variety of signals to

organize adaptive fear responses (Onat and Büchel, 2015). A large body of work has shown that

visuocortical engagement with specific stimulus features varies with the motivational relevance of

these features (Bradley et al., 2012). The present results are in line with this notion, but also suggest

that these adaptive sensory changes observed during learning differ from the efferent system’s

responses. To date, there are not many studies that are directly targeting the functional differences

between sensory and efferent systems. Using steady-state visual evoked fields (the

Figure 7. Comparison of the correlations between social anxiety and the different contrast models. Only the visuocortical tuning index as a parameter

for the accentuation of the lateral inhibition pattern significantly increased with social anxiety. Marginal density plots display the distributions of the

social anxiety scores and the ssVEP indices.
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magnetoencephalographic counterpart of ssVEPs), two studies could demonstrate that threat-

induced sensory changes in low-level visual areas occur independently of the conscious awareness of

the CS-US contingencies (Moratti and Keil, 2009; Yuan et al., 2018), suggesting that visuocortical

responses are to some extent independent of higher level cognitive processes. In contrast, it has

been suggested, that threat-induced changes in the sensory system represent short-term plasticity

in the early visual cortex, which might be induced by projections from subcortical structures like the

amygdala or thalamus (Miskovic and Keil, 2012). This could be one reason for the divergence

between visuocortical and subjective responses, as verbal reports reflect a more cognitive compo-

nent of the defensive response (LeDoux and Pine, 2016). On the other hand, McTeague et al.,

2015 also found a dissociation between the visuocortical and the fear-potentiated startle responses.

The startle reflex, as an index of the autonomic component of the efferent system, is also assumed

to be directly modulated by amygdala projections (Davis, 2006). In this case, the discrepancies

between sensory and efferent response patterns might be mediated by different subregions of the

amygdala, which modulate the sensory and efferent system according to their supposed functions in

threat detection and defensive responding. Taking an evolutionary perspective, it is most adaptive

for the organism to enhance sensory specificity in the visual cortex to distinguish the motivational

information-providing stimulus from others sensory signals as reflected in the lateral inhibition

model. On the other hand, the ‘efferent’ readiness to respond to a potential threat is generalized, as

reflected in a monotonically decreasing generalization gradient, because a false alarm is less costly

than a - potentially fatal - miss. This evolutionary interpretation assumes that the constantly changing

and diverse environment in which humans find themselves demands and thus favors plastic physio-

logical mechanisms, which may differ between systems in order to optimize functioning

(Miskovic and Keil, 2012).

The present study also has implications regarding the neural mechanisms mediating aversive gen-

eralization learning, and regarding the neocortical changes underlying learning and memory more

broadly: McTeague et al., 2015, using a generalization gradient of oriented gratings, explained

their finding of visuocortical sharpening as a consequence of lateral inhibitory interactions among

orientation-selective neuronal populations in the primary visual cortex. In this case, signals from fron-

toparietal attention networks may selectively facilitate CS+ representations in visual cortex, prompt-

ing local inhibitory interactions between adjacent cortical units. This process is thought to prompt

suppression of the features represented by the most spatially proximal populations. In fact, ongoing

computational modeling efforts in our laboratories explain these and other generalization data best

by assuming that top-down signals take the shape of a generalization gradient (paralleling behav-

ioral and autonomic data), and it is the organization of visual cortex that turns this gradient into a

sharpening pattern through lateral inhibition. As such, sharpening would not be inherited by anterior

areas but would result from the organization and geometry of visual cortical areas. This interpreta-

tion is further supported by research demonstrating that the orientation-tuning functions of visual

neurons may be shaped by short-term plastic processes (Dragoi et al., 2000).

We hypothesized that in a situation in which facial identity predicts threat versus safety, a similar

mechanism may operate in the cortical tissue that is specific not to orientation but to the features

encoding facial identity. There are two loci where such tuning may occur: First, as aversive learning

proceeds, projections from anterior structures may increasingly target lower-level representations of

individual facial features in retinotopic areas, thus prompting inhibitory interactions between individ-

ual physical facial features such as orientation or spatial frequency, which differ across the morphing

gradient. This is consistent with findings and models in perceptual learning (e.g. reverse hierarchy

theory; Ahissar and Hochstein, 2004) and would prompt a mid-occipital topography of sharpening

effects in the present study.

Second, inhibitory interactions may occur between similar faces along a gradient of morphs, in

face-sensitive cortical areas. This alternative hypothesis is in line with recent evidence suggesting

that neuronal populations in face-sensitive cortical patches encode identity by combining their popu-

lation tuning to sets of high-order shape and appearance dimensions (e.g. Chang and Tsao, 2017).

Neural populations that are sensitive to such features may be located in the early visual cortex or at

later stages of the face-processing pathway, for example the occipital face area (OFA) or the fusi-

form face area (FFA) (Duchaine and Yovel, 2015). The present study suggests that the amplification

of these selective neuronal cell ensembles to a given threat face prompts lateral inhibitory interac-

tions among neurons that are selective to slightly different facial features. Our results support the
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hypothesis that such interactions take place in extra-striate, higher order visuocortical areas, as we

exploited the assets of high-density EEG recording and CSD-transformation leading to a precise

topographical distribution of the ssVEP signal. These signal topographies reveal indeed right-lateral-

ized activation peaks for the signal-to-noise ratios of the ssVEP signal (Figure 4) as well as for the

model fit of the lateral inhibition pattern (Figure 6). Thus, our results are compatible with the idea of

a right-hemispheric dominance of face perception (Rossion, 2014) and suggest an involvement of

the right OFA or FFA in sharpening face discrimination on the basis of lateral inhibition.

Furthermore, Bayesian model and correlational analyses revealed that visuocortical system

engagement is associated with self-reported symptoms of social anxiety. This result adds to a grow-

ing body of literature on attentional biases in social anxiety, including evidence from reaction-time

tasks, (Bantin et al., 2016), eye-tracking (Wieser et al., 2009), event-related potentials (ERPs,

Mühlberger et al., 2009; Wieser et al., 2010) and ssVEPs (McTeague et al., 2018;

McTeague et al., 2011). Here, we provide further evidence that cortical engagement in response to

threat-associated phobic-relevant stimuli is dimensionally related to social anxiety. It is important to

mention, however, that we - replicating Ahrens et al., 2016 – found no association between

strength of social anxiety and (over)generalization of conditioned fear in terms of a higher fear

responses (efferent system) to the generalization stimuli. Instead, we observed social anxiety to be

associated with a more pronounced lateral inhibition pattern in visuocortical responses to generaliza-

tion stimuli. Please note that the effect of social anxiety on visuocortical responses was only evident

in the Bayesian-analysis but not in the corresponding ANOVA. This discrepancy results from the dif-

ferences regarding statistical power between omnibus- and contrast-analysis (Furr and Rosenthal,

2003). The ANOVA tests for any differences, while the contrast-analysis only tests for deviations

from the specified pattern. This notion is substantiated by the finding that social anxiety was not

associated with visuocortical responses for the quadratic or linear trend model, but only for the lat-

eral inhibition model. We conclude that this latter finding is indicative for the functional relevance of

the lateral inhibition model in visuocortical tuning during generalization learning. Given the healthy

subjects of this study, however, with those showing a psychiatric disorder being excluded, future

studies should examine diagnosed and treatment-seeking SAD patients to substantiate initial find-

ings and to draw conclusions on how sensory generalization versus sharpening contributes to the eti-

ology or maintenance of social anxiety disorder or other psychopathologies.

One important limitation to our findings is that there was no substantial increase in differential

ssVEP-SNRs (CS+ vs CS-) from habituation to acquisition, t(66) = 0.83, p = 0.409, d = 0.10, CI95 =

[�0.14, 0.34]. A reason for the lack of such a difference may be related to the trendwise differences

between CS+ and CS- at baseline, which often indicate different responses to one of the two faces.

However, this seems unlikely in our study, because the mapping of the two faces to the CS+ and

CS- was fully counterbalanced between subjects. In addition, in the differential conditioning litera-

ture, cross-phase comparisons are typically avoided because they confound any conditioning effects

with time-dependent effects such as adaptation, in which both the CS+ and CS- evoked responses

decline over time, from habituation to acquisition and finally into the extinction phase. This has been

well established in meta-analyses (e.g. Fullana et al., 2016), and is true for a wide range of depen-

dent measures, including startle, skin conductance, fMRI, and ssVEPs where this pattern of findings

has been noted and systematically addressed several times (e.g. Keil et al., 2013; Moratti and Keil,

2005). Thus, fear conditioning studies interested in temporal changes previously utilized analysis on

a trial-by-trial level in order to avoid confoundation with these types of adaptation processes (e.g.

Sjouwerman et al., 2016; Weike et al., 2007; Wieser et al., 2014c).

Post-hoc analyses comparing pre- and post-conditioning: although a lack of statistically robust

changes between the experimental phases would not affect our interpretation of the main results

regarding the generalization phase, we addressed this potential concern in a post-hoc analysis quan-

tifying the amount of conditioning-related effects above and beyond the initial difference in habitua-

tion by means of parametric bootstrapping in combination with Bayesian analyses (Efron, 2012).

To this end, we computed a distribution for the CS+ versus CS- difference in ssVEP amplitude

separately for habituation (to be used as prior distribution) and acqusition (posterior distribution)

based on 100,000 bootstrapped group mean differences. Odds for conditioning effects to occur

were estimated from these two distributions (the odds of the CS+-CS- difference to be positive),

and the BF of interest was given as the ratio of posterior (acquisition) over prior (habituation) odds.

The error of this process was estimated by repeating the above process 100 times and measuring
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the standard error of the resulting mean. This BF corresponds to the change in confidence that the

ssVEP for the CS+ is greater than ssVEP for the CS- in acquisition (the posterior), relative to the prior

distribution, which was estimated from the CS+ versus CS- difference during habituation. This analy-

sis yielded a BF (posterior odds over prior odds) of 4.77, error = 1.3%, suggesting that the acquisi-

tion data provided substantial evidence for the notion that fear conditioning selectively amplifies the

CS+ evoked ssVEP above and beyond the differences present during habituation.

In conclusion, our study extends current notions of generalization learning, by demonstrating the

involvement of inhibitory interactions among feature-specific neurons in the visuocortical system dur-

ing fear generalization to facial stimuli. We found that the accentuation of the lateral inhibition pat-

tern increased with the severity of social anxiety. Future research may examine stability of the lateral

inhibition response pattern during extinction as well as the role of perceptual sharpening in fear

extinction learning.

Materials and methods

Subjects
Subjects were 67 undergraduate students (age: M = 24.10, SD = 6.33; 48 female) with normal or cor-

rected vision and without past or present psychiatric diagnosis or family history of epilepsy (self-

report), who were paid or received course credit for participation. The sample size was based on the

effect sizes of previous aversive conditioning studies using ssVEPs (McTeague et al., 2015;

Miskovic and Keil, 2013) and adapted for covariate-analyses. Subjects completed the Social Phobia

and Anxiety Inventory (SPAI, German version, Beidel et al., 1989) as a self-report measurement of

social anxiety (M = 67.70, SD = 19.74, Min = 32.48, Max = 126.60). Prior to participation, written

informed consent was obtained from each participant. The study was approved by the ethics review

board of the Medical Faculty of the University of Würzburg (87/13).

Stimuli and apparatus
Conditioned stimuli (CS) consisted of two pictures of female actresses with a neutral facial expres-

sion taken from the NimStim Set of Facial Expressions (Tottenham et al., 2009). Pictures were

adjusted for luminance and brightness, converted to gray-scale and presented using Presentation

(Neurobehavioral Systems, Inc, Albany, CA). One of the actresses was randomly selected as threat

cue for each participant (CS+) while the other served as safety signal (CS-). Pictures were shown on a

gray background on a 17-inch monitor (resolution = 1,280�1,024 pixel) in a flickering mode at a fre-

quency of 12 Hz in order to elicit ssVEPs. Face-specific areas are often targeted with relatively slow

driving frequencies (Baldauf and Desimone, 2014), but face-specific processing has also been iso-

lated from paradigms with faster frequencies (Campagnoli et al., 2019; Gruss et al., 2012;

Wieser et al., 2014a; Wieser et al., 2014c).

The US consisted of the respective CS+ face displaying a fearful expression and a simultaneously

presented 95 dB shrill female scream of the IADS (Bradley and Lang, 1999). Four generalization

stimuli (GS) were created by morphing the two faces in 20% steps using a face-morphing software

(Squirlz Morph; Xiberpix, Solihull, UK). The GS most similar to the CS+ is referred to as GS1 and the

GS most similar to the CS- as GS4 (see Figure 2).

Design and procedure
The experiment comprised three blocks (habituation, acquisition, generalization). Habituation and

acquisition consisted of 30 trials (two faces, each presented 15 times), while there were 90 trials in

the generalization phase (six faces, each presented 15 times), resulting in 150 trials in total. After

completing the questionnaires, EEG electrodes were applied to participants, who were seated in a

noise-reduced, darkened room one meter distant to the screen. In the habituation phase of the

experiment, faces were presented for 3000 ms without reinforcement. During acquisition, one of the

faces (CS+) was paired in 12 of 15 trials (80% reinforcement) with the US, which lasted 1500 ms and

was presented at the offset of the CS+ with a sound volume of 95 dB by Labtech speakers (Labtech

International Ltd., Ringmer, East Sussex, GB) and a Kenwood KA-3010-Amplifier (Kenwood Electron-

ics, Heusenstamm, GER). Subjects were not informed of any specific relation among the CSs and the

US prior to the experiment and the assignment of faces to CS-conditions was counterbalanced
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across subjects. Generalization consisted of the CS+, CS-, and four GS, each presented 15 times (90

trials). While CS- and GS were never reinforced, 6 of the 15 CS+ were still followed by the US to pre-

vent early extinction (40% reinforcement, Lissek et al., 2008) (see Figure 2). The presentation order

of the faces within each block was pseudo-randomized such that no more than two of the same faces

could occur in a row. After each trial, a gray screen with a fixation cross was presented. Inter-trial

intervals differed between 2000 and 2500 ms. At the end of each phase, subjects rated the valence

(ranging from 1 - ‘very pleasant’ to 9 - ‘very unpleasant’) and arousal (ranging from 1 – ‘very calm’ to

9 – ‘very arousing’) of the faces using a computer-based version of the Self-Assessment Manikin

Scale (Bradley and Lang, 1994). Moreover, subjects were asked to rate US expectancy after acquisi-

tion and generalization from 0% to 100% as a response to the question ‘What is the likelihood that

the currently presented face is followed by a scream?’ to measure successful learning of the CS-US

association.

EEG recording and analysis
Electrocortical activity was measured via 129 electrodes using an Electrical Geodesics (EGI, Eugene,

OR) high-density EEG System referenced to Cz, recorded with a sampling rate of 250 Hz and online

bandpass filtered with 0.1 and 100 Hz and a 50 Hz notch filter. The threshold of impedances was

kept below 50 kW as recommended for the Electrical Geodesics high-impedance amplifiers. Offline,

EEG analyses were implemented using the software EMEGS (Electro Magnetic Encephalography) for

Matlab (Peyk et al., 2011). First, epochs of 600 ms pre-stimulus and 3000 ms post-stimulus onset

were extracted, and data were filtered with a low-pass filter of 40 Hz. In a second step, artifact rejec-

tion was conducted according to the SCADS procedure (Junghöfer et al., 2000). This way, outlying

channels could be identified and interpolated from the full channel set and artifact-contaminated tri-

als could be excluded from the analyses. Trials were rejected when more than 20 channels out of

129 were outliers as per the statistical parameters used for artifact identification. In a next step,

remaining trials were averaged in the time domain for each subject according to the different experi-

mental conditions. To increase spatial resolution of the EEG signal, we then calculated the current

source densities (CSD) of the time-averaged data. The CSD transformation offers the advantage of

reducing the negative impact of volume conduction and thereby effectively minimizing unwanted

topographical variability between subjects by quantifying source densities (Junghöfer et al., 1997;

Kayser and Tenke, 2015). The CSD approach relies on the spatial Laplacian (the second spatial

derivative) of the scalp potential to estimate the potential distribution at the cortical surface. Here,

we used the CSD algorithm described by Junghöfer et al., 1997, with l = 0.2, which is well suited

for dense-array EEG montages and has been used in previous studies investigating ssVEP responses

to facial stimuli (McTeague et al., 2011) or during fear generalization (McTeague et al., 2015). The

CSD time series values were then transformed into the frequency domain using a Fast-Fourier-Trans-

formation on a time interval between 500 and 3000 ms after stimulus-onset. The first 500 ms after

stimulus onset were omitted due to initial non-stationary components of the ssVEP. In a next step,

we obtained the signal-to-noise ratio (SNR) for the driving frequency of 12 Hz by dividing the power

of the driving frequency by the mean of the spectral power at six adjacent frequency bins, leaving

out the two immediate neighbors. The SNR is a unitless measure that accounts for both the evoked

signal and the random noise in the data and has recently been used in other ssVEP paradigms as

well (Barry-Anwar et al., 2018; Boylan et al., 2019).

For statistical analysis, the ssVEP activity was pooled across sensor Oz and seven neighbouring

electrodes (EGI sensors 70, 71, 72, 74, 75, 76, 82, 83; Wieser et al., 2014a; Wieser and Keil,

2014b).

Statistical analysis
Stimulus differences in ssVEP amplitudes as well as valence and arousal ratings during habituation

and acquisition were analyzed with linear mixed models with the within-subject factor CS-type (2: CS

+, CS-) and mean-centered SPAI scores as covariates. Both main effects and the interaction of CS-

type and SPAI were entered as fixed effects. Subjects were entered as random intercepts to the

model. For the generalization phase, the same linear mixed model was analyzed, though the factor

CS-type now included six levels (CS+, GS1, GS2, GS3, GS4, CS-). Follow-up tests for significant

effects of CS-type were analyzed using simple contrasts with the CS- as reference level (Lissek et al.,
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2008). US expectancy ratings underwent the same analyses except for the habituation phase,

because US expectancy ratings just started after the acquisition phase. Significance was evaluated

using the Kenward-Rogers approximation for degrees of freedom (Kenward and Roger, 1997;

Luke, 2017). Alpha was set at p<0.05 (two-tailed). Linear mixed models were conducted in the R

software environment (version 3.5.0.; R Development Core Team, 2020), using the package ‘lme4’

(version 1.1–20; Bates et al., 2015). Standardized effect sizes and confidence intervals for the dis-

crete factors of the linear mixed models were calculated as partial-R2, using the package ‘r2glmm’

(version 0.1.2; Jaeger et al., 2017).

To compare the lateral inhibition pattern to a quadratic and linear fit, Bayesian linear models

were used. For this analysis, a pre-specified weight vector for each contrast entered the linear

regression as predictors. The lateral inhibition pattern was expressed as the difference of two Gaus-

sians (weights: +2,–2, +0.5, +1, +0.5,–2 for CS+, GS1, GS2, GS3, GS4, CS-). Note, that in contrast to

the study of McTeague et al., 2015, generalization learning occurred along a continuum from CS+

to CS-, which is why the weight vector was adapted to only one half of the previously used model.

For the quadratic and linear trends, the following weights were used, respectively: quadratic

(weights: +2.5334, +1.0934,–0.0267, �0.8267,–1.3067, �1.4667) and linear (weights: +2.5, +1.5,

+0.5,–0.5, �1.5,–2.5), paralleling previous work on fear generalization (Ahrens et al., 2016;

Lissek et al., 2014a; Lissek et al., 2014b). The linear model analysis is mathematically insensitive to

any linear transformation of the contrast vectors, which is why every vector was centered around

zero to facilitate model comparisons. In each model, centered SPAI scores were entered as an addi-

tional predictor variable and subjects were entered as random intercepts to the model. Transitive

Bayes factors (BFs) were then calculated for each candidate main effect, interaction and predictor

weight model. Interpretation of Bayes factors follows guidelines developed by Jeffreys (1961).

Bayesian analyses were conducted in R, using the package ‘BayesFactor’ (version 0.9) and default

JZS-priors (Rouder et al., 2012). To follow up on the hierarchical model selection, individual visuo-

cortical tuning indices were calculated for the lateral inhibition pattern. This index was defined as

the scalar product of the weights of the lateral inhibition pattern and the subjects’ individual ssVEP-

response to the corresponding stimulus, so that higher/lower visuocortical tuning indices indicate

stronger/weaker accentuation of the lateral inhibition pattern. Similar indices were calculated for the

quadratic and linear trend. In a next step, these indices were correlated with the SPAI scores. For

the frequentist analysis, Pearson’s r was calculated, and the alpha level was set to .05, while the pop-

ulation correlation parameter � was estimated for a two-sided Bayes factor analysis (Ly et al., 2016).
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Peyk P, De Cesarei A, Junghöfer M. 2011. ElectroMagnetoEncephalography software: overview and integration
with other EEG/MEG toolboxes. Computational Intelligence and Neuroscience 2011:1–10. DOI: https://doi.
org/10.1155/2011/861705, PMID: 21577273

R Development Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing http://www.r-project.org.

Rapee RM, Heimberg RG. 1997. A cognitive-behavioral model of anxiety in social phobia. Behaviour Research
and Therapy 35:741–756. DOI: https://doi.org/10.1016/S0005-7967(97)00022-3, PMID: 9256517

Stegmann et al. eLife 2020;9:e55204. DOI: https://doi.org/10.7554/eLife.55204 18 of 19

Research article Neuroscience

https://doi.org/10.2307/2533558
http://www.ncbi.nlm.nih.gov/pubmed/9333350
https://doi.org/10.1176/appi.ajp.2016.16030353
http://www.ncbi.nlm.nih.gov/pubmed/27609244
https://doi.org/10.1038/nature04951
http://www.ncbi.nlm.nih.gov/pubmed/16862123
https://doi.org/10.1016/j.brat.2008.02.005
http://www.ncbi.nlm.nih.gov/pubmed/18394587
https://doi.org/10.1176/appi.ajp.2009.09030410
http://www.ncbi.nlm.nih.gov/pubmed/19917595
https://doi.org/10.1093/scan/nst096
http://www.ncbi.nlm.nih.gov/pubmed/23748500
https://doi.org/10.1016/j.biopsych.2013.07.025
https://doi.org/10.1016/j.biopsych.2013.07.025
http://www.ncbi.nlm.nih.gov/pubmed/24001473
https://doi.org/10.1038/nn1538
http://www.ncbi.nlm.nih.gov/pubmed/16136037
https://doi.org/10.3758/s13428-016-0809-y
http://www.ncbi.nlm.nih.gov/pubmed/27620283
https://doi.org/10.1016/j.jmp.2015.06.004
https://doi.org/10.1016/j.jmp.2015.06.004
https://doi.org/10.1016/j.neuroimage.2010.08.080
https://doi.org/10.1016/j.neuroimage.2010.08.080
http://www.ncbi.nlm.nih.gov/pubmed/20832490
https://doi.org/10.1038/ncomms8823
http://www.ncbi.nlm.nih.gov/pubmed/26215466
https://doi.org/10.1016/j.biopsych.2017.10.004
http://www.ncbi.nlm.nih.gov/pubmed/29157845
https://doi.org/10.1111/j.1469-8986.2012.01398.x
https://doi.org/10.1111/j.1469-8986.2012.01398.x
http://www.ncbi.nlm.nih.gov/pubmed/22891639
https://doi.org/10.1037/a0031323
http://www.ncbi.nlm.nih.gov/pubmed/23398582
http://www.ncbi.nlm.nih.gov/pubmed/23398582
https://doi.org/10.1016/j.cogbrainres.2005.07.006
https://doi.org/10.1016/j.cogbrainres.2005.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16140512
https://doi.org/10.1093/cercor/bhp052
https://doi.org/10.1093/cercor/bhp052
http://www.ncbi.nlm.nih.gov/pubmed/19304914
https://doi.org/10.1007/s00702-008-0108-6
http://www.ncbi.nlm.nih.gov/pubmed/18784899
https://doi.org/10.1038/2865
http://www.ncbi.nlm.nih.gov/pubmed/10196572
https://doi.org/10.1073/pnas.0606668103
https://doi.org/10.1073/pnas.0606668103
http://www.ncbi.nlm.nih.gov/pubmed/16956975
https://doi.org/10.1016/j.beth.2014.09.010
https://doi.org/10.1016/j.beth.2014.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26459846
https://doi.org/10.1038/nn.4166
http://www.ncbi.nlm.nih.gov/pubmed/26571459
https://doi.org/10.1155/2011/861705
https://doi.org/10.1155/2011/861705
http://www.ncbi.nlm.nih.gov/pubmed/21577273
http://www.r-project.org
https://doi.org/10.1016/S0005-7967(97)00022-3
http://www.ncbi.nlm.nih.gov/pubmed/9256517
https://doi.org/10.7554/eLife.55204


Robinson OJ, Vytal K, Cornwell BR, Grillon C. 2013. The impact of anxiety upon cognition: perspectives from
human threat of shock studies. Frontiers in Human Neuroscience 7:203. DOI: https://doi.org/10.3389/fnhum.
2013.00203, PMID: 23730279

Rossion B. 2014. Understanding face perception by means of prosopagnosia and neuroimaging. Frontiers in
Bioscience 6:258–307. DOI: https://doi.org/10.2741/e706

Rouder JN, Morey RD, Speckman PL, Province JM. 2012. Default bayes factors for ANOVA designs. Journal of
Mathematical Psychology 56:356–374. DOI: https://doi.org/10.1016/j.jmp.2012.08.001

Sjouwerman R, Niehaus J, Kuhn M, Lonsdorf TB. 2016. Don’t startle me-Interference of startle probe
presentations and intermittent ratings with fear acquisition. Psychophysiology 53:1889–1899. DOI: https://doi.
org/10.1111/psyp.12761, PMID: 27628268

Stegmann Y, Reicherts P, Andreatta M, Pauli P, Wieser MJ. 2019a. The effect of trait anxiety on attentional
mechanisms in combined context and cue conditioning and extinction learning. Scientific Reports 9:8855.
DOI: https://doi.org/10.1038/s41598-019-45239-3, PMID: 31222028
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