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Abstract Cardiovascular regulation is integral to life. Animal studies have identified both neural

and endocrine pathways, by which the central nervous system adjusts cardiac output and

peripheral vascular resistance to changing physiological demands. The outflow of these pathways is

coordinated by various central nervous regions based on afferent information from baroreceptors,

chemoreceptors, nociceptors, and circulating hormones, and is modulated by physiologic and

behavioural state. In humans, however, knowledge on central cardiovascular regulation below the

cortical level is scarce. Here, we show using functional MRI (fMRI) that at least three hypothalamic

subsystems are involved in cardiovascular regulation in humans. The rhythmic behaviour of these

systems corresponds to high and low frequency oscillations typically seen in blood pressure and

heart rate variability.

Introduction
Given the importance of cardiovascular regulation for our daily survival, it is not surprising that the

body has several redundant and mutually interacting systems for this task. Important representatives

include the classical baroreceptor (arterial and cardiopulmonary) and chemoreceptor reflexes, neuro-

endocrine systems, like the vasopressin, sympatho-adrenal, renin-angiotensin-aldosterone, and the

more recently discovered leptin-melanocortin system (Sawchenko and Swanson, 1981; Damp-

ney, 1994; Hilzendeger et al., 2012; Salman, 2016).

Much of our present understanding of these systems stems from animals experiments, while

mechanistic studies in humans remain scarce, mostly for lack of non-invasive methods to assess sub-

cortical brain activity. Furthermore, most studies have evaluated only one system at a time. We must

assume, however, that all neural and neuroendocrine cardiovascular control systems are carefully

orchestrated by the central nervous system to achieve optimal regulation. The control centres

responsible for such orchestration are presumed to be located in the brainstem and hypothalamus.

They are well characterised for the ‘textbook’ baroreflex, but much less for the other systems.

To study cardiovascular regulation in human subjects, we devised an MR-compatible lower body

negative pressure (LBNP) chamber that simulates orthostatic stress via footward blood volume dis-

placement (Figure 1c; Goswami et al., 2008). The pressure of �30 mmHg used in our experiment

has been shown to recruit both neural and endocrine mechanisms of cardiovascular regulation via

activation of cardiopulmonary and arterial baroreceptors (Loewy, 1981; Mark and Mancia,

1983; Kimmerly et al., 2005; Salman, 2016). While assessment of endocrine pathways requires

invasive methods, neural cardiovascular regulation by the autonomic nervous system can be mea-

sured non-invasively as it leads to characteristic rhythms of heart rate and blood pressure variability

(HRV, BPV). To assess these rhythmic changes, we recorded blood pressure and heart rate traces

during the LBNP-fMRI measurements and subjected them to spectral analysis isolating two
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frequency bands: low frequency blood pressure variability (LFBPV, ~0.1 Hz), reflecting the so-called

Mayer waves of sympathetic origin (Julien, 2006); and high frequency heart rate variability

(HFHRV,~0.28 Hz) reflecting the primarily vagally mediated respiratory sinus arrhythmia (Bill-

man, 2013). Note that both the LF and HF bands lie at the top or above the canonical frequency

range of the BOLD signal (<0.1 Hz, Figure 1i); although several studies have recently provided evi-

dence for BOLD oscillations beyond this frequency range (Chen and Glover, 2015; Lewis et al.,

2016).

Subcortical control regions of cardiovascular function are mainly located in the hypothalamus,

comprising the paraventricular nucleus (PVN), lateral hypothalamic area (LH), arcuate nucleus (Arc),

dorsomedial nucleus (DMH), and median preoptic nucleus (Supplementary file 1), and in the lower

brainstem, comprising the nucleus of the solitary tract (NTS), rostral and caudal ventrolateral medulla

(RVLM/CVLM), nucleus ambiguus (Amb), and the caudal raphe nuclei, that is nucleus raphe obscurus

(ROb) and nucleus raphe pallidus (RPa) (Supplementary file 2; Coote, 2004; Dampney, 1994;

Loewy, 1981; Saper et al., 2015; Benarroch, 1993). Since these areas are notoriously hard to inves-

tigate in humans due to their small size, depth within the skull, and physiological noise from sur-

rounding vessels and cerebrospinal fluid (Brooks et al., 2013; Beissner, 2015), we devised a high-

resolution functional MRI approach and preprocessing pipeline specifically optimised for subcortical

imaging. In particular, we balanced spatial and temporal resolution (2�2�2 mm3, 1.23 s) to distin-

guish neighbouring nuclei, while critically sampling respiratory frequencies. Preprocessing involved

maximising anatomical specificity by applying advanced distortion correction, symmetric diffeomor-

phic image registration to a study template, and omitting any spatial smoothing. In contrast to com-

mon practice, we did not regress physiological fluctuations from our data to avoid removing

meaningful signal from the cardiovascular regions we were interested in Iacovella and Hasson,

2011. Instead, we opted for a spatial noise correction approach (Beissner et al., 2014) as part of

our group-level statistical analysis.

eLife digest Stand up too fast and you know what happens next. You will feel faint as the blood

rushes away from your head. Gravity pulls the blood into your legs, and your blood pressure drops.

To correct this imbalance, the brain sends nerve impulses telling the heart to beat faster and the

outer blood vessels to tighten. This is the autonomic nervous system at work. It is how the brain

adjusts cardiac output, and quietly controls other internal organs in the body. It involves two key

regions of the brain, the hypothalamus and the brainstem, and stimulates smooth muscles and

glands around the body.

The cardiovascular system also responds to the demands of exercise, with the heart supplying

fresh blood laden with oxygen and the blood clearing out waste materials as it flows around the

body. Perhaps surprisingly, blood pressure and heart rate fluctuate even at rest. The heart beats

faster when breathing in and slower when breathing out. People’s blood pressure, the force that

keeps blood moving through arteries, also oscillates in so-called Mayer waves that last about 10

seconds.

Much of the current understanding of the inner workings of the cardiovascular system – and how

it is regulated by the brain – stems from animal experiments. This is because few attempts have

been made to simultaneously measure how a person’s brain and cardiovascular system work with

enough detail to see how brain waves and cardiac oscillations might interact.

To achieve this, Manuel et al. have now measured the brain activity, pulse and blood pressure of

twenty-two healthy people while they were lying down in an MRI machine. This revealed that three

distinct parts of the hypothalamus regulate cardiovascular output in humans. These ‘subsystems’

communicate with each other and with the lower brainstem, which sits beneath the hypothalamus.

Manuel et al. also observed that the rhythmic activity of these subsystems runs in sync with

oscillations typically seen in heart rate and blood pressure.

With this work, Manuel et al. have shown that it is feasible to measure different systems of

cardiovascular control in humans. In time, with further experiments using this new approach, the

understanding of chronic high blood pressure and heart failure may improve.
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Figure 1. Identification of cardiovascular centres in the human hypothalamus. (a) Whole-brain T1-weighted study template showing the anatomical

localisation of the hypothalamus. (b) Anatomical mask of the hypothalamus. (c) Brain activity was recorded during alternating periods of lower body

negative pressure (LBNP) and rest using functional magnetic resonance imaging (fMRI) with concurrent blood pressure and heart rate recordings. (d,e)

Average beat-to-beat systolic blood pressure and interbeat interval decreased in response to LBNP (t = �11.4, p<0.001 and t = �4.9, p<0.001 resp.)

Figure 1 continued on next page
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Results
LBNP led to a significant reduction of systolic blood pressure (Rest: 132.6 ± 20.2 mmHg, LBNP:

113.4 ± 20.2 mmHg, t(17)=-11.3, p<0.001, Cohen’s d = �0.95) and a compensatory decrease of the

interbeat interval (Rest: 0.95 ± 0.12 s, LBNP: 0.85 ± 0.11 s, t(20)=-4.9, p<0.001, d = �0.96), while

measures of respiration (respiratory interval, respiratory volume, and respiratory volume per time)

showed no significant changes. Furthermore, head movement was not significantly different

between LBNP and Rest periods. We also observed increased spectral power of LFBPV (Rest:

0.14 ± 0.03, LBNP: 0.17 ± 0.04, t(17)=2.9, p=0.011, d = 0.97) and reduced spectral power of HFHRV
(Rest: 0.18 ± 0.08, LBNP: 0.14 ± 0.08, t(20)=-2.4, p=0.0267, d = �0.47) indicating sympathetic excita-

tion and vagal inhibition in response to the cardiovascular challenge, respectively (Figure 1d,e).

To identify cardiovascular control centres within the hypothalamus, we followed a two-step pro-

cess; namely segmentation using masked independent component analysis (mICA) (Beissner et al.,

2014) of the fMRI time series, followed by testing for cardiovascular involvement using two indepen-

dent criteria. In the first step, the hypothalamus was segmented into 49 functionally distinct regions

(Figure 1—figure supplement 1), followed by removal of six unspecific components (Figure 1f),

leaving 43 components. The initial number 49 was derived by maximising mICA reproducibility, see

Figure 1g. This high-dimensional segmentation yielded the characteristic three medio-lateral zones

and three rostro-caudal regions expected from post-mortem anatomical studies (Dudás, 2013;

Figure 1j, Figure 1—figure supplement 2, Supplementary file 3). The lower-dimensional decom-

positions with 8 and 10 subregions showed only two medio-lateral zones, and were thus not ana-

lysed. They were, however, consulted later to elucidate averaged intra-hypothalamic functional

connectivity (see below). In the second step, each of the 43 (49 - 6) hypothalamic regions was tested

for two criteria, namely LBNP-related changes in functional connectivity (DfcLBNP) with any region of

the hypothalamus or lower brainstem, and changes in BOLD spectral power in one or both of the

two cardiovascular frequency bands (Figure 1h).

Our analysis revealed five hypothalamic regions fulfilling both criteria for cardiovascular involve-

ment (Figure 2, Supplementary File 4): the right anterior, and bilateral tuberal LH/supraoptic

nucleus (SON, Figure 2a–c), the right tuberal PVN/posterior hypothalamic area (PH) (Figure 2d),

and the arcuate nucleus (Figure 2e). Detailed information on the spatial distribution of BOLD spec-

tral power in the two cardiovascular frequency bands is provided in Figure 2—figure supplement 1.

All identified regions except the bilateral tuberal LH/SON showed positive DfcLBNP with the lower

brainstem (Figure 2a,d–e). In contrast, DfcLBNP of the tuberal LH/SON was restricted to the hypo-

thalamus. Here, both sides showed positive within-nucleus DfcLBNP, which can be interpreted as local

activity changes, while only the left LH/SON showed additional negative DfcLBNP with the arcuate

nucleus (Figure 2b–c).

Further insights on hypothalamic functional connectivity of the identified regions came from the

analysis of the low-dimensional ICA results (Figure 3). Here, inter-dimensional matching showed that

right anterior LH/SON, PVN/PH, and Arc had low-dimensional equivalents (Figure 3b,d), while the

Figure 1 continued

with (d) blood pressure variability showing an increase of sympathetic low frequency (LF) oscillations (Mayer waves) (t = 2.49, p<0.05) and (e) heart rate

variability showing a reduction of parasympathetic high frequency (HF) oscillations (respiratory sinus arrhythmia) (t = 2.92, p<0.01). (f) Spatially

independent components (ICs), derived from masked ICA, were tested for specificity and used to segment the hypothalamus into functionally

independent regions (see j). (g) The optimal number of ICs was 49 as evidenced by a bootstrap approach that maximised reproducibility

(rmean = 0.80 � 0.01), while penalising ICA non-convergence. (h) Spatial ICs were considered cardiovascular centres, when showing connectivity changes

and spectral changes in the LF and/or HF range of the blood oxygenation level dependent (BOLD) signal during LBNP. Both measures were derived

from subject-specific time courses either from a general linear model (GLM) or from a fast Fourier transform (FFT). (i) Both the LF and HF bands lie at

the top or above the canonical frequency range of the BOLD signal as defined by the haemodynamic response function (HRF). (j) Final segmentation of

the hypothalamus after removal of unspecific components showing three functionally distinct anatomical zones as expected from post-mortem

anatomical studies (Dudás, 2013). Data in d-e and g-h are presented as mean with 95% confidence interval. All coordinates are in Montreal

Neurological Institute (MNI) standard space. *p�0.05, **p�0.01, ***p�0.001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Spatial independent components.

Figure supplement 2. Functional segmentation of the human hypothalamus.
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Figure 2. Neural signature of cardiovascular control. (a–e) Left: Individual hypothalamic centres derived from functional connectivity presented as

mixture model thresholded probability maps. Centre: Normalised spectral BOLD signal changes (n = 22, paired t-test, p�0.05). Right: Functional

connectivity (fc) changes to the hypothalamus and lower brainstem (thresholded statistical maps, n = 22, paired t-test, p�0.05 family-wise error

corrected). Warm/cold colours indicate an increase/decrease in fc during LBNP. A hypothalamic system of five regions showed both spectral BOLD and

fc changes during LBNP. These cardiovascular centres included (a) the anterior part of the right lateral hypothalamic region (LH)/supraoptic nucleus

(SON) showing reduced HF power (t = �2.2, p�0.05) and increased fc with the dorsal lower brainstem including the nucleus of the solitary tract (NTS);

(b–c) the bilateral tuberal part of the LH/SON showing reduced HF (tright = �2.93 pright �0.01, tleft = �2.28 pleft �0.05) and LF power (tright = �2.24

pright �0.05) and increased within-nucleus fc (both sides) as well as reduced fc with the arcuate nucleus (Arc, left side only); (d) the tuberal part of the

paraventricular nucleus (PVN) showing increased HF power (t = 2.69, p�0.05) and reduced within-nucleus fc as well as increased fc with the right lateral

lower brainstem including nucleus ambiguus (Amb) and rostral ventrolateral medulla (RVLM); and (e) the Arc showing reduced LF power (t = �2.05,

p�0.05) and increased fc with the dorsal and midline lower brainstem including the NTS, dorsal motor nucleus of the vagal nerve (DMN) and nucleus

raphe obscurus (ROb). (f) T1-weighted study template showing slice localisation in the hypothalamus and brainstem. Spectral data in a-e are presented

as mean with 95% confidence interval. All coordinates are in Montreal Neurological Institute (MNI) standard space. Atlas slices modified after

Mai et al., 2016 and Paxinos et al., 2012 (with permission from the authors). *p�0.05, **p�0.01. Abbreviations: 3V, third ventricle; 4V, fourth ventricle;

DPGi, Dorsal paragigantocellular nucleus; DMN, dorsal motor nucleus; fc, functional connectivity; fx, fornix; Hyp, hypoglossal nucleus; IO, inferior olivary

nucleus; IRt, intermediate reticular nucleus; MdRt, medullary reticular nucleus; opt, optic tract; PCRt, parvicellular reticular nucleus; PH, posterior

hypothalamic area; Sp5, spinal trigeminal nucleus.

Ó 2016 Academic Press. All rights reserved. Atlas slices modified from Mai et al., 2016. They are not covered by the CC-BY 4.0 licence and further

reproduction of this panel would need permission from the copyright holder.

Ó 2012 Academic Press. All rights reserved. Atlas slices modified from Paxinos et al., 2012. They are not covered by the CC-BY 4.0 licence and further

reproduction of this panel would need permission from the copyright holder.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Cardiovascular rhythms in the hypothalamus.

Figure supplement 2. Functional segmentation of the human hypothalamus without and with physiological noise regression.

Figure supplement 3. Functional connectivity changes during LBNP after physiological noise regression.

Figure supplement 4. Cortical connectivity of the cardiovascular hypothalamic regions.

Figure supplement 5. Comparison of the hypothalamic cardiovascular regions identified in this study and by Li and Dampney, 1994.
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bilateral tuberal LH/SON did not. The low-dimensional versions of Arc and right anterior LH both

included portions of the PVN/PH and adjacent nuclei.

Our supplementary analyses showed that our results are not driven by physiological noise. As the

first analysis revealed, physiological noise regression had little effect on the masked ICA results as

evidenced by the functional segmentation still showing the same known anatomical subdivisions of

the hypothalamus (Figure 2—figure supplement 2). This was expected as we had previously shown

that noise regression has little effect on masked ICA results (Beissner et al., 2014). Moreover, the

ICs matching our five hypothalamic regions from the main analysis (spatial correlation r > 0.89)

showed similar, yet smaller functional connectivity changes in response to cardiovascular challenge

(Figure 2, Figure 2—figure supplement 3). The second supplementary analysis revealed that four

of the five hypothalamic regions from the main analysis showed significant functional connectivity

with cerebral regions that was clearly dominated by grey matter (Figure 2—figure supplement 4),

while noise components would be expected to mainly show white matter or ventricular connectivity.

The one remaining region was the PVN/PH, which showed very little cerebral connectivity at all.

Discussion
We found five hypothalamic regions involved in cardiovascular regulation: the right anterior and

bilateral tuberal LH/SON, the right tuberal PVN/PH and the arcuate nucleus. This selection of nuclei

agrees with previous results from studies using Fos-like protein expression in response to prolonged

hypotension (Li and Dampney, 1994; Figure 2—figure supplement 5).

Based on functional connectivity changes between the original hypothalamic regions and the

lower brainstem (Figure 2), we were able to distinguish three major hypothalamic cardiovascular

control systems (Figure 4c–e). The first was characterised by positive DfcLBNP of the PVN/PH with a

Figure 3. PVN/PH as a hub in cardiovascular regulation. (a) Three of the five hypothalamic cardiovascular centres derived from functional connectivity

(Figure 2), namely PVN/PH (top), anterior LH/SON (middle), and arcuate nucleus (bottom) were also detected by low-dimensional independent

component analysis (ICA) (b). Here, both LH/SON and arcuate components included portions of the PVN/PH and adjacent nuclei, such as the

dorsomedial hypothalamic nucleus (DMH), indicating an important role of this region in cardiovascular regulation. For comparison, white lines in the

coronal (b) and sagittal slices (d) indicate the outline of the high-dimensional PVN/PH component. In addition, the anterior LH/SON (middle) showed a

bilateral symmetric shape in contrast to its strictly unilateral appearance in the original analysis. (c,e) T1-weighted study template showing slice

localisation in the hypothalamus. All independent components are presented as mixture model thresholded probability maps. All coordinates are in

Montreal Neurological Institute (MNI) standard space. Atlas slices modified after Mai et al., 2016 (with permission from the authors). Abbreviations: 3V,

third ventricle; Arc, arcuate nucleus; DMH, dorsomedial hypothalamic nucleus; fx, fornix; PVN, paraventricular nucleus; PH, posterior hypothalamic area;

VMH, ventromedial hypothalamic nucleus.

Ó 2016 Academic Press, Elsevier. All rights reserved. Atlas slices modified from Mai et al., 2016. They are not covered by the CC-BY 4.0 licence and fur-

ther reproduction of this panel would need permission from the copyright holder.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. RVLM/Amb cluster increases functional connectivity to NTS during LBNP.
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Figure 4. Central cardiovascular network. Summary of the network nodes and links in the hypothalamus (a) and lower medulla oblongata (up until the

level of the vagal nerve root) (b) as defined by functional connectivity. The central cardiovascular network in humans comprises at least five

hypothalamic and five medullary centres. Intra-hypothalamic connectivity emphasised the central role of the PVN/PH in cardiovascular regulation thus

confirming results obtained in animals. Functional connectivity to the medulla oblongata was observed for three hypothalamic nuclei (c–e). Of these,

Figure 4 continued on next page
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region in the ipsilateral lateral medulla comprising the RVLM, inferior olivary (IO), parvicellular reticu-

lar nucleus (PCRt), Amb, and intermediate reticular (IRt) nuclei, as well as negative DfcLBNP of the

PVN/PH with itself (Figure 2d). We suggest that this system represents the ‘textbook’ baroreflex arc

with its sympathetic (RVLM) and vagal arms (Amb); both under hypothalamic control by the PVN.

Since baroreflex regulation classically involves the NTS and caudal ventrolateral medulla (CVLM), we

conducted a supplementary mICA in the lower brainstem. This analysis yielded a functionally distinct

region matching the above-mentioned RVLM cluster which was tested for DfcLBNP. As expected, a

single cluster in the ipsilateral caudal NTS showed positive DfcLBNP (Figure 3—figure supplement

1); however, we did not observe any functional connectivity changes with the CVLM. There is abun-

dant evidence from animal experiments that the PVN projects heavily to the RVLM and Amb and to

a lesser extent to Sp5 and reticular nuclei. These projections involve a wide variety of neurotransmit-

ters including angiotensin-II, vasopressin, glutamate, and corticotropin-releasing hormone for RVLM,

as well as oxytocin for the Amb (Loewy, 1981; Coote, 2004; Geerling et al., 2010; Sapru, 2013).

Damage to the baroreflex arc elicits profound abnormalities in human blood pressure control

(Biaggioni et al., 1994). Therapeutically, electrical baroreceptor stimulation has been tested for

treating arterial hypertension and heart failure, although patients showed disparate treatment out-

come (Heusser et al., 2016). Thus, a deeper knowledge of central baroreflex control may help

understand inter-individual differences and identify patients most likely to respond to such

therapies.

The second hypothalamic system (Figure 2a +4d) involved the right anterior aspect of the LH/

SON showing positive DfcLBNP with a small region in the ipsilateral dorsal medulla comprising the

NTS, dorsal motor nucleus of the vagal nerve (DMN), and PCRt. These findings agree with animal

experiments showing afferent connections of the LH/SON from the NTS (Sawchenko and Swanson,

1982; Card et al., 2011) and efferent projections to the NTS and DMN, the latter of which have

been shown to be orexinergic (Allen and Cechetto, 1992; Coote, 2004). Their exact role in cardio-

vascular regulation, however, is still unclear. Potentially, this system also represents direct projec-

tions from the NTS to the SON that trigger the release of vasoactive hormones from the pituitary

gland (Grindstaff and Cunningham, 2001). This pathway may complement neural cardiovascular

regulation and serve as a backup for blood pressure maintenance in humans (Jordan et al., 2000).

Clinically, hypotension-induced vasopressin release is attenuated in patients with neurodegenerative

diseases affecting cardiovascular centres in the brainstem and hypothalamus (Puritz et al., 1983).

The third hypothalamic system involved the arcuate nucleus (Arc) (Figure 2e +4e), and showed

positive DfcLBNP with three different medullary regions. The first was located in the right dorsal

medulla comprising NTS, DMN, PCRt, IRt and dorsal paragigantocellular nucleus (DPGi). The second

included the right IRt, right medullary reticular nucleus (MdRt) and midline ROb. And finally, a third

small region spanned the left NTS/DMN with its rostrocaudal position closely matching that of the

contralateral NTS observed for the ‘textbook’ baroreflex control system (Figure 3—figure supple-

ment 1). Interestingly, the role of the Arc in cardiovascular regulation has received relatively little

attention despite several lines of evidence. The Arc has long been known to receive afferent fibres

from the NTS (Ricardo and Koh, 1978). Changes in blood pressure and vascular resistance during

Figure 4 continued

the PVN/PH was connected to the ‘textbook’ baroreflex system (c) comprising the RVLM, Amb, and NTS (emphasised in red font). This system is known

to be driven by baroreceptor input and regulate blood pressure by vascular and cardiac sympathetic, cardiovagal, and endocrine mechanisms

(vasopressin and oxytocin release). In our experiment, it was strictly lateralised to the right medulla. (d) The second functional network connected the

right anterior LH/SON with an ipsilateral medullary centre compatible with the NTS extending into DMN and PCRt. Projections of the LH to the NTS

and DMN are well-established and mostly orexinergic, while likewise well-established projections from the NTS to the SON could trigger the release of

vasoactive hormones from the pituitary gland. (e) The third and most widespread network emerged from the arcuate nucleus and comprised three

distinct medullary regions: the left NTS and DMN, the midline ROb, and a large region in the right dorsal medulla comprising the NTS, DMN and

several reticular nuclei. Although this system has received relatively little attention in comparison to the ‘textbook’ baroreflex system, there is clear

evidence that the Arc plays an important role in integrating neural and hormonal signals from key cardiovascular organs and controlling sympathetic

outflow. Abbreviations: Amb, nucleus ambiguus; Arc, arcuate nucleus; AVP, arginine vasopressin; DPGi, Dorsal paragigantocellular nucleus; DMN,

dorsal motor nucleus of the vagal nerve; fx, fornix; Hyp, hypoglossal nucleus; IO, inferior olivary nucleus; IRt, intermediate reticular nucleus; LH, lateral

hypothalamic area; MdRt, medullary reticular nucleus; NTS, nucleus of the solitary tract; OXT, oxytocin; PCRt, parvicellular reticular nucleus; PH,

posterior hypothalamic area; PVN, paraventricular nucleus; ROb, nucleus raphe obscurus; RVLM, rostral ventrolateral medulla; SON, supraoptic nucleus;

Sp5, spinal trigeminal nucleus.
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electric stimulation, Fos-like protein expression in response to prolonged hypotension and afferent

renal nerve stimulation, and retrograde tracing studies link it to key cardiovascular organs (Li and

Dampney, 1994; Sapru, 2013; Rahmouni, 2016). Furthermore, the Arc has been proposed as a

potential region in which the leptin-melanocortin and renin-angiotensin-aldosterone systems interact

to control sympathetic nerve activity (Hilzendeger et al., 2012), relevant to obesity-associated arte-

rial hypertension (Greenfield et al., 2009). This issue is of utmost clinical relevance given the pan-

demic rise in the prevalence of obesity and associated cardiovascular disease.

This study combined functional connectivity and spectral analysis of fMRI signals to investigate

hypothalamic regions involved during cardiovascular regulation. We found anatomically meaningful

connectivity changes in five hypothalamic subregions during the cardiovascular challenge, all of

which went along with spectral changes of the fMRI signal in the domains of low and high frequency

cardiovascular regulation (LF,~0.1 Hz; HF,~0.28 Hz). In order to interpret these changes as BOLD sig-

nals, we need to assume that, at least for the HF domain, BOLD extends beyond the frequency

range given by the canonical HRF (Figure 1i). Similar observations have recently been reported by

several other groups (Chen and Glover, 2015; Gohel and Biswal, 2015; Lewis et al., 2016). How-

ever, caution is advisable, when interpreting results derived from BOLD signals. While the majority

of our results were robust against the removal of physiological ‘noise’ signals, one should note that

completely disentangling neuronal from non-neuronal BOLD signals is close to impossible for several

reasons. Firstly, physiological noise is a mixture of several different noise sources, including those

related to cardiac activity causing changes in arterial pulsatility, cerebral blood flow, cerebral blood

volume and cerebrospinal fluid flow, and those related to respiration causing changes in the mag-

netic field and arterial carbon dioxide (Brooks et al., 2013). To complicate matters further, cardiac

and respiratory activity are not independent but intricately linked through phenomena like the respi-

ratory sinus arrhythmia. Secondly, several groups have recently shown that cerebral vascular regula-

tion may be coordinated across long-distance brain regions, thus mimicking the structure of

neuronal networks (Bright et al., 2020; Chen et al., 2020). Finally, every temporal regression of

physiological ‘noise’ bears the risk of removing meaningful signal from the data (Iacovella and Has-

son, 2011). Thus, the methodological approach used in this study cannot completely rule out the

possibility that some of the connectivity we are seeing could be the result of highly structured physi-

ological noise.

Nonetheless, we anticipate that the simultaneous in-vivo assessment of the different cardiovascu-

lar control systems in humans will deepen our understanding of these systems. Furthermore, access

to individual neural signatures may facilitate development of novel pharmaceutical and electroceuti-

cal cardiovascular treatments, leading to an era of cardiovascular precision medicine.

Materials and methods
The study took place at Hannover Medical School. It complied with the Declaration of Helsinki, and

was approved by the local ethics committee (# 3404–2016). 22 healthy normotensive subjects

(24 ± 5 years, 22.1 ± 3.1 kg/m2, 123 ± 8/62 ± 7 mmHg, eight male) took part in the study after giving

written informed consent and consent to publish their data anonimously.

We simulated orthostatic stress by means of lower body negative pressure (LBNP)

(Goswami et al., 2008). Negative pressure of 30 mmHg was built up inside a custom-made polycar-

bonate chamber using a vacuum cleaner and a pressure gauge. The stimulation paradigm consisted

of four alternating five-minute blocks, two with and two without negative pressure, starting with the

negative pressure (Figure 1c). Functional MR images and physiological measures were continuously

acquired during this cardiovascular challenge. Transitions between pressure states were excluded to

avoid excessive movement. To quantify head motion, we calculated the root mean squares of rela-

tive image coordinate differences as transformed by the realignment matrices. We then checked for

differences between fMRI runs with and without cardiovascular challenge by running a paired t-test.

MRI data acquisition
All MR images were acquired on a Siemens 3T MAGNETOM Skyra using a 64-channel head/neck

coil. The scanning protocol consisted of the following sequences (Supplementary file 5):
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I. Functional whole brain gradient-echo echo-planar images (EPI) (TR = 1230 ms; TE = 32 ms; 2
mm isotropic resolution; simultaneous multi-slice factor = 6; partial Fourier = 7/8; 4 � 233
volumes)

II. Reference scan for motion correction and template formation; equivalent to (I) but without
multi-band acceleration (TR = 7530 ms)

III. Reference scans for unwarping: Two spin-echo images matched to (I) in distortion without
multi-band acceleration; one with the same, the other one with inverted phase encoding
direction.

IV. T1-weighted magnetisation-prepared rapid acquisition gradient-echo image (MPRAGE)
(TR = 2300 ms; TE = 2.95 ms; TI = 900 ms; resolution: 1.1 � 1.1�1.2 mm3, in-plane accelera-
tion factor = 2)

fMRI data preprocessing
fMRI data preprocessing was optimised for the brainstem and hypothalamus by avoiding superfluous

resampling steps and unnecessary smoothing. On that account, motion correction (MCFLIRT

[Jenkinson et al., 2002]) and unwarping (topup [Andersson et al., 2003]) were applied in a single

transformation. Afterwards, brain extraction (BET [Smith, 2002]), grand mean scaling and high pass

filtering (0.005 Hz) were applied. The data were not smoothed.

Two study templates were generated using Advanced Normalization Tools (ANTs [Avants et al.,

2008]). The first one using the unwarped EPI reference images (II); the second one using the T1-

images. Functional images were transformed to the T1-template for group analyses in a single trans-

formation. This one-step procedure included a non-linear registration (symmetric diffeomorphism) to

the EPI-template followed by a six-degrees-of-freedom transformation to the T1-template. Finally,

the results were transformed to Montreal Neurological Institute (MNI) standard space using a non-

linear transformation (ANTs). All transformations used linear interpolation during the resampling.

Physiological measurements
The following physiological measures were acquired with an MR-compatible BIOPAC MP150 system:

I. Respiration frequency and amplitude (respiration belt)
II. Pulse (photoplethysmography)
III. Non-invasive continuous blood pressure (pulse decomposition analysis of the digital artery

pulse (CareTaker))

Pulse data were bandpass filtered (0.64–2.5 Hz) to remove scanner artefacts before running a

semi-automated peak-detection. In the blood pressure recordings we first removed all dropouts and

then applied a percentile filter (1st-99th percentiles). Excluded data points were interpolated linearly.

Data analysis
First, a masked independent component analysis (mICA [Beissner et al., 2014]) was performed on

the concatenated functional data of all subjects (Figure 1f). We defined the hypothalamic mask for

this analysis (Figure 1b) using the atlas of Mai et al., 2016. The ICA dimensionality of 49 was

derived by test-retest reproducibility analysis in the range between 1 and 100 dimensions using 30

random split-half samplings (mICA toolbox [Moher Alsady et al., 2016]). After matching the compo-

nents of both half samples by Hungarian sorting of their cross-correlation matrix, mean reproducibil-

ity was calculated. After excluding all values with ICA non-convergence, a dimensionality of 49 was

found to maximise mean reproducibility (rmean = 0.80 ± 0.01) (Figure 1g). Independent components

(ICs) were tested for specificity by running an unmasked dual regression (Beckmann et al., 2009) to

a cuboid volume containing the brainstem and hypothalamus. We calculated the weighted quotient

of activation in grey and white matter versus cerebrospinal fluid (probabilistic masks obtained using

FAST [Zhang et al., 2001]). Components were considered unspecific if this quotient was smaller

than one standard deviation from the mean. Using this measure, 6 components were excluded from

further analysis. Assigning each voxel the component number with the highest z-value at that point

yielded a segmentation of the hypothalamus into 43 functional centres (Figure 1j).

To discern which of the remaining 43 ICs were involved in cardiovascular regulation, we carried

out two separate analyses: a spectral and a functional connectivity analysis. For the spectral analysis

we defined two frequency bands, low frequency LF (0.1±0.03 Hz) and high frequency HF (0.28 ± 0.06
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Hz) by looking at the spectral peaks of the autonomic recordings. The LF band was defined by the

position of the Mayer peak in our subjects’ blood pressure variability, whereas the HF band corre-

sponds to the respiration frequency (mean ± standard deviation). We extracted the time series of

every IC in every run and calculated their power spectral density for each frequency band normalised

to the total power (similar to an fALFF analysis [Zou et al., 2008] at higher frequencies). Finally, we

computed a non-parametric paired t-test to quantify spectral differences in the BOLD signal

between LBNP and rest. In the functional connectivity analysis, we performed a dual regression to

both, hypothalamus and lower brainstem. Ultimately, we calculated a non-parametric paired t-test

thresholded at p<0.05 using family-wise error (FWE) correction with threshold-free cluster enhance-

ment (TFCE) to identify functional connectivity changes between LBNP and rest. Components show-

ing significant changes in both metrics, that is spectral and functional connectivity, were assumed to

be involved in cardiovascular regulation. We overlaid the atlas of Mai et al., 2016, which is in MNI

standard space, to our components and their connectivity changes in order to identify the involved

nuclei. To avoid identifying only familiar nuclei, we report every major nucleus from the atlas overlap-

ping with any voxel of a functional connectivity cluster.

Furthermore, to ascertain that our results were not driven by physiological noise, we conducted

two supplementary analyses. Firstly, we repeated our initial analysis adding an additional physiologi-

cal noise correction. Specifically, we applied slice-wise regression of cardiac and respiratory influen-

ces (first order, one interaction term) using FSL PNM (Brooks et al., 2008) before carrying out the

masked ICA. We then matched the independent components to the ones of the original analysis by

Hungarian sorting of the spatial cross-correlation matrix, and calculated their functional connectivity

changes during LBNP. Since physiological noise regression influences frequency content in a non-lin-

ear manner, we did not test for spectral changes in this supplementary analysis.

Secondly, using dual regression and a non-parametric one sample t-test thresholded at p<0.05

(FWE corrected), we calculated functional connectivity of the identified hypothalamic regions with

the whole brain (smoothed with a Gaussian kernel of 5 mm full width at half maximum). This was

done to make sure that their functional connectivity was mainly in the grey matter and not in the

ventricles or other regions, whose signals are driven by physiological noise.
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This work was supported by the Horst Görtz Foundation. The funding body had no role in study

design, collection and analysis of data, and decision to publish.

Additional information

Funding

Funder Author

Horst Goertz Foundation Florian Beissner

The funding body had no role in study design, collection and analysis of

data, and decision to publish

Author contributions

Jorge Manuel, Conceptualization, Data curation, Software, Formal analysis, Visualization, Methodol-

ogy, Writing - original draft, Writing - review and editing, Data acquisition; Natalia Färber, Data cura-

tion, Writing - review and editing, Data acquisition, Discussion of results; Darius A Gerlach, Jens

Jordan, Methodology, Writing - review and editing, Discussion of results; Karsten Heusser, Concep-

tualization, Methodology, Writing - review and editing, Discussion of results; Jens Tank, Conceptuali-

zation, Supervision, Methodology, Writing - review and editing, Discussion of results; Florian

Beissner, Conceptualization, Formal analysis, Supervision, Funding acquisition, Visualization, Meth-

odology, Writing - original draft, Writing - review and editing

Manuel et al. eLife 2020;9:e55316. DOI: https://doi.org/10.7554/eLife.55316 11 of 14

Research article Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.55316


Author ORCIDs

Jorge Manuel https://orcid.org/0000-0003-1983-1448

Darius A Gerlach https://orcid.org/0000-0001-7044-6065

Karsten Heusser http://orcid.org/0000-0002-2571-5585

Florian Beissner http://orcid.org/0000-0003-0513-7551

Ethics

Human subjects: The study took place at Hannover Medical School. It complied with the Declaration

of Helsinki, and was approved by the local ethics committee (# 3404-2016). All subjects gave written

informed consent including consent to publish their data anonimously prior to participation.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.55316.sa1

Author response https://doi.org/10.7554/eLife.55316.sa2

Additional files
Supplementary files
. Supplementary file 1. Hypothalamic regions essential for cardiovascular control.

. Supplementary file 2. Medullary regions essential for cardiovascular control.

. Supplementary file 3. Coordinates and anatomical identification of spatial independent

components.

. Supplementary file 4. Coordinates and anatomical identification of dual regression clusters of

Figure 2.

. Supplementary file 5. Detailed MRI scan protocols. Note that the reference scans for unwarping

(Reference SE (no SMS; AP and PA)) are the same sequence but with inverted phase encoding direc-

tion. Hence, they are summarised in one table here. However, both sequences need to be acquired

for estimating the susceptibility induced field.

. Transparent reporting form

Data availability

Raw data as well as necessary scripts for reproducing the results of this study are available at

Zenodo.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Manuel J, Färber N,
Gerlach DA, Heus-
ser K, Jordan J,
Tank J, Beissner F

2020 fMRI during lower body negative
pressure (LBNP) with concurrent
physiological measurements

https://zenodo.org/re-
cord/3885042#.
Xv2xGSi2mUk

Zenodo, 10.5281/
zenodo.3885042

References
Allen GV, Cechetto DF. 1992. Functional and anatomical organization of cardiovascular pressor and depressor
sites in the lateral hypothalamic area: I. descending projections. The Journal of Comparative Neurology 315:
313–332. DOI: https://doi.org/10.1002/cne.903150307, PMID: 1740546

Andersson JL, Skare S, Ashburner J. 2003. How to correct susceptibility distortions in spin-echo echo-planar
images: application to diffusion tensor imaging. NeuroImage 20:870–888. DOI: https://doi.org/10.1016/S1053-
8119(03)00336-7, PMID: 14568458

Avants BB, Epstein CL, Grossman M, Gee JC. 2008. Symmetric diffeomorphic image registration with cross-
correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12:
26–41. DOI: https://doi.org/10.1016/j.media.2007.06.004, PMID: 17659998

Beckmann CF, Mackay CE, Filippini N, Smith SM. 2009. Group comparison of resting-state FMRI data using
multi-subject ICA and dual regression. NeuroImage 47::S148. DOI: https://doi.org/10.1016/S1053-8119(09)
71511-3

Manuel et al. eLife 2020;9:e55316. DOI: https://doi.org/10.7554/eLife.55316 12 of 14

Research article Human Biology and Medicine Neuroscience

https://orcid.org/0000-0003-1983-1448
https://orcid.org/0000-0001-7044-6065
http://orcid.org/0000-0002-2571-5585
http://orcid.org/0000-0003-0513-7551
https://doi.org/10.7554/eLife.55316.sa1
https://doi.org/10.7554/eLife.55316.sa2
https://zenodo.org/record/3885042#.Xv2xGSi2mUk
https://zenodo.org/record/3885042#.Xv2xGSi2mUk
https://zenodo.org/record/3885042#.Xv2xGSi2mUk
https://doi.org/10.1002/cne.903150307
http://www.ncbi.nlm.nih.gov/pubmed/1740546
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/S1053-8119(03)00336-7
http://www.ncbi.nlm.nih.gov/pubmed/14568458
https://doi.org/10.1016/j.media.2007.06.004
http://www.ncbi.nlm.nih.gov/pubmed/17659998
https://doi.org/10.1016/S1053-8119(09)71511-3
https://doi.org/10.1016/S1053-8119(09)71511-3
https://doi.org/10.7554/eLife.55316
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