Principles of operation of a cerebellar learning circuit

  1. David J Herzfeld  Is a corresponding author
  2. Nathan J Hall
  3. Marios Tringides
  4. Stephen G Lisberger
  1. Duke University School of Medicine, United States

Abstract

We provide behavioral evidence using monkey smooth pursuit eye movements for four principles of cerebellar learning. Using a circuit-level model of the cerebellum, we link behavioral data to learning's neural implementation. The four principles are: (1) early, fast, acquisition driven by climbing fiber inputs to the cerebellar cortex, with poor retention; (2) learned responses of Purkinje cells guide transfer of learning from the cerebellar cortex to the deep cerebellar nucleus, with excellent retention; (3) functionally different neural signals are subject to learning in the cerebellar cortex versus the deep cerebellar nuclei; and (4) negative feedback from the cerebellum to the inferior olive reduces the magnitude of the teaching signal in climbing fibers and limits learning. Our circuit-level model, based on these four principles, explains behavioral data obtained by strategically manipulating the signals responsible for acquisition and recall of direction learning in smooth pursuit eye movements across multiple timescales.

Data availability

The data for each figure is included in a Figure Composer FYP file and can be viewed, exported, and further analyzed using the freely available Figure Composer tool (https://sites.google.com/a/srscicomp.com/datanav/figure-composer). This tool is platform agnostic and runs on Windows, Mac, and Linux systems. The source code used to generate the cerebellar model results (Figure 10) is included as a Jupyter notebook. This source code makes use of Julia but can be viewed without installing Julia.

Article and author information

Author details

  1. David J Herzfeld

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    For correspondence
    david.herzfeld@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9910-0658
  2. Nathan J Hall

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marios Tringides

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephen G Lisberger

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7859-4361

Funding

National Institute of Neurological Disorders and Stroke (R01NS092623)

  • Stephen G Lisberger

National Institute of Neurological Disorders and Stroke (F32NS103216)

  • Nathan J Hall

National Eye Institute (K99-EY030528)

  • David J Herzfeld

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed in accordance with the Guide for the Care and Use of Laboratory Animals (1997) and had been approved in advance by the Institutional Animal Care and Use Committee at Duke University (Protocol A085-18-04).

Reviewing Editor

  1. Jennifer L Raymond, Stanford University School of Medicine, United States

Publication history

  1. Received: January 16, 2020
  2. Accepted: April 29, 2020
  3. Accepted Manuscript published: April 30, 2020 (version 1)
  4. Version of Record published: May 28, 2020 (version 2)

Copyright

© 2020, Herzfeld et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,938
    Page views
  • 568
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David J Herzfeld
  2. Nathan J Hall
  3. Marios Tringides
  4. Stephen G Lisberger
(2020)
Principles of operation of a cerebellar learning circuit
eLife 9:e55217.
https://doi.org/10.7554/eLife.55217

Further reading

    1. Neuroscience
    Xiaosha Wang, Bijun Wang, Yanchao Bi
    Research Article Updated

    One signature of the human brain is its ability to derive knowledge from language inputs, in addition to nonlinguistic sensory channels such as vision and touch. How does human language experience modulate the mechanism by which semantic knowledge is stored in the human brain? We investigated this question using a unique human model with varying amounts and qualities of early language exposure: early deaf adults who were born to hearing parents and had reduced early exposure and delayed acquisition of any natural human language (speech or sign), with early deaf adults who acquired sign language from birth as the control group that matches on nonlinguistic sensory experiences. Neural responses in a semantic judgment task with 90 written words that were familiar to both groups were measured using fMRI. The deaf group with reduced early language exposure, compared with the deaf control group, showed reduced semantic sensitivity, in both multivariate pattern (semantic structure encoding) and univariate (abstractness effect) analyses, in the left dorsal anterior temporal lobe (dATL). These results provide positive, causal evidence that language experience drives the neural semantic representation in the dATL, highlighting the roles of language in forming human neural semantic structures beyond nonverbal sensory experiences.

    1. Neuroscience
    Ayako Yamaguchi, Manon Peltier
    Research Article Updated

    Across phyla, males often produce species-specific vocalizations to attract females. Although understanding the neural mechanisms underlying behavior has been challenging in vertebrates, we previously identified two anatomically distinct central pattern generators (CPGs) that drive the fast and slow clicks of male Xenopus laevis, using an ex vivo preparation that produces fictive vocalizations. Here, we extended this approach to four additional species, X. amieti, X. cliivi, X. petersii, and X. tropicalis, by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls are species-specific, the CPGs used to generate clicks are conserved across species. The fast CPGs, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among fast-click species, and slow CPGs are shared among slow-click species. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but not in slow-click species. Moreover, fast CPGs are not inherited by all species but monopolized by fast-click species. The results suggest that species-specific calls of the genus Xenopus have evolved by utilizing conserved slow and/or fast CPGs inherited by each species.