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Abstract This study examines how site-specific binding to three identified neurosteroid-binding

sites in the a1b3 GABAA receptor (GABAAR) contributes to neurosteroid allosteric modulation. We

found that the potentiating neurosteroid, allopregnanolone, but not its inhibitory 3b-epimer epi-

allopregnanolone, binds to the canonical b3(+)–a1(-) intersubunit site that mediates receptor

activation by neurosteroids. In contrast, both allopregnanolone and epi-allopregnanolone bind to

intrasubunit sites in the b3 subunit, promoting receptor desensitization and the a1 subunit

promoting effects that vary between neurosteroids. Two neurosteroid analogues with diazirine

moieties replacing the 3-hydroxyl (KK148 and KK150) bind to all three sites, but do not potentiate

GABAAR currents. KK148 is a desensitizing agent, whereas KK150 is devoid of allosteric activity.

These compounds provide potential chemical scaffolds for neurosteroid antagonists. Collectively,

these data show that differential occupancy and efficacy at three discrete neurosteroid-binding

sites determine whether a neurosteroid has potentiating, inhibitory, or competitive antagonist

activity on GABAARs.

Introduction
Neurosteroids (NS) are endogenous modulators of brain development and function and are impor-

tant mediators of mood (Belelli and Lambert, 2005; Mitchell et al., 2008; Represa and Ben-Ari,

2005; Grobin et al., 2006). Exogenously administered NS analogues have been clinically used as

anesthetics and anti-depressants and have therapeutic potential as anti-epileptics, neuroprotective

agents and cognitive enhancers (Belelli and Lambert, 2005; Mitchell et al., 2008; Akk et al., 2007;

Reddy and Estes, 2016; Kharasch and Hollmann, 2015; Gunduz-Bruce et al., 2019;

Zorumski et al., 2019). The principal target of NS is the g-aminobutyric acid type A receptor

(GABAAR). NS can either activate or inhibit GABAARs. Positive allosteric modulatory NS (PAM-NS)

such as allopregnanolone (3a5aP) potentiate the effect of GABA on GABAAR currents at low con-

centrations and directly activate the receptors at higher concentrations (Akk et al., 2007; Akk et al.,

2010; Chen et al., 2019; Olsen, 2018). Negative allosteric modulatory NS (NAM-NS), such as epi-

allopregnanolone (3b5aP) or pregnenolone sulfate (PS) inhibit GABAAR currents (Akk et al., 2001;

Wang et al., 2002; Shen et al., 2000; Lundgren et al., 2003; Seljeset et al., 2018). In addition to

Sugasawa et al. eLife 2020;9:e55331. DOI: https://doi.org/10.7554/eLife.55331 1 of 32

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.55331
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


enhancing channel opening, PAM-NS increase the affinity of the GABAAR for orthosteric ligand bind-

ing, an effect thought to be mechanistically linked to channel gating (Chen et al., 2019;

Harrison et al., 1987a).

GABAARs are pentameric ligand-gated ion channels (pLGIC) composed of two a-subunits (a1–6),

two b-subunits (b1–3) and one additional subunit (g1–3, d, e, q or p) (Sigel and Steinmann, 2012; Sie-

ghart, 2015; Olsen and Sieghart, 2008). Each subunit is composed of a large extracellular domain

(ECD), a transmembrane domain (TMD) formed by four membrane-spanning helices (TM1-4), a long

intracellular loop between TM3 and TM4, and a short extracellular C-terminus (Akk et al., 2007;

Sigel and Steinmann, 2012; Sieghart, 2015; Laverty et al., 2019). NS modulate GABAARs by bind-

ing to sites within the TMDs (Belelli and Lambert, 2005; Mitchell et al., 2008; Akk et al., 2007;

Reddy and Estes, 2016; Chen et al., 2019; Miller et al., 2017; Laverty et al., 2017; Hosie et al.,

2006; Hosie et al., 2009; Chen et al., 2018; Sugasawa et al., 2019). Specifically, the a subunit

TMDs are essential to the actions of PAM-NS (Chen et al., 2019; Miller et al., 2017; Laverty et al.,

2017; Chen et al., 2018; Sugasawa et al., 2019). Mutagenesis studies in a1b2g2 GABAARs have

identified several residues in the a1 subunit, notably Q242 and W246 in TM1, as critical to NS poten-

tiation of GABA-elicited currents (Hosie et al., 2006; Hosie et al., 2009; Akk et al., 2008). Crystal-

lographic studies have subsequently shown that, in homo-pentameric chimeric receptors in which

the TMDs are derived from either a1 (Laverty et al., 2017; Chen et al., 2018) or a5 subunits

(Miller et al., 2017), the NS 3a,21dihydroxy-5a-pregnan-20-one (3a5a-THDOC), pregnanolone and

alphaxalone bind in a cleft between the a subunits, with the C3-hydroxyl substituent of the steroids

interacting directly with Q242 in the a subunit (aQ242). PAM-NS activate these chimeric receptors,

and their action is blocked by aQ242L and aQ242W mutations. These studies posit a single canoni-

cal intersubunit binding site for NS action that is conserved across the six a subunit isoforms

(Miller et al., 2017; Laverty et al., 2017; Chen et al., 2018).

An alternative body of evidence suggests that PAM-NS modulation of GABAAR function is medi-

ated by multiple mechanisms and/or binding sites. Site-directed mutagenesis has identified multiple

disparate residues on GABAARs that affect NS-induced activation, suggestive of two NS-binding

sites: one site mediating potentiation of GABA responses and the other mediating direct activation

(Hosie et al., 2006; Hosie et al., 2009). Single channel electrophysiological studies (Akk et al.,

2007; Akk et al., 2010; Akk et al., 2004) as well as studies examining neurosteroid modulation of

[35S]t-butylbicyclophosphorothionate (TBPS) binding (Evers et al., 2010), have also identified multi-

ple distinct effects of NS, with various structural analogues producing some or all of these effects,

consistent with multiple NS-binding sites (Hosie et al., 2006; Hosie et al., 2009). Our recent photo-

labeling studies have confirmed that there are multiple PAM-NS-binding sites on a1b3 GABAARs

(Chen et al., 2019). In addition to the canonical site at the interface between the TMDs of adjacent

subunits (intersubunit site) (Chen et al., 2019; Miller et al., 2017; Laverty et al., 2017; Chen et al.,

2018), we identified NS-binding sites within the a-helical bundles of both the a1 and b3 subunits

(intrasubunit sites) of a1b3 GABAARs (Chen et al., 2019). 3a5aP binds to all three sites (Chen et al.,

2019); mutagenesis of these sites suggests that the intersubunit and a1 intrasubunit sites, but not

the b3 intrasubunit site, contribute to 3a5aP PAM activity (Chen et al., 2019). A functional effect for

NS binding to the b3 intrasubunit site has not been identified.

The 3a-hydroxyl (3a-OH) group is critical to NS activation of GABAARs and 3b-OH NS lack PAM

activity (Akk et al., 2007; Wang et al., 2002). Indeed, many 3b-OH NS are GABAAR NAMs

(Wang et al., 2002; Lundgren et al., 2003). While molecular docking studies have suggested that

the 3b-OH NS epi-pregnanolone (3b5bP) should compete for binding with PAM-NS (Miller et al.,

2017), 3b-OH NS are non-competitive inhibitors with respect to GABA and 3a-OH NS, indicating

that they are unlikely to act at the canonical PAM-binding site (Akk et al., 2007; Wang et al., 2002).

Steroids with a sulfate rather than a hydroxyl at the 3-carbon are also GABAAR NAMs thought to act

at sites distinct from GABAAR PAMs (Akk et al., 2007; Akk et al., 2001; Wang et al., 2002;

Seljeset et al., 2018; Park-Chung et al., 1999). The precise location of this site is unclear, but crys-

tallographic studies have demonstrated a possible binding site between TM3 and TM4 on the intra-

cellular end of the a-subunit TMD (Seljeset et al., 2018; Laverty et al., 2017). While 3b-OH NS and

PS both inhibit GABAARs, they likely act via interactions with distinct sites (Akk et al., 2007;

Akk et al., 2001; Wang et al., 2002; Lundgren et al., 2003; Seljeset et al., 2018; Miller et al.,

2017; Laverty et al., 2017).
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The goal of the current study was to determine the specific sites underlying the PAM and NAM

actions of NS. We hypothesized that various NS analogues preferentially bind to one or more of the

three NS-binding sites in the a1b3 GABAAR, stabilizing distinct conformational states (i.e. resting,

open or desensitized). To achieve this goal, we used two endogenous NS, the PAM-NS 3a5aP and

the NAM-NS 3b5aP and two NS analogues, KK148 and KK150, in which a diazirine replaced the

function-critical 3-OH group (Jiang et al., 2016). We examined site-specific NS binding and effects

using NS photolabeling (Sugasawa et al., 2019; Budelier et al., 2017; Budelier et al., 2019;

Cheng et al., 2018) and measurements of channel gating and orthosteric ligand binding. The NS

lacking a 3a-OH were devoid of PAM-NS activity, but surprisingly, KK148 and 3b5aP enhanced the

affinity of [3H]muscimol binding. We interpret this finding as evidence that these compounds prefer-

entially bind to and stabilize desensitized receptors, since both open and desensitized GABAAR

exhibit enhanced orthosteric ligand-binding affinity (Chang et al., 2002).

The results show that 3a5aP binds to the canonical b(+)–a(-) intersubunit site, stabilizing the

open state of the receptor, whereas the 3-diazirinyl NS (KK148 and KK150) bind to this site but do

not promote channel opening, and 3b5aP does not occupy this site. These data indicate that NS

binding to the intersubunit sites is largely responsible for PAM activity and that the 3a-OH is critical

for NS activation. In contrast, 3a5aP, 3b5aP and the 3-diazirinyl NS all bind to both the a1 and b3
intrasubunit sites. Occupancy of the intrasubunit sites by 3a5aP, 3b5aP and KK148 promotes recep-

tor desensitization. KK150 occupies all three NS-binding sites on a1b3 GABAARs, but produces mini-

mal functional effect suggesting a possible scaffold for a general NS antagonist. These results shed

new light on the mechanisms of NS allosteric modulation of channel function, and demonstrate a

novel pharmacology in which related ligands bind to different subsets of functional sites on the

same protein, each in a state-dependent manner, with the actions at these sites summating to pro-

duce a net physiological effect.

Results

Distinct patterns of NS potentiation and enhancement of muscimol
binding
The endogenous NS, 3a5aP is known to potentiate GABA-elicited currents (Figure 1A) and enhance

[3H]muscimol binding to a1b3 GABAARs (Figure 1E; Chen et al., 2019; Harrison et al., 1987a). We

examined a series of NS analogues with different stereochemistries or substituents in the 3- and 17-

positions: 3b5aP, KK148, and KK150 (structures shown in Figure 1B–D) for their ability to potentiate

GABA-elicited currents and enhance orthosteric agonist ([3H]muscimol) binding. 3b5aP is the 3b-epi-

mer of 3a5aP. KK148 and KK150 are NS analogue photolabeling reagents, which have a 3-diazirinyl

moiety instead of the 3-OH, and differ from each other by the stereochemistry of the 17-ether link-

age (Jiang et al., 2016). We observed a discrepancy between the ability of these compounds to

potentiate GABA-elicited currents and their ability to enhance [3H]muscimol binding in a1b3
GABAARs. None of the NS analogues lacking a 3a-OH potentiated GABA-elicited currents

(Figure 1B–D). However, both 3b5aP and KK148 significantly enhanced [3H]muscimol binding

(Figure 1E). KK150, in contrast, did not potentiate GABA-elicited currents and minimally enhanced

[3H]muscimol binding (Figure 1D–E). Collectively, these data show that, NS analogues with different

stereochemistry or substituents at the 3- and 17-positions show distinct patterns in modulation of

a1b3 GABAAR currents and orthosteric ligand binding. We hypothesized that these patterns are a

consequence of the various NS analogues stabilizing distinct conformational states of the GABAAR,

possibly by binding and acting at different sites. Notably, the compounds with a 3-OH (3a5aP,

3b5aP) are 10-fold more potent than those with a 3-diazirine (KK148, KK150) in enhancing [3H]musci-

mol binding (Figure 1E), suggesting that the 3-OH is an important determinant of binding affinity to

the site(s) mediating these effects.

State-specific actions of NS analogues
To determine why 3b5aP and KK148 enhance [3H]muscimol binding but do not potentiate a1b3
GABAAR currents, we first considered the possibility that 3b5aP- and KK148-induced enhancement

of [3H]muscimol binding is a selective effect on intracellular GABAARs, since the radioligand binding

assay was performed on total membrane homogenates, whereas the electrophysiological assays
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report only from cell surface channels. NS are known to have effects on intracellular GABAARs and

have been shown to accelerate GABAAR trafficking (Abramian et al., 2014; Comenencia-

Ortiz et al., 2014; Smith et al., 2007). To test this possibility, we examined [3H]muscimol binding in

intact cells (i.e. binding to receptors only in the plasma membrane) (Vauquelin et al., 2015;

Bylund et al., 2004; Bylund and Toews, 1993) compared to permeabilized cells (plasma mem-

branes plus intracellular membranes). Notably, [3H]muscimol binding was twofold greater in permea-

bilized cells than in intact cells, indicating a significant population of intracellular GABAARs. KK148

enhanced [3H]muscimol binding in intact cells as much or more than in permeabilized cells, indicating

Figure 1. Distinct neurosteroid effects on potentiation of GABAAR currents and modulation of [3H]muscimol binding. (A) Structure of allopregnanolone

(3a5aP) with carbon atoms numbered and sample current traces from a1b3 GABAAR activated by 0.3 mM GABA showing potentiation by 10 mM 3a5aP.

The traces were recorded from the same cell. (B), (C) and (D) Structures of epi-allopregnanolone (3b5aP) with steroid rings labeled, neurosteroid

analogue photolabeling reagents KK148 and KK150, respectively, and sample current traces from a1b3 GABAAR activated by 0.3 mM GABA showing the

absence of potentiation by 10 mM neurosteroids. Each pair of traces was recorded from the same cell. (E) Concentration-response relationship for

neurosteroid modulation of [3H]muscimol binding to a1b3 GABAAR. 3 nM–30 mM neurosteroids modulate [3H]muscimol (3 nM) binding in a

concentration-dependent manner. Data points, EC50, Hill slope and maximal effect value [Emax (% of control): 100% means no effect] are presented as

mean ± SEM (n = 6 for 3a5aP and KK148; n = 3 for 3b5aP and KK150).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Neurosteroid modulation of muscimol binding to intact cells.
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that this effect is not a result of selective NS actions on intracellular receptors (Figure 1—figure sup-

plement 1).

A second possibility is that 3b5aP and KK148 selectively bind to and stabilize a high-affinity non-

conducting state, such as a pre-active (Gielen and Corringer, 2018) or a desensitized conformation

of the GABAAR. This is expected to result in inhibition of receptor function; however, the magnitude

of the effect may be small under the experimental conditions used to generate the traces in Figure 1.

To examine the inhibitory effect of these NS analogues, we activated a1b3 GABAAR with a saturating

concentration (1 mM) of GABA and tested the effect of the NS on steady-state currents

(Germann et al., 2019a). KK148 and 3b5aP both decreased steady-state currents (Figure 2A and

C), whereas KK150 did not (Figure 2B). To further delineate the electrophysiological effects of these

compounds, we focused on 3b5aP, since it is an endogenous NS and we had limited availability of

KK148. Co-application of 3b5aP with 1 mM GABA preferentially inhibited steady-state rather than

peak currents (Figure 2—figure supplement 1). While this result is consistent with stabilization of a

desensitized state rather than a pre-active state, it is ambiguous because it is possible that the ste-

roid has a slower onset than GABA, thus minimizing the effect on peak current. Additional evidence

that 3b-NAM-NS stabilize a desensitized state includes studies examining their effects on inhibitory

post-synaptic currents (Wang et al., 2002) and single channel currents (Akk et al., 2001). The evi-

dence that NAM-NS stabilize a desensitized rather than a pre-active state is more thoroughly

explored in the Discussion. In the ensuing text, we refer to the inhibition of steady-state current as

desensitization.

Figure 2. Neurosteroids promote steady-state desensitization of a1b3 GABAARs. Representative traces showing

the effects of KK148, KK150 and epi-allopregnanolone (3b5aP) on maximal steady-state GABA-elicited currents.

a1b3 GABAARs expressed in Xenopus laevis oocytes were activated with 1 mM GABA to maximally activate

GABAAR current. (A–C) The effect of KK148 (10 mM), KK150 (10 mM) and 3b5aP (3 mM) on steady-state current. (D)

The effect of 3b5aP (3 mM) on steady-state current in a1b3 GABAARs containing the a1V256S mutation, known to

eliminate NS-induced desensitization. The results show that 3b5aP and KK148 reduce steady-state currents,

consistent with enhanced desensitization, whereas KK150 does not. The effect of 3b5aP on steady-state currents is

eliminated by the a1V256S mutation, consistent with 3b5aP enhancing desensitization rather than producing

channel block.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Co-application of epi-allopregnanolone with a saturating concentration of GABA.
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The inhibitory effect of 3b5aP was not observed in receptors with the a1(V256S) TM2 pore-lining

mutation, which was previously shown to remove the inhibitory effects of sulfated steroids

(Akk et al., 2001; Wang et al., 2002; Figure 2D). Although both 3a5aP and 3b5aP enhance [3H]

Figure 3. Effect of a1(V256S)b3 mutation on neurosteroid enhancement of [3H]muscimol binding. (A) Enhancement

of specific [3H]muscimol (3 nM) binding to a1b3 GABAAR WT by 10 mM epi-allopregnanolone (3b5aP) is absent in

a1(V256S)b3 GABAAR. (B) Enhancement of [3H]muscimol binding by 10 mM allopregnanolone (3a5aP) is unaffected

by the a1V256S mutation. These data indicate that 3b5aP enhancement of orthosteric ligand binding requires

receptor desensitization, whereas 3a5aP does not. Statistical differences are compared using unpaired t-test

(n = 6,± SEM). **p<0.01 vs. WT.
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muscimol binding, the former predominantly results in receptor activation, whereas the latter results

in inhibition. Consistent with this, the a1(V256S)b3 mutation which abolishes NS-induced inhibition

(Akk et al., 2001; Wang et al., 2002) eliminated [3H]muscimol binding enhancement by 3b5aP but

not 3a5aP (Figure 3). We infer that 3a5aP increases [3H]muscimol binding by stabilizing an active

state of the receptor. In contrast, 3b5aP increases [3H]muscimol binding by stabilizing a desensitized

state of the receptor; this effect is eliminated in the a1(V256S)b3 receptor. The mechanisms of

enhancement of [3H]muscimol binding by allosteric activators and inhibitors are described in detail in

our recent publication (Akk et al., 2020). Collectively, these data indicate that 3b5aP and KK148

enhance orthosteric ligand affinity by stabilizing a desensitized state of the GABAAR.

Quantitative comparison of the effects of 3b5aP on [3H]muscimol
binding and receptor desensitization
While there is qualitative agreement between the relative effects of the various NS analogues on

orthosteric ligand binding and receptor desensitization, there is a quantitative discrepancy in the

magnitude of the effects. For example, 3b5aP enhances [3H]muscimol binding by two-fold

(Figure 1E), whereas it reduces steady-state current by only ~25% (Figure 2C). To address this dif-

ference, we considered that the radioligand binding and electrophysiological assays are performed

under different experimental conditions. The radioligand-binding studies are performed using low

[3H]muscimol concentrations to allow for sufficient dynamic range of ligand binding. In contrast, the

desensitization experiments are performed at high orthosteric ligand (GABA) concentration to

achieve high peak open probability and steady-state receptor desensitization, thus minimizing the

number of channels in the resting state. To address the quantitative differences in results from the

two assays, we analyzed the electrophysiological data in the framework of the three-state Resting-

Open-Desensitized model (Germann et al., 2019a; Germann et al., 2019b). We assumed that both

the open and desensitized states had higher affinity for muscimol than the resting state, and that the

affinities were similar and could be treated as equal. We then calculated the predicted occupancy of

the high-affinity states (Popen + Pdesensitized) using parameters derived from the functional responses,

to compare to the observed changes in binding. The raw current amplitudes of peak and steady-

state responses were converted to units of open probability as described previously in detail

(Eaton et al., 2016), and the probabilities of being in the open (Popen) or desensitized (Pdesensitized)

states were calculated for different experimental conditions (see Materials and methods).

Application of 1 mM GABA elicited a current response that had a peak Popen of 0.71 ± 0.25

(mean ± SD; n = 16). The Popen of the steady-state response was 0.121 ± 0.033 (n = 7), that was

reduced to 0.077 ± 0.013 (n = 5) with 3 mM 3b5aP. Analysis of steady-state currents using the Rest-

ing-Open-Desensitized model indicates that the steady-state Pdesensitized is 0.829 in the presence of

GABA, and 0.892 in the presence of GABA + steroid. The relatively small increase in the sum of

(Popen + Pdesensitized) (from 0.95 to 0.97) is due to the use of saturating GABA in these experiments.

To compare the data from the radioligand binding and electrophysiology experiments, we

exposed oocytes containing a1b3 GABAARs to 20 nM muscimol and recorded currents before and

after co-application of 3 mM 3b5aP. The percent reduction in steady-state current following 3b5aP

exposure was measured and used to estimate the relative probabilities of resting, open and desensi-

tized receptors. The application of 20 nM muscimol elicited a peak response with Popen of

0.012 ± 0.004 (n = 6). The steady-state Popen was 0.011 ± 0.004. In the same cells, subsequent expo-

sure to 3 mM 3b5aP reduced the steady-state Popen to 0.009 ± 0.004 (p=0.0174; paired t-test). The

calculated steady-state Pdesensitized was 0.1001 in the presence of muscimol, and 0.2168 in the pres-

ence of muscimol + 3b5aP. Thus, there is a predicted two-fold increase in the sum of (Popen + Pdesen-

sitized) when the steroid is combined with muscimol, consistent with the doubling of muscimol

binding caused by 3b5aP in the [3H]muscimol binding experiments (Figure 1E). While the measured

changes in current are small, they are precise because each experiment served as its own control; a

steady-state current was achieved during continuous agonist administration and the response to

3b5aP was then measured. Overall, these data indicate that when Presting is high (low orthosteric

ligand concentration), an agent that stabilizes desensitized receptors may produce a small decrease

in steady-state current, but a relatively large increase in the occupancy of desensitized state, at the

expense of resting receptors. Conversely, with high orthosteric ligand concentrations (low Presting), a

desensitizing ligand produces a relatively larger change in steady-state current as open receptors
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are converted to desensitized receptors with minimal effect on the sum occupancy of high-affinity

states.

Figure 4. Competitive prevention of neurosteroid photolabeling at an intersubunit and intrasubunit site. (A) Structures of the neurosteroid

photolabeling reagent KK200 and the a1b3 GABAAR-TMDs highlighting the residues G308 in the b3(+)–a1(-) intersubunit site and N408 in the a1

intrasubunit site previously identified by KK200 photolabeling in pink. Shown in purple is Y415 in the a1 intrasubunit site, which is photolabeled by

KK148 and KK150. Adjacent b3(+) and a1(-) subunits are shown and the channel pore is behind the subunits. (B) Photolabeling efficiency of a1 subunit

TM4 (a1 intrasubunit site) in a1b3 GABAAR by 3 mM KK200 in the absence or presence of 30 mM allopregnanolone (3a5aP), KK148, KK150, and epi-

allopregnanolone (3b5aP). Statistical differences are analyzed using one-way ANOVA with Bonferroni’s multiple comparisons test (n = 3,± SEM).

**p<0.01 vs. control. (C) Same as (B) for b3 subunit TM3 [b3(+)–a1(-) intersubunit site, n = 3,± SEM]. (D) HCD fragmentation spectrum of the a1 subunit

TM4 tryptic peptide photolabeled by 30 mM KK148. Red and black indicate fragment ions that do or do not contain KK148, respectively. The schematic

highlight in red identifies the TMD being analyzed and the asterisk denotes the approximate location of KK148. (E) Same as (D) photolabeled by 30 mM

KK150.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Extracted ion chromatograms of labeled and unlabeled b3 subunit TM4 peptides.

Figure supplement 2. Fragmentation spectrum of unlabeled a1 subunit TM4 peptide.
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Binding site selectivity for NS analogues
To determine whether KK148 and 3b5aP stabilize a desensitized conformation of the GABAAR by

selectively binding to one or more of the identified NS-binding sites on the GABAAR (Chen et al.,

2019), we first determined which of the identified NS sites they bind. We have previously shown

that the 3a5aP-analogue photolabeling reagent, KK200 labels the b3(+)–a1(-) intersubunit (b3G308)

and a1 intrasubunit (a1N408) sites on a1b3 GABAARs (Figure 4A), and that photolabeling can be

prevented by a 10-fold excess of 3a5aP (Chen et al., 2019). As a first step to determine the binding

sites for 3b5aP, KK148 or KK150, we examined whether a 10-fold excess of these compounds (30

mM) prevented KK200 (3 mM) photolabeling of either binding site. Photolabeling was performed on

membranes from HEK293 cells transfected with epitope-tagged a1His-FLAGb3 receptors, mimicking

Figure 5. Epi-allopregnanolone prevents neurosteroid photolabeling at the a1 and b3 intrasubunit sites. (A)

Structures of the neurosteroid photolabeling reagent KK123 and the a1b3 GABAAR-TMDs highlighting the

residues Y442 in the b3 intrasubunit site and Y415 in the a1 intrasubunit site previously identified by KK123

photolabeling in purple. Adjacent b3(+) and a1(-) subunits are shown and the channel pore is behind the subunits.

(B) Photolabeling efficiency of b3 subunit TM4 (b3 intrasubunit site) in a1b3 GABAAR by 3 mM KK123 in the absence

or presence of 30 mM epi-allopregnanolone (3b5aP). Statistical differences are compared using unpaired t-test

(n = 3,± SEM). **p<0.01 vs. control. (C) Same as (B) for a1 subunit TM4 (a1 intrasubunit site, n = 3,± SEM).
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the conditions used in the [3H]muscimol binding assays and photolabeled residues were identified

and labeling efficiency was determined using middle-down mass spectrometry (Chen et al., 2019).

KK148, KK150, 3a5aP and 3b5aP all prevented KK200 photolabeling of a1N408 in the a1 intrasubu-

nit site (Figure 4B), consistent with their binding to this site. In contrast, KK148, KK150 and 3a5aP

but not 3b5aP prevented labeling of b3G308 in the intersubunit site (Figure 4C), indicating that

3b5aP does not bind to the intersubunit site. Similarly, 3b5aP did not prevent labeling of the intersu-

bunit site by a similar NS-analogue photolabeling reagent in detergent-solubilized GABAARs

(Jayakar et al., 2020).

The KK148- and KK150-photolabeled (30 mM) samples were also analyzed to directly identify the

sites of adduction. In both the KK148- and KK150-labeled samples, photolabeled peptides were

identified from the TM4 helices of both the a1 and b3 subunits. The labeled peptides had longer

chromatographic elution times than the corresponding unlabeled peptides and corresponded with

high mass accuracy (<20 ppm) to the predicted mass of the unlabeled peptides plus the add weight

minus N2 of KK148 or KK150 (Figure 4—figure supplement 1). Product ion (MS2) spectra of the

KK148- and KK150-labeled peptides from the a1 subunit identified the labeled residue as Y415 for

both KK148 and KK150 with photolabeling efficiencies of 0.77% and 0.62%, respectively

(Figure 4D–E, Figure 4—figure supplement 2); Y415 is the same residue labeled by KK123 at the

a1 intrasubunit site (Chen et al., 2019). The KK148 and KK150 labeled peptides in TM4 of the b3
subunit and corresponding unlabeled peptide were identified by fragmentation spectra as b3TM4

I426-N445. These data support labeling of the b3 intrasubunit site by KK148 and KK150. Fragmenta-

tion spectra of the peptide-sterol adducts were not adequate to determine the precise labeled resi-

due because of low photolabeling efficiency (0.13% for KK148; 0.19% for KK150, Figure 4—figure

supplement 1). No photolabeled peptides were identified in the b3(+)–a1(-) intersubunit site. This is

likely because KK148 and KK150, similar to KK123, utilize an aliphatic diazirine that preferentially

labels nucleophilic residues (Sugasawa et al., 2019; Budelier et al., 2017; Das, 2011); such residues

are not present in the intersubunit site.

We have also shown that KK123 labeling of the a1 intrasubunit (a1Y415) and b3 intrasubunit

(b3Y442) sites (Figure 5A) can be prevented by a 10fold excess of 3a5aP (Chen et al., 2019). We

thus examined whether 3b5aP (30 mM) inhibited photolabeling by KK123 (3 mM). 3b5aP completely

inhibited KK123 photolabeling at both intrasubunit sites (Figure 5B–C). Collectively, the data show

that KK148, KK150 and 3a5aP bind to all three of the identified NS-binding sites. In contrast, 3b5aP

selectively binds to the two intrasubunit binding sites, but not to the canonical b3(+)–a1(-) intersubu-

nit site.

Orthosteric ligand binding enhancement by NS analogues is mediated
by distinct sites
To determine which of the previously identified binding sites contributes to NS enhancement of [3H]

muscimol binding, we performed site-directed mutagenesis of the NS-binding sites previously deter-

mined by photolabeling (Figure 6A; Chen et al., 2019). Specifically, a1(Q242L)b3 targets the b3(+)–

a1(-) intersubunit site, a1(N408A/Y411F)b3 and a1(V227W)b3 the a1 intrasubunit site, and

a1b3(Y284F) the b3 intrasubunit site. None of these mutations produced a significant change in [3H]

muscimol Kd (Figure 7B and Figure 7—source data 1). Accordingly, concentration-dependent NS

effects were assayed at a fixed concentration of [3H]muscimol (3 nM; ~EC5). It should be noted that

earlier studies showed two-component binding curves for [3H]muscimol in brain membranes, with

NS causing an increase in the Bmax of the high-affinity component (Harrison and Simmonds, 1984).

In contrast, our results with expressed a1b3 GABAARs show a single-component [3H]muscimol bind-

ing curve with NS producing an increase in muscimol affinity. Our results are similar to results

reported with expressed a1b3g2 GABAARs, where allosteric modulators increased the affinity of a sin-

gle-component [3H]muscimol binding curve (Dostalova et al., 2014). Whether the complex [3H]mus-

cimol binding curves observed in brain is the result of heterogeneity of receptor subtypes or

multiple states of the GABAAR is unresolved.

Mutations in the b3(+)–a1(-) intersubunit and a1 intrasubunit sites decreased 3a5aP enhancement

of [3H]muscimol binding by ~80%, while mutation of the b3 intrasubunit site led to a small decrease

(Figure 6B, Table 1). The residual enhancement of [3H]muscimol binding observed in receptors with

mutations in the intersubunit or a1 intrasubunit site occurs at 10fold higher concentrations of 3a5aP

than wild-type (WT) and receptors with mutations in the b3 intrasubunit site (Table 1), suggesting
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Figure 6. Effect of mutations in a1b3 GABAAR on neurosteroid modulation of [3H]muscimol binding. (A) Structure of the a1b3 GABAAR-TMD

highlighting the residues where mutations were made in putative binding sites for neurosteroids (Q242-green for b3–a1 intersubunit site; V227-yellow,

N408-pink and Y411-red for a1 intrasubunit site; Y284-cyan for b3 intrasubunit site) and M286-blue for etomidate. Adjacent b3(+) and a1(-) subunits are

shown and the channel pore is behind the subunits. (B) Concentration-response relationship for the effect of 3 nM–30 mM allopregnanolone (3a5aP) on

Figure 6 continued on next page
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that 3a5aP binds to the b3 intrasubunit site with lower affinity. In contrast, mutations in the a1 and

b3 intrasubunit sites, but not the intersubunit site decreased the enhancement of [3H]muscimol bind-

ing by 3b5aP and KK148 (Figure 6C–D, Table 1). To confirm that the effect of these mutations on

NS effect are steroid-specific, we also tested their effect on etomidate, which enhances [3H]muscimol

binding in a1b3 GABAARs and acts through a binding site distinct from NS (Li et al., 2006;

Jayakar et al., 2019). The mutations targeting NS-binding sites resulted in modest decreases in [3H]

muscimol binding enhancement by etomidate; however, the a1b3(M286W) mutation which abolishes

etomidate potentiation and activation of GABAARs (Stewart et al., 2008; Ziemba et al., 2018), also

abolished [3H]muscimol binding enhancement (Figure 6E).

We did not test the effects of mutations on KK150 action because it minimally enhances [3H]mus-

cimol binding. However, KK150 binds to all three of the identified NS-binding sites, and may thus be

a weak partial agonist or antagonist at the sites mediating NS enhancement of [3H]muscimol bind-

ing. Consistent with this prediction, KK150 inhibited enhancement of [3H]muscimol binding by

3a5aP and KK148 (Figure 8).

Collectively, these results show that multiple NS-binding sites contribute to enhancement of [3H]

muscimol affinity and that potentiating NS (3a5aP) and non-potentiating NS (3b5aP, KK148 and

KK150) have both common and distinct sites of action. Specifically, 3a5aP enhances [3H]muscimol

binding through all three sites but predominantly through the intersubunit and a1 intrasubunit sites,

which we have previously shown mediate PAM-NS potentiation (Chen et al., 2019). In contrast,

3b5aP and KK148 enhance [3H]muscimol binding exclusively through the a1 and b3 intrasubunit sites.

KK150 antagonizes the effects of KK148 on [3H]muscimol binding, presumably via the intrasubunit

sites, and antagonizes the effects of 3a5aP, possibly via all three sites. These data indicate that NS

binding to both the intersubunit and intrasubunit sites contributes to 3a5aP enhancement of [3H]

muscimol binding, but that only the intrasubunit binding sites contribute to the effects of 3b5aP and

KK148. The data (Figure 6B–D) are consistent with NS producing their effects by independent action

at each of the binding sites and our interpretation is based on that assumption. We cannot, however,

rule out the possibility of an allosteric interaction between the NS binding sites (Chen et al., 2019).

It is important to note that the [3H]muscimol binding curves in Figure 6 are normalized to control.

The raw data show that membranes containing WT receptors have 10–20-fold higher [3H]muscimol

binding (Bmax) than membranes containing a1(N408A/Y411F)b3 receptors (Figure 7A), whereas the

Bmax of membranes containing a1(Q242L)b3, a1b3(Y284F) or a1(V227W)b3 receptors was the same as

for WT a1b3 GABAARs (Figure 7—source data 1). The lower total [3H]muscimol binding observed in

a1(N408A/Y411F)b3 membranes is likely a consequence of decreased receptor expression. To assure

that differences in NS effect between WT and a1(N408A/Y411F)b3 are not due to different muscimol

affinities, we examined [3H]muscimol binding at a full range of concentrations. The a1(N408A/

Y411F)b3 mutations did not have a significant effect on [3H]muscimol affinity (Figure 7B), but elimi-

nated the modulatory effects of NS (3a5aP and KK148) on [3H]muscimol affinity (Figure 7C–D and

Figure 7—source data 2). To assure that the effect of a1(N408A/Y411F)b3 was specific to NS, we

also examined the effect of etomidate (a non-steroidal GABAAR PAM) on muscimol affinity. Etomi-

date enhanced [3H]muscimol affinity in both the WT and a1(N408A/Y411F)b3 receptors, indicating

that the effect of these mutations are specific to NS action (Figure 7C–D).

3b5aP increases desensitization through binding to a1 and b3
intrasubunit sites
To further explore the relationship between desensitization and enhancement of [3H]muscimol bind-

ing, we examined the consequences of mutations to these sites on physiological measurements of

desensitization induced by NS. Again, these experiments were performed with 3b5aP because it is

Figure 6 continued

[3H]muscimol (3 nM) binding to a1b3 GABAAR WT and indicated mutants. Data points represent mean ± SEM (n = 6). (C), (D) and (E) Same as (B) for 3

nM–30 mM epi-allopregnanolone (3b5aP) (n = 3), KK148 (n = 6) and 30 nM–200 mM etomidate (n = 6), respectively. The data for WT in panels 6B and 6D

is a replot of the same data shown in Figure 1E.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Time course of neurosteroid modulation of muscimol binding.
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the endogenous 3b-OH NS and because of limited quantities of KK148. Desensitization was quanti-

fied by defining the baseline steady-state current at 1 mM GABA as 100% and measuring percent

reduction of the steady-state current elicited by a NS (Figure 9A inset). While GABA was at a satu-

rating concentration for all receptors, the peak Popen it elicited was <<1.0 for several of the mutated

receptors. To normalize Popen, mutated receptors with low peak Popen were activated by co-applica-

tion of 1 mM GABA with 40 mM pentobarbital (PB) (Steinbach and Akk, 2001) prior to application

of 3a5aP. This was done because the magnitude of negative allosteric modulation varies as a func-

tion of Popen (Germann et al., 2019a). To ensure that PB did not influence NS negative allosteric

Figure 7. Neurosteroid effect on [3H]muscimol binding isotherms in a1b3 WT and a1(N408A/Y411F)b3 GABAARs. (A) [
3H]muscimol binding isotherms

(0.3 nM–1 mM) for a1b3 GABAAR WT and a1(N408A/Y411F)b3 GABAAR. Data points are presented as mean ± SEM (n = 3). (B) Normalized curves of [3H]

muscimol binding isotherms (0.3 nM–1 mM) for a1b3 GABAAR WT and representative mutated receptors for each neurosteroid binding site [i.e.

a1(Q242L)b3 for the b3–a1 intersubunit site; a1(N408A/Y411F)b3 for the a1 intrasubunit site; a1b3(Y284F) for the b3 intrasubunit site]. Each data point

represents mean ± SEM (n = 6 for WT; n = 3 for mutated receptors). (C) Effect of 100 mM etomidate, 30 mM allopregnanolone (3a5aP) and 30 mM KK148

on [3H]muscimol binding isotherms in the a1b3 GABAAR WT. (D) Same as (C) in the a1(N408A/Y411F)b3 mutant. Each data point represents mean ± SEM

(n = 3).

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Properties of [3H]muscimol binding isotherms in a1b3 WT and mutant GABAARs.

Source data 2. Properties of neurosteroid effect on [3H]muscimol binding isotherms in a1b3 GABAAR WT and a1(N408A/Y411F)b3 mutant.

Figure supplement 1. Total, nonspecific and specific [3H]muscimol binding curves.
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modulation, control experiments were performed in WT a1b3 GABAARs and showed no significant

difference in the desensitization elicited by 3b5aP between receptors activated by GABA vs. GABA

plus PB. The maximum Popen for the mutant receptors varied between 0.55 and 0.95; some of the

NS effects on macroscopic currents may be influenced by these differences.

3b5aP reduced the steady-state current (i.e. enhanced desensitization) by 23.0 ± 2.8% (% of

desensitization: mean ± SEM, n = 5, Figure 9A). Mutations in the a1 and b3 intrasubunit sites [i.e.

a1(N408A/Y411F)b3 and a1b3(Y284F), respectively] prevented 3b5aP-enhanced desensitization

by ~67% (Figure 9B), whereas mutation in the b(+)–a(-) intersubunit site [a1(Q242L)b3] was without

effect (Figure 9B). Receptors with mutations in both the a1 and b3 intrasubunit sites [a1(N408A/

Y411F)b3(Y284F)] showed less NS-enhancement of desensitization than receptors with mutations in

either of the intrasubunit sites alone, indicating that both intrasubunit sites contribute to the desensi-

tizing effect (Figure 9B). Although the desensitizing effect of 3b5aP is completely eliminated by the

V2’S mutation a1(V256S)b3, it is not completely eliminated by combined mutations of all three bind-

ing sites [a1(Q242L/N408A/Y411F)b3(Y284F)] (Figure 9B). This suggests either that the effects of the

mutations are incomplete or there are additional unidentified NS-binding sites contributing to

desensitization. Since mutations of the a1 and b3 intrasubunit sites also disrupt 3b5aP-enhancement

of [3H]muscimol binding (Figure 6C), we conclude that 3b5aP binding to these intrasubunit sites sta-

bilizes the desensitized state of the GABAAR and thus enhances [3H]muscimol binding. Furthermore,

KK148 increased GABAAR desensitization (% of desensitization = 27.2 ± 6.0: mean ± SEM, n = 3,

Figure 2A) and the a1(V256S)b3 mutation abolished the effect (% of desensitization = 0, n = 1).

These observations support the idea that binding of certain NS analogues to a1 and b3 intrasubunit

Table 1. Effects of mutations on neurosteroid modulation of [3H]muscimol binding.

EC50, Hill slope and maximal effect values [Emax (% of control): 100% means no effect] for the concen-

tration-response curves in Figure 6B–E. Statistical differences are analyzed using one-way ANOVA

with Bonferroni’s multiple comparisons test (*p<0.05 vs. WT; **p<0.01 vs. WT). Data are presented as

mean ± SEM.

3a5aP EC50 (mM) Hill slope Emax (% of control) N

WTa1b3 0.24 ± 0.04 1.10 ± 0.14 374.1 ± 11.1 6

a1(Q242L)b3 **2.66 ± 0.51 1.16 ± 0.37 **159.8 ± 10.9 6

a1(N408A/Y411F)b3 **2.30 ± 0.48 0.87 ± 0.44 **146.0 ± 9.3 6

a1b3(Y284F) 0.19 ± 0.04 0.87 ± 0.16 342.3 ± 13.9 6

a1(Q242L/N408A/Y411F)b3 - - **105.9 ± 7.3 6

3b5aP

WTa1b3 0.25 ± 0.08 0.84 ± 0.23 195.1 ± 6.7 3

a1(Q242L)b3 0.27 ± 0.09 0.77 ± 0.21 204.3 ± 4.5 3

a1(N408A/Y411F)b3 0.61 ± 0.26 2.25 ± 0.92 **124.3 ± 2.6 3

a1b3(Y284F) - - **148.6 ± 4.9 3

KK148

WTa1b3 2.40 ± 0.36 1.36 ± 0.16 431.0 ± 19.5 6

a1(Q242L)b3 2.20 ± 0.31 1.24 ± 0.12 434.5 ± 5.6 6

a1(N408A/Y411F)b3 1.63 ± 0.53 0.73 ± 0.23 **161.7 ± 3.5 6

a1(V227W)b3 1.73 ± 0.68 0.76 ± 0.31 **209.2 ± 7.4 6

a1b3(Y284F) 1.79 ± 0.44 1.35 ± 0.13 **357.2 ± 8.1 6

Etomidate

WTa1b3 7.24 ± 1.18 1.07 ± 0.17 331.1 ± 9.9 6

a1(Q242L)b3 7.50 ± 0.95 1.35 ± 0.20 **277.8 ± 10.9 6

a1(N408A/Y411F)b3 9.14 ± 2.20 1.07 ± 0.26 **268.2 ± 5.9 6

a1b3(Y284F) 7.71 ± 1.10 0.90 ± 0.11 303.5 ± 5.8 6

a1b3(M286W) *22.5 ± 6.17 0.50 ± 0.16 **128.6 ± 7.8 6
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sites, increases GABAAR desensitization. In contrast, KK150 showed a very small effect on desensiti-

zation (% of desensitization = 2.1 ± 0.7: mean ± SEM, n = 5, Figure 2B), consistent with the small

increase in [3H]muscimol binding by KK150 (Figure 1E).

The effects of 3a5aP binding to intrasubunit sites on desensitization
3a5aP binds to all three of the NS-binding sites on a1b3 GABAAR, and mutations in all three sites

reduce 3a5aP enhancement of [3H]muscimol binding (Figure 6B). This suggests the possibility that

activation by 3a5aP (mediated primarily by the b3(+)–a1(-) intersubunit site) masks a desensitizing

Figure 8. KK150 prevents neurosteroid-induced muscimol binding enhancement. (A) Enhancement of specific [3H]

muscimol (3 nM) binding to a1b3 GABAAR by 0.3 mM allopregnanolone (3a5aP) in the absence (black bar) or

presence (grey bar) of 30 mM KK150 and KK150 alone (white bar). Statistical differences are analyzed using one-

way ANOVA with Bonferroni’s multiple comparisons test (n = 8,± SEM). *p<0.05 vs. 0.3 mM 3a5aP alone. (B) Same

as (A) for 3 mM KK148 (n = 8,± SEM). **p<0.01 vs. 3 mM KK148 alone.

Sugasawa et al. eLife 2020;9:e55331. DOI: https://doi.org/10.7554/eLife.55331 15 of 32

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.55331


effect mediated through the b3 and/or a1 intrasubunit binding sites. To determine whether intrasu-

bunit binding sites mediate increased desensitization by 3a5aP, we examined the effect of 3a5aP

on steady-state currents in receptors with mutations in the a1 or b3 intrasubunit site. Mutations in

the intrasubunit sites were prepared with a background a1(Q242L)b3 mutation to remove 3a5aP

activation (Chen et al., 2019; Sugasawa et al., 2019; Akk et al., 2008; Bracamontes and Stein-

bach, 2009) and focus on the effects of 3a5aP on the equilibrium between the open and desensi-

tized states.

3a5aP produced a small reduction in steady-state current in a1(Q242L)b3 receptors with muta-

tions in neither of the intrasubunit sites (Figure 10A). This inhibitory effect was eliminated by

a1(V256S)b3, indicating that it was due to receptor desensitization (Figure 10D). In receptors with

combined mutations in the intersubunit and a1 intrasubunit sites [i.e. a1(Q242L/N408A/Y411F)b3],

3a5aP significantly inhibited the steady-state current (Figure 10B), an effect that was markedly

reduced by mutations in the b3 intrasubunit site [a1(Q242L)b3(Y284F)] (Figure 10C). These data

Figure 9. Mutations in intrasubunit sites prevent desensitization by epi-allopregnanolone. (A) Sample current trace showing the effect of 3 mM epi-

allopregnanolone (3b5aP) on steady-state current elicited by continuous administration of 1 mM GABA to a1b3 GABAAR expressed in oocytes. A

zoomed-in box shows neurosteroid-induced desensitization of the steady-state GABA current. (B) Percent desensitization of the steady-state a1b3
GABAAR currents (WT and mutants) by 3 mM 3b5aP during continuous application of 1 mM GABA [for WT, a1(Q242L)b3, a1b3(Y284F), a1(N408A/

Y411F)b3 and a1(V256S)b3 GABAARs] or 1 mM GABA + 25 mM pentobarbital (PB) [for a1(N408A/Y411F)b3(Y284F) and a1(Q242L/N408A/Y411F)b3(Y284F)

GABAARs]. The combination of GABA and PB is essential for some mutated receptors to obtain a high, consistent peak open probability. Statistical

differences are analyzed using one-way ANOVA with Bonferroni’s multiple comparisons test (n = 5,± SEM). **p<0.01 vs. WT.
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suggest that 3a5aP exerts a desensitizing effect by binding to the b3 intrasubunit site and that

3a5aP binding to the a1 intrasubunit site does not promote desensitization (Figure 10D). Notably,

3a5aP exerted only a modest inhibitory effect in a1(Q242L)b3 receptors in which occupancy of the

b3 intrasubunit site should promote inhibition. This may be due to a counterbalancing action at the

a1 intrasubunit site, where 3a5aP binding contributes more to receptor activation as demonstrated

by our previous observation that mutations in the a1 intrasubunit site significantly reduce 3a5aP

potentiation of GABA-elicited currents (Chen et al., 2019). These results suggest that in addition to

activation, 3a5aP enhances receptor desensitization. Enhanced desensitization by the PAM-NS

3a5aP (Haage and Johansson, 1999) and 3a5a-THDOC (Zhu and Vicini, 1997; Bianchi and Mac-

donald, 2003) has been observed in prior studies supporting the current finding with 3a5aP.

Figure 10. Allopregnanolone desensitizes GABAAR currents via binding to the b3 intrasubunit site. (A) Sample

current trace showing the effect of 3 mM allopregnanolone (3a5aP) on a1(Q242L)b3 GABAAR activated by 1 mM

GABA co-applied with 40 mM pentobarbital (PB). (B), (C) Same as (A) for a1(Q242L/N408A/Y411F)b3 GABAAR and

a1(Q242L)b3(Y284F) GABAAR, respectively. (D) Percent desensitization of the steady-state currents elicited by 1 mM

GABA with 40 mM PB in a1b3 GABAAR with specified mutations. Statistical differences are analyzed using one-way

ANOVA with Bonferroni’s multiple comparisons test [n = 4 for a1(V256S)b3; n = 5 for others,± SEM]. *p<0.05;

**p<0.01 vs. a1(Q242L)b3, respectively.
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Discussion
In this study, we examined how site-specific binding to the three identified NS sites on a1b3 GABAAR

(Chen et al., 2019) contributes to the PAM vs. NAM activity of epimeric 3-OH NS. We found that

the PAM-NS 3a5aP, but not the NAM-NS 3b5aP, binds to the canonical b3(+)–a1(-) intersubunit site

that mediates receptor potentiation, explaining the absence of 3b5aP PAM activity. In contrast,

3b5aP binds to intrasubunit sites in the a1 and b3 subunits, promoting receptor desensitization.

Binding to the intrasubunit sites provides a mechanistic explanation for the NAM effects of 3b5aP

(Wang et al., 2002). 3a5aP also binds to the b3 intrasubunit site explaining the previously described

desensitizing effect of the PAM-NS 3a5aP (Haage and Johansson, 1999) and 3a5a-THDOC

(Zhu and Vicini, 1997; Bianchi and Macdonald, 2003). Two synthetic NS with diazirine moieties at

C3 (KK148 and KK150) were used to identify NS-binding sites and shown to bind to the intersubunit

as well as both intrasubunit sites. Neither of these ligands potentiated agonist-activated GABAAR

currents, reinforcing the importance of the 3a-OH group and its interaction with a1Q242 in PAM

actions. KK148 is an efficacious desensitizing agent, acting through the a1 and b3 intrasubunit NS-

binding sites. KK150, the 17a-epimer of KK148, binds to all three NS-binding sites, but neither acti-

vates nor desensitizes GABAARs, suggesting a potential chemical scaffold for a general NS antago-

nist. Collectively, these data show that differential occupancy of and efficacy at three discrete NS-

binding sites determines whether a NS ligand has PAM, NAM, or potentially NS antagonist activity

on GABAARs.

The observation that 3b5aP and KK148 enhance orthosteric ligand binding but do not potentiate

GABA-elicited currents first suggested that these NAM-NS selectively stabilize a non-conducting

state that has high affinity to the orthosteric agonist muscimol. This liganded/closed state could rep-

resent a pre-active (Gielen and Corringer, 2018) or a desensitized conformation of the receptor

(n.b. there may be multiple desensitized conformations of the receptor, possibly including NS-spe-

cific desensitized states). Chang and colleagues have shown that orthosteric ligand affinity (muscimol

or GABA) is greater in desensitized and activated (open) GABAARs than in resting (closed) receptors,

with estimated GABA Kd values of 78.5 mM, 120 nM and 40 nM for the resting, activated and desen-

sitized a1b2g2 receptors respectively (Chang et al., 2002). Kinetic models also predict that a pre-

active state should have higher affinity for an orthosteric agonist than the resting state (Gielen and

Corringer, 2018). To distinguish between stabilization of a pre-active and a desensitized state, we

co-applied 3b5aP with a high concentration of GABA. 3b5aP reduced the desensitization time con-

stant but did not reduce peak current amplitude. While this result is consistent with stabilization of a

desensitized rather than a pre-active state, it is ambiguous as it could also be explained by NAM-NS

having a slower onset of effect than GABA because of slow access of the steroid to its binding site

(Li et al., 2007). However, this result is supported by studies examining inhibitory postsynaptic cur-

rents (IPSCs) in which a NAM-NS can be pre-applied and the GABA concentration step is extremely

rapid as well as by single channel studies. In cultured hippocampal neurons, the NAM-NS 3b5b-

THDOC significantly reduced IPSCs decay times but had no effect on IPSCs amplitude, consistent

with a desensitizing effect (Wang et al., 2002). Single channel analyses provide the most definitive

distinction between a pre-active and a desensitized state. Desensitization is predicted to shorten sin-

gle channel clusters without affecting intracluster open or closed time distributions. In contrast, ste-

roid-induced stabilization of a pre-active non-conducting state may be expected to lead to

increased mean intracluster closed time. Single-channel studies examining the kinetic effects of the

inhibitory steroids pregnenolone sulfate (Akk et al., 2001) or the 3b5aP analogue (3b,5a,17b)�3-

hydroxyandrostane-17-carbonitrile (3b5a-ACN) (Akk, G.; unpublished data) have indeed observed

reduced mean cluster duration with minimal changes in intracluster open and closed time properties,

indicative of the steroids promoting receptor desensitization. The a1V256S mutation eliminated the

PS-mediated reduction in cluster duration indicating that the mutation prevents PS-mediated desen-

sitization (Akk et al., 2001). 3b-hydroxy steroids act similarly to PS, including exhibiting sensitivity to

the a1V256S mutation (Wang et al., 2002). Overall, the preponderance of evidence indicates that

3b-NAM-NS such as 3b5aP inhibit GABAAR currents by stabilizing a desensitized state.

Our experimental and modeling data demonstrate that NAM-NS such as 3b5aP or KK148

enhance orthosteric ligand binding by increasing the population of receptors in a desensitized state.

It is, however, unclear if 3b5aP or KK148 can promote transition of resting receptors directly to a

desensitized state, thus bypassing channel opening. We propose that in the presence of low
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Figure 11. Comparison of allopregnanolone and epi-allopregnanolone docking poses within three neurosteroid

binding pockets of the modeled a1b3 GABAAR TMD and the cryo-EM structure of an a1b3g2 GABAAR (PDB ID:

6I53). The two structures were read into UCSF Chimera and mutually aligned using MatchMaker. The a1b3 model

is shown in tan, while the a1b3g2 structure is in cyan. (A) Representative poses for allopregnanolone (3a5aP) and

epi-allopregnanolone (3b5aP) docked within the b3(+)–a1(-) intersubunit site, the poses for the a1b3 model are in

pink, while those for the a1b3g2 structure are in light green. The a1Q242 side chain is shown in yellow. (B) Same as

for (A) for the a1 intrasubunit site; also shown are the sidechains V227, Y415, and N408. (C) Same as (A) for the b3
intrasubunit site; also shown are the sidechains Y284 and Y442. The Vina docking scores for 3a5aP and 3b5aP at

each site in the a1b3 model and the a1b3g2 structure are shown in Figure 11—source data 1.

The online version of this article includes the following source data for figure 11:

Source data 1. Vina docking scores for allopregnanolone and epi-allopregnanolone at each site in a1b3 model

and a1b3g2 GABAAR structure.

Sugasawa et al. eLife 2020;9:e55331. DOI: https://doi.org/10.7554/eLife.55331 19 of 32

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.55331


Figure 12. Neurosteroids preferentially stabilize GABAAR in different states. (A) Model showing three fundamental conformational states that depict

the channel function in the GABAAR: a resting state; an open state; and a desensitized state. Agonist (GABA: ) binding shifts the equilibrium towards

high-affinity states (open and desensitized). Allopregnanolone (3a5aP: ) allosterically stabilizes the high-affinity states (an open state through the b3–a1

intersubunit and the a1 intrasubunit sites; a desensitized state through the b3 intrasubunit site). The width of red arrows indicates relative affinities of

Figure 12 continued on next page
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concentrations of orthosteric agonists (as in the [3H]muscimol binding assays), there is a slow shift of

receptors from resting through activated to a desensitized state with minimal change in the popula-

tion of receptors in the activated state. The slow time course of accumulation of desensitized recep-

tors is illustrated by experiments in which 10 mM 3b5aP is added to membranes that have been fully

equilibrated with a low concentration (3 nM) of [3H]muscimol and binding is measured as a function

of time. Enhancement of [3H]muscimol binding by 10 mM 3b5aP is slow, with a time constant of 4

min at 4˚C (t = 3.97 ± 0.15 min: mean ± SEM, n = 4, Figure 6—figure supplement 1). In contrast,

when a1b3 GABAARs are exposed to long pulses of a high concentration of GABA, KK148- and

3b5aP-induced desensitization is rapid (Figure 2A and C), since in these conditions almost all of the

receptors are either in an open or desensitized conformation and desensitization is not slowed by

the transition from resting to open state (Jones and Westbrook, 1995). Thus, the slow enhance-

ment of [3H]muscimol binding by 3b5aP (Figure 6—figure supplement 1) is likely rate-limited by

the transition of receptors to activated then to desensitized states at 3 nM muscimol rather than by

3b5aP binding. These time course experiments are most consistent with a model in which receptors

preferentially progress from the resting to active to desensitized states, which are then stabilized by

the NAM-NS.

The selective binding of 3b5aP to a subset of identified NS-binding sites provides an explanation

for its NAM activity. 3b5aP stabilizes desensitized receptors by binding to the a1 and b3 intrasubunit

sites, but does not activate the receptor because it does not bind to the intersubunit site. This site-

selective binding is unexpected for several reasons. First, docking and free energy perturbation cal-

culations in a prior study predicted that 3b5bP binds to the intersubunit site in a similar orientation

and with free energies of binding that are equivalent to pregnanolone (3a5bP) (Miller et al., 2017).

The modeling suggested that 3b5bP does not form a hydrogen bond with aQ242, a possible expla-

nation for its lack of efficacy (Miller et al., 2017). Our docking studies also show similar binding

energies and orientations of 3b5aP and 3a5aP binding in the b3(+)–a1(-) intersubunit site of either a

homology model of the a1b3 receptor or the cryo-EM structure (PDB ID: 6I53) of the a1b3g2 receptor

in a lipid nanodisc (Laverty et al., 2019; Figure 11). We have also shown that binding affinity or

docking scores of NS binding to the intersubunit site are not significantly affected by mutations

(a1Q242L, a1Q242W, a1W246L) that eliminate NS activation, although binding orientation is altered

(Sugasawa et al., 2019). These data indicate that NS binding in the intersubunit site is tolerant to

significant changes in critical residues and NS ligand structure, and are consistent with our findings

that NS analogues, such as KK148 and KK150, can bind to the intersubunit site but have no effect on

activation (Figures 1 and 4). Thus, the peculiar lack of 3b5aP binding to the intersubunit site sug-

gests that either: (1) details in the structure of the intersubunit site in the open conformation that

explain the absence of 3b5aP binding are not apparent in current high-resolution structures or; (2)

3b5aP does not bind for other reasons. One plausible explanation is that 3b5aP, like cholesterol,

has low chemical activity in the membrane and does not achieve sufficiently available concentration

to bind in this site (Lange and Steck, 2016). This explanation would require that the chemical activ-

ity of 3b5aP differs between the inner and outer leaflets of a plasma membrane (presumably due to

membrane lipid asymmetry) (van Meer et al., 2008; Lorent et al., 2020), since 3b5aP binds to the

intrasubunit sites.

The functional analysis of mutations in each of the three NS-binding sites demonstrates that the

activating and desensitizing effects of NS result from occupancy of distinct sites. In particular, bind-

ing of certain NS (3b5aP, KK148) to a1 and b3 intrasubunit sites modulates the open-desensitized

equilibrium. Interestingly, lipid binding to intrasubunit pockets in bacterial pLGICs analogous to the

a1 and b3 intrasubunit sites in GABAAR, also modulates receptor desensitization; docosahexaenoic

acid binding to an intrasubunit site in GLIC (Basak et al., 2017) and phosphatidylglycerol in ELIC

(Tong et al., 2019) increase and decrease agonist-induced desensitization, respectively. The

Figure 12 continued

3a5aP for the open or desensitized state of the receptor. (B) Same as (A) for epi-allopregnanolone (3b5aP: ). 3b5aP stabilizes a desensitized state

through the b3 and a1 intrasubunit sites. (C) Same as (A) for KK148 ( ). KK148 allosterically stabilizes a desensitized state through the b3 and a1

intrasubunit sites, and equally stabilizes all three states of the receptor through the b3–a1 intersubunit site. The width of orange arrows indicates relative

affinities of KK148 for each state of the receptor. (D) Same as (A) for KK150 ( ). KK150 equally stabilizes all three states of the receptor through the b3
and a1 intrasubunit sites, and the b3–a1 intersubunit site.
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combined results of mutational analyses and binding data demonstrate that the effects of various

NS analogues are also a consequence of their efficacy at each of the sites they occupy. For example,

KK148 and KK150 occupy the intersubunit site (Figure 4C), but do not activate GABAAR currents

(Figure 1C–D), and KK150 occupies both intrasubunit sites (Figure 4B and Figure 4—figure supple-

ment 1) but does not desensitize the receptor (Figure 2B).

To explain the effects of the 3-substituted NS analogues, we propose a model in which NS-selec-

tive binding at three distinct binding sites on the GABAAR preferentially stabilizes specific states

(resting, open, desensitized) of the receptor (Figure 12). Orthosteric agonist (GABA or muscimol)

binding shifts the equilibrium towards high-affinity states (open and desensitized). 3a5aP allosteri-

cally stabilizes the open state through binding to the b3–a1 intersubunit and a1 intrasubunit sites

and stabilizes the desensitized state through the b3 intrasubunit site (Figure 12A). In contrast,

3b5aP preferentially stabilizes the desensitized state through binding to both intrasubunit sites

(Figure 12B). KK148, like 3b5aP, stabilizes the desensitized state by binding to the intrasubunit sites

(Figure 12C). KK148 also binds to the intersubunit site, presumably with no state-dependence, since

it is neither an agonist nor an inverse-agonist (Figure 1C and Figure 12C). KK150, which neither acti-

vates nor desensitizes GABAARs and is not an inverse agonist, binds to all three sites, again presum-

ably with no-state dependence (Figure 1D and Figure 12D). This model predicts that KK148 should

act as a competitive antagonist to PAM-NS at the intersubunit site. This model also predicts that

KK150 should be a competitive NS antagonist at all three binding sites. Consistent with this predic-

tion, KK150 antagonizes 3a5aP and KK148 enhancement of [3H]muscimol binding (Figure 8).

The site-specific model of NS action (Figure 12) has significant implications for the synaptic

mechanisms of PAM-NS action. At a synapse, GABAARs are transiently exposed to high (mM) con-

centrations of GABA leading to a channel Popen approaching one (Farrant and Nusser, 2005;

Feng and Forman, 2018). GABA is quickly cleared from the synapse leading to rapid deactivation

with minimal desensitization (Jones and Westbrook, 1995; Overstreet et al., 2000). In the pres-

ence of a PAM-NS, deactivation is slowed, resulting in a prolongation of the IPSC and increased

inhibitory current (Harrison et al., 1987a; Zhu and Vicini, 1997; Harrison et al., 1987b;

Chakrabarti et al., 2016). This effect is largely attributable to stabilization of the open state, pre-

sumably by binding to the intersubunit and a1 intrasubunit binding sites. A second effect has been

observed in which the PAM-NS 3a5aP (Haage and Johansson, 1999) and 3a5a-THDOC (Zhu and

Vicini, 1997) prolong the slow component of GABAAR desensitization and slow recovery from

desensitization. This results in increased late channel openings (Zhu and Vicini, 1997; Jones and

Westbrook, 1995) and IPSC prolongation (Harrison et al., 1987b; Chakrabarti et al., 2016). When

the frequency of synaptic firing is rapid, the desensitizing effect of NS may also contribute to fre-

quency-dependent reduction in IPSC amplitude (Zhu and Vicini, 1997; Jones and Westbrook,

1996). The desensitizing effect of 3a5aP is predominantly mediated by binding at the b3 intrasubu-

nit site. The balance between stabilization of the open and desensitized channels should be deter-

mined by the relative occupancies for the intersubunit site of the active receptor and the b3
intrasubunit site of the desensitized receptor. Computational docking of 3a5aP to these sites indi-

cates modest differences in affinity between the sites with a rank order affinity of: intersubunit > a1

intrasubunit > b3 intrasubunit sites (Figure 11—source data 1; Chen et al., 2019). Mutational analy-

sis of the effects of NS on enhancement of [3H]muscimol binding also indicates that 3a5aP has a

lower affinity to the b3 intrasubunit site (Figure 6B, Table 1). Thus ,binding to the b3 intrasubunit

site may serve as a negative feedback mechanism preventing excessive PAM-NS effects on synaptic

currents.

We have identified specific NS-binding sites on a1 and b3 GABAARs using photoaffinity labeling,

but the structural details of NS interactions with these sites have not yet been elucidated. While sev-

eral high-resolution structures of abg GABAARs in a lipidic environment (nano-discs) with bound

orthosteric or allosteric ligands have been published (Laverty et al., 2019; Masiulis et al., 2019;

Kim et al., 2020), there are no available structures of a heteropentameric GABAAR with a bound

NS. There are, however, three X-ray structures of homopentameric, chimeric GABAARs crystallized

from detergent, all showing NS bound only in the intersubunit site (Miller et al., 2017;

Laverty et al., 2017; Chen et al., 2018). Since we identified intrasubunit NS-binding sites by photo-

labeling full-length heteropentameric GABAARs in native membranes, it is possible that either the

non-natural ECD-TMD junctions or the detergent environment explain why neurosteroid binding to

an intrasubunit site was not observed. However, we have also identified an a1 intrasubunit NS
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binding site using a 3a5aP analogue photolabeling reagent in a detergent-solubilized ELIC-a1 chi-

meric receptor (Sugasawa et al., 2019), indicating that NS can bind to this site in a detergent-solu-

bilized chimeric receptor. It is important to note that there are many reasons why a bound NS (or

any other ligand) may not be observed in X-ray or cryo-EM structures and that while these methods

provide exquisite detail regarding the structure of ligand binding sites, they should not be regarded

as a litmus test for the identification of ligand-binding sites. These reasons include: (1) a protein with

steroid bound in the intrasubunit site may not form good crystals or may aggregate, precluding sin-

gle particle analysis. (2) The conformation(s) observed in the X-ray or cryo-EM structure may not be

the conformation to which NS preferentially binds in the intrasubunit site. (3) The ECD-TMD junction

is the area of the protein that undergoes the most movement with activation and can be the least

well-resolved portion of the transmembrane domains. (4) NS have multiple binding orientations and

may be more mobile within the intrasubunit site making them more difficult to resolve. It is also

important to consider that our analyses of the functional effects of NS binding were performed using

a1b3 GABAARs. While the actions of inhibitory and potentiating NS in abg or abd receptors are qual-

itatively similar to those observed in ab receptors, the trimeric receptors may have one less intrasu-

bunit NS-binding site per pentamer, or an intrasubunit with different NS specificity or effect.

Additionally, the presence of a g-subunit has been shown to alter the conformational symmetry of

the GABAAR (Laverty et al., 2019; Kim et al., 2020; Zhu et al., 2018) and may influence NS bind-

ing to an intrasubunit site or its functional effects.

In summary, this study describes a unique NS pharmacology in which different NS analogues

selectively bind to subsets of three sites on the a1b3 GABAAR, with each analogue exhibiting state-

dependent binding at a given site. The combination of site-selectivity and state-dependence of bind-

ing determines whether a NS analogue is a PAM, a NAM or an antagonist of NS action at the

GABAAR. It seems likely that other GABAAR subunit isoforms and heteropentameric subunit combi-

nations will reveal additional NS-binding sites with distinct affinity and state-dependence for various

analogues. The identification of potent agonists and antagonists for each of these sites will provide

tools for understanding the biological effects of endogenous neurosteroids and potentially for the

development of precision neurosteroid therapeutics.

Materials and methods

Construct design
The human a1 and b3 GABAAR subunits were subcloned into pcDNA3 for molecular manipulations

and cRNA synthesis. Using QuikChange Site-Directed Mutagenesis Kit (Agilent Technologies, Santa

Clara, CA), a FLAG tag was first added to the a1 subunit then an 8xHis tag was added to generate

the following His-FLAG tag tandem (QPSLHHHHHHHHDYKDDDDKDEL), inserted between the

fourth and fifth residues of the mature peptide. The a1 and b3 subunits were then transferred into

the pcDNA4/TO and pcDNA5/TO vectors (Thermo Fisher Scientific), respectively, for tetracycline

inducible expression. Transient expression was done using the GABAAR subunits rat a1FLAG

(Ueno et al., 1996) and human b3 obtained from Geoffrey White (Neurogen, Branford, CT), each

were subcloned into pcDNA3 for molecular manipulations and cRNA synthesis. Point mutations

were generated using the QuikChange Site-Directed Mutagenesis Kit (Agilent) and the coding

region was fully sequenced prior to use. The cDNAs were linearized with XbaI (NEB Labs, Ipswich,

MA), and the cRNAs were generated using T7 mMessage mMachine (Ambion, Austin, TX).

Cell lines
Cell culture was performed as described in previous reports (Chen et al., 2019). The tetracycline

inducible cell line T-REx-HEK293 (Thermo Fisher Scientific) was cultured under the following condi-

tions: cells were maintained in DMEM/F-12 50/50 medium containing 10% fetal bovine serum (tetra-

cycline-free, Takara, Mountain View, CA), penicillin (100 units/ml), streptomycin (100 g/ml), and

blasticidin (2 mg/ml) at 37˚C in a humidified atmosphere containing 5% CO2. Cells were passaged

twice each week, maintaining subconfluent cultures. Stably transfected cells were cultured as above

with the addition of hygromycin (50 mg/ml) and zeocin (20 mg/ml). A stable cell line was generated

by transfecting T-REx-HEK293 cells with human a1-8xHis-FLAG pcDNA4/TO and human b3 pcDNA5/

TO, in a 150 mm culture dish, using the Effectene transfection reagent (Qiagen, Germantown, MD).
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Two days after transfection, selection of stably transfected cells was performed with hygromycin and

zeocin until distinct colonies appeared. Medium was exchanged several times each week to maintain

antibiotic selection. Individual clones were selected from the dish and transferred to 24-well plates

for expansion of each clone selected. When the cells grew sufficiently, about 50% confluence, they

were split into two other plates, one for a surface ELISA against the FLAG epitope and a second for

protein assay, to normalize surface expression to cell number. The best eight clones were selected

for expansion into 150 mm dishes, followed by [3H]muscimol binding to examine the receptor den-

sity. Once the best expressing clone was determined, the highest expressing cells of that clone were

selected through fluorescence activated cell sorting. Transient transfections were done in HEK293S

GnTI- cells obtained from ATCC (CRL-3022) using Effectene (Qiagen). The identity of the cell lines

has been authenticated using short tandem repeat analysis. Mycoplasma test performed on the cells

used for these experiments was negative.

Membrane protein preparation
Stably transfected cells were plated into dishes. After reaching 50% confluence, GABAA receptors

were expressed by inducing cells with 1 mg/ml of doxycycline with the addition of 5 mM sodium

butyrate. Cells were harvested 48 to 72 hr after induction. HEK cells, after induction, were grown to

100% confluence, harvested and washed with 10 mM potassium phosphate, 100 mM potassium

chloride (pH 7.5) plus protease inhibitors (Sigma-Aldrich, St. Louis, MO) two times. The cells were

collected by centrifugation at 1,000 g at 4˚C for 5 min. The cells were homogenized with a glass

mortar and a Teflon pestle for ten strokes on ice. The pellet containing the membrane proteins was

collected after centrifugation at 20,000 g at 4˚C for 45 min and resuspended in a buffer containing

10 mM potassium phosphate, 100 mM potassium chloride (pH 7.5). The protein concentration was

determined with micro-BCA protein assay and membranes were stored at �80˚C.

Photolabeling and purification of a1b3 GABAAR
The syntheses of neurosteroid photolabeling reagents (KK148, KK150, KK200, KK123) are detailed in

previous reports (Jiang et al., 2016; Cheng et al., 2018). For all the photolabeling experiments, 10–

20 mg of HEK cell membrane proteins (about 300 pmol [3H]muscimol binding) were thawed and

resuspended in buffer containing 10 mM potassium phosphate, 100 mM potassium chloride (pH 7.5)

and 1 mM GABA at a final concentration of 1.25 mg/ml. For the photolabeling competition experi-

ments, 3 mM KK200 or KK123 in the presence of 30 mM competitor (3a5aP, KK148, KK150, and

3b5aP) or the same volume of ethanol was added to the membrane proteins and incubated on ice

for 1 hr. The samples were then irradiated in a quartz cuvette for 5 min, by using a photoreactor

emitting light at >320 nm. The membrane proteins were then collected by centrifugation at 20,000

g at 4˚C for 45 min. The photolabeled membrane proteins were resuspended in lysis buffer contain-

ing 1% n-dodecyl-b-D-maltoside (DDM), 0.25% cholesteryl hemisuccinate (CHS), 50 mM Tris (pH

7.5), 150 mM NaCl, 2 mM CaCl2, 5 mM KCl, 5 mM MgCl2, 1 mM EDTA, 10% glycerol at a final con-

centration of 1 mg/ml. The membrane protein suspension was homogenized using a glass mortar

and a Teflon pestle and incubated at 4˚C overnight. The protein lysate was centrifuged at 20,000 g

at 4˚C for 45 min and supernatant was incubated with 0.5 ml anti-FLAG agarose (Sigma) at 4˚C for 2

hr. The anti-FLAG agarose was then transferred to an empty column, followed by washing with 20

ml washing buffer (50 mM triethylammonium bicarbonate and 0.05% DDM). The GABAARs were

eluted with aliquots of 200 mg/ml FLAG tag peptide and 100 mg/ml 3X FLAG (ApexBio) in the wash-

ing buffer. The pooled eluates (9 ml) containing GABAARs were concentrated to 100 ml using 100

kDa cut-off centrifugal filters.

Tryptic middle-down MS analysis
The purified a1b3 GABAAR (100 ml) was reduced with 5 mM tris(2-carboxyethyl)phosphine for 1 hr,

alkylated with 5 mM N-ethylmaleimide (NEM) for 1 hr, and quenched with 5 mM dithiothreitol (DTT)

for 15 min. These three steps were done at RT. Samples were then digested with 8 mg of trypsin for

7 days at 4˚C to obtain maximal recovery of TMD peptides. The digestions were terminated by add-

ing formic acid in a final concentration of 1%, followed directly by LC-MS analysis on an Orbitrap

Elite mass spectrometer. 20 ml samples were injected into a home-packed PLRP-S (Agilent, Santa

Clara, CA) column (10 cm �75 mm, 300 Å), separated with a 145 min gradient from 10% to 90%
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acetonitrile, and introduced to the mass spectrometer at 800 nl/min with a nanospray source. MS

acquisition was set as a MS1 Orbitrap scan (resolution of 60,000) followed by top 20 MS2 Orbitrap

scans (resolution of 15,000) using data-dependent acquisition, and exclusion of singly charged pre-

cursors. Fragmentation was performed using high-energy dissociation with normalized energy of

35%. Analysis of data sets was performed using Xcalibur (Thermo Fisher Scientific) to manually

search for TM1, TM2, TM3 or TM4 tryptic peptides with or without neurosteroid photolabeling mod-

ifications. Photolabeling efficiency was estimated by generating extracted chromatograms of unla-

beled and labeled peptides, determining the area under the curve, and calculating the abundance

of labeled peptide/(unlabeled + labeled peptide). Analysis of statistical significance comparing the

photolabeling efficiency of KK200 and KK123 for a1b3 GABAAR was determined using one-way

ANOVA with Bonferroni’s multiple comparisons test and paired t-test, respectively (Prism 6, Graph-

Pad Software, San Diego, CA). MS2 spectra of photolabeled TMD peptides were analyzed by man-

ual assignment of fragment ions with and without photolabeling modification. Fragment ions were

accepted based on the presence of a monoisotopic mass within 20 ppm mass accuracy. In addition

to manual analysis, PEAKS (Bioinformatics Solutions Inc, Waterloo, ON, Canada) database searches

were performed for data sets of photolabeled a1b3 GABAAR. Search parameters were set for a pre-

cursor mass accuracy of 20 ppm, fragment ion accuracy of 0.1 Da, up to three missed cleavages on

either end of the peptide, false discovery rate of 0.1%, and variable modifications of methionine oxi-

dation, cysteine alkylation with NEM and DTT, and NS analogue photolabeling reagents on any

amino acid.

Radioligand-binding assays
[3H]muscimol-binding assays were performed using a previously described method (Chen et al.,

2019). HEK cell membrane proteins (100 mg/ml final concentration) were incubated with 3 nM [3H]

muscimol (30 Ci/mmol; PerkinElmer Life Sciences), neurosteroid (3 nM–30 mM) or etomidate (30 nM–

200 mM) in different concentrations and binding buffer (10 mM potassium phosphate, 100 mM

potassium chloride, pH 7.5) in a total volume of 1 ml. Assay tubes were incubated for 1 hr on ice in

the dark. Nonspecific binding was determined by binding in the presence of 1 mM GABA. Mem-

branes were collected on Whatman/GF-C glass filter papers using a Brandel cell harvester (Gaithers-

burg, MD). To perform [3H]muscimol binding isotherms, 100 mg/ml aliquots of membrane protein

were incubated with 0.3 nM–1 mM [3H]muscimol for 1 hr on ice in the dark. The specific activity for

[3H]muscimol concentrations from 30 nM to 1 mM was reduced to 2 Ci/mmol by dilution with nonra-

dioactive muscimol. The membranes were collected on Whatman/GF-B glass filter papers using a

vacuum manifold. Raw concentration-dependent total and nonspecific binding and calculated spe-

cific binding data from a representative experiment (WT receptors, no NS) are shown in Figure 7—

figure supplement 1. For [3H]muscimol-binding experiments examining competitive interactions

between neurosteroids, the combined neurosteroids (0.3 mM 3a5aP or 3 mM KK148 ±30 mM KK150)

or the same volume of dimethyl sulfoxide (DMSO) were added to the membranes which were then

incubated with 3 nM [3H]muscimol on ice for 1 hr. Time courses of neurosteroid [3H]muscimol bind-

ing enhancement were examined by adding 10 mM of neurosteroids (3a5aP, 3b5aP) to membranes

that had been fully equilibrated with 3 nM [3H]muscimol for 1 hr on ice; binding was then measured

as a function of time at 1, 3, 10, 30, 60 min. The membranes were collected on Whatman/GF-B glass

filter papers using a vacuum manifold. Radioactivity bound to the filters was measured by liquid scin-

tillation spectrometry using Bio-Safe II (Research Products International, Mount Prospect, IL).

Radioligand binding to intact cells
HEK cells were harvested by gently washing dishes with buffer containing 10 mM sodium phosphate

(pH 7.5), 150 mM sodium chloride twice. The cells were collected by centrifugation at 500 g at 4˚C

for 5 min, and resuspended in isotonic (10 mM sodium phosphate, 150 mM sodium chloride, pH 7.5)

or hypotonic (10 mM sodium phosphate, pH 7.5) buffer to prepare two different conditions for

radioligand binding to intact cells [isotonic buffer for cell surface receptors; hypotonic buffer for total

receptors (cell surface receptors + intracellular receptors)]. The cells were incubated on ice for 2 hr,

after which the sodium chloride concentration was adjusted to be isotonic before the radioligand

binding procedure. HEK cells were aliquoted to assay tubes (20 samples/150 mm dish) in a total vol-

ume of 1 ml, and incubated with 3 nM [3H]muscimol ±10 mM KK148 for 1 hr on ice in the dark.
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Nonspecific binding was determined by binding in the presence of 1 mM GABA. The membranes

were collected on Whatman/GF-B glass filter papers using a vacuum manifold. Radioactivity bound

to the filters was measured by liquid scintillation spectrometry using Bio-Safe II.

Receptor expression in Xenopus laevis oocytes and electrophysiological
recordings
The wild-type and mutant a1b3 GABAAR were expressed in oocytes from the African clawed frog

(Xenopus laevis). Frogs were purchased from Xenopus 1 (Dexter, MI), and housed and cared for in a

Washington University Animal Care Facility under the supervision of the Washington University Divi-

sion of Comparative Medicine. Harvesting of oocytes was conducted under the Guide for the Care

and Use of Laboratory Animals as adopted and promulgated by the National Institutes of Health.

The animal protocol (No. 20180191) was approved by the Animal Studies Committee of Washington

University in St. Louis. The oocytes were injected with a total of 12 ng cRNA. The ratio of cRNAs was

5:1 ratio (a1:b3) to minimize the expression of b3 homomeric receptors. Following injection, the

oocytes were incubated in ND96 (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM

HEPES; pH 7.4) with supplements (2.5 mM Na pyruvate, 100 U/ml penicillin, 100 mg/ml streptomycin

and 50 mg/ml gentamycin) at 16˚C for 2 days prior to conducting electrophysiological recordings.

The electrophysiological recordings were conducted at room temperature using standard two-elec-

trode voltage clamp. The oocytes were clamped at �60 mV. The chamber (RC-1Z, Warner Instru-

ments, Hamden, CT) was perfused with ND96 at 5–8 ml/min. Solutions were gravity-applied from 30

ml glass syringes with glass luer slips via Teflon tubing. The current responses were amplified with

an OC-725C amplifier (Warner Instruments, Hamden, CT), digitized with a Digidata 1200 series dig-

itizer (Molecular Devices), and stored using pClamp (Molecular Devices). Current traces were ana-

lyzed with Clampfit (Molecular Devices). Activation by steroids (Figure 1) was tested by coapplying

a steroid with 0.3 mM GABA (Popen = 0.05–0.1). The desensitizing effects of steroids (Figures 9–

10) were tested by coapplying a steroid with 1 mM (saturating) GABA, alone or in the presence of

PB, during the steady-state phase of the current response. The combination of GABA and PB was

used to activate some combinations of mutations to maintain a consistent, high peak open probabil-

ity (0.55–0.95). In control experiments in WT a1b3 GABAARs, pentobarbital had no effect on 3b5aP

inhibition of steady-state current (data not shown). The stock solution of GABA was made in ND96

at 500 mM, stored in aliquots at �20˚C, and diluted on the day of experiment. The stock solution of

muscimol was made at 20 mM in ND96 and stored at 4˚C. The steroids were dissolved in DMSO at

10–20 mM and stored at room temperature.

Electrophysiological data analysis and simulations
The raw amplitudes of the current traces were converted to units of open probability through com-

parison to the peak response to 1 mM GABA + 50 mM propofol, that was considered to have a peak

Popen indistinguishable from 1 (Chen et al., 2019). The level of constitutive activity in the absence of

any applied agonist was considered negligible and not included in this calculation. The converted

current traces were analyzed in the framework of the three-state Resting-Open-Desensitized activa-

tion model (Germann et al., 2019a; Germann et al., 2019b). The model enables analysis and pre-

diction of peak responses using four parameters that characterize the extent of constitutive activity

(termed L; L = Resting/Open), affinity of the resting receptor to agonist (KC), affinity of the open

receptor to agonist (KO), and the number of agonist binding sites (N). Analysis and prediction of

steady-state responses requires an additional parameter, termed Q, that describes the equilibrium

between open and desensitized receptors (Q = Open/Desensitized).

The Popen of the peak response is expressed as:

Popen;peak ¼
1

1þLG

and the Popen of the steady-state response as:

Popen;steady�state ¼
1

1þ 1
Q
þLG

where
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G¼
1þ X½ �=KCð Þ

1þ X½ �=KOð Þ

� �N

[X]is the concentration of agonist present, and other terms are as described above. In practice,

the value of LG was calculated using the experimentally determined Popen of the peak response, and

then used as a fixed value in estimating Q from Popen,steady-state.

The Pdesensitized was calculated using:

Pdesensitized ¼
1

1þQþQLG

The effect of 3b5aP on 1 mM GABA-elicited steady-state current was expressed through a

change in the value of Q. The modified Q (termed Q*) was then used to predict changes in Popen

and Pdesensitized at low [GABA]. Calculated probabilities (e.g. Popen, Pdesentitized) are reported as

mean ± SD.

Docking simulations
A model of the a1b3 GABAAR was developed using the crystal structure of the human b3 homopen-

tamer (PDB ID: 4COF) as a structural template (Miller and Aricescu, 2014). In this structure, the

cytoplasmic loop was replaced with the sequence SQPARAA (Jansen et al., 2008). The pentamer

subunits were organized as A a1, B b3, C a1, D b3, E b3. The a1 sequence was aligned to the b3

sequence using the program MUSCLE (Edgar, 2004). The pentameric alignment was then used as

input for the program Modeller (Sali and Blundell, 1993), using 4COF as the template; a total of 25

models were generated. The best model as evaluated by the DOPE score (Shen and Sali, 2006) was

then submitted to the H++ server (http://biophysics.cs.vt.edu) to determine charges and optimize

hydrogen bonding. The optimized structure was then submitted to the PPM server (https://opm.

phar.umich.edu/ppm_server) for orientation into a lipid membrane. The correctly oriented receptor

was then submitted to the CHARMM-GUI Membrane Builder server (http://www.charmm-gui.org) to

build the fully solvated, membrane bound system oriented into a 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphatidylcholine (POPC) bilayer. The system was fully solvated with 40715 TIP3 water molecules

and ionic strength set to 0.15 M KCl. The NAMD input files produced by CHARMM-GUI (Lee et al.,

2016) use a seven-step process of gradually loosening constraints in the simulation prior to produc-

tion runs. A 100 ns molecular dynamics trajectory was then obtained using the CHARMM36 force

field and NAMD (Lee et al., 2016). The resulting trajectory was then processed using the utility

mdtraj (McGibbon et al., 2015), to extract a snapshot of the receptor at each nanosecond of time

frame. These structures were then mutually aligned by fitting the alpha carbons, providing a set of

100 mutually aligned structures used for docking studies. The docking was performed using Auto-

Dock Vina (Trott and Olson, 2010) on each of the 100 snapshots in order to capture receptor flexi-

bility. 3a5aP and 3b5aP were prepared by converting the sdf file from PubChem into a PDB file

using Open Babel (O’Boyle et al., 2011), and Gasteiger charges and free torsion angles were deter-

mined by AutoDock Tools. Docking grid boxes were built for the b3–a1 intersubunit, and the a1 and

b3 intrasubunit sites with dimensions of 15 � 15 � 15 Ångströms encompassing each binding

pocket. Docking was limited to an energy range of 3 kcal from the best docking pose and was lim-

ited to a total of 20 unique poses. The docking results for a given site could result in a maximum of

2000 unique poses (20 poses � 100 receptor structures); these were then clustered geometrically

using the program DIVCF (Meslamani et al., 2009). The resulting clusters were ranked by Vina score

and cluster size, and then visually analyzed. A comparison of proposed NS-binding sites between

the modeled a1b3 GABAAR TMD and the experimentally determined a1b3g2 cryo-EM structure PDB

ID: 6I53 (Laverty et al., 2019) was performed. The two structures were read into UCSF Chimera and

mutually aligned using MatchMaker (Meng et al., 2006). Using the same Vina docking configuration

files discussed above, 3a5aP and 3b5aP were then docked into the respective sites of the a1b3g2

cryo-EM structure. The results are shown in Figure 11 and Figure 11—source data 1; there was

very little difference in the results between the modeled a1b3 and the a1b3g2 cryo-EM structure.
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