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Abstract Evolutionary innovations allow populations to colonize new ecological niches. We

previously reported that aerobic growth on citrate (Cit+) evolved in an Escherichia coli population

during adaptation to a minimal glucose medium containing citrate (DM25). Cit+ variants can also

grow in citrate-only medium (DM0), a novel environment for E. coli. To study adaptation to this

niche, we founded two sets of Cit+ populations and evolved them for 2500 generations in DM0 or

DM25. The evolved lineages acquired numerous parallel mutations, many mediated by

transposable elements. Several also evolved amplifications of regions containing the maeA gene.

Unexpectedly, some evolved populations and clones show apparent declines in fitness. We also

found evidence of substantial cell death in Cit+ clones. Our results thus demonstrate rapid trait

refinement and adaptation to the new citrate niche, while also suggesting a recalcitrant mismatch

between E. coli physiology and growth on citrate.

Introduction
Evolutionary novelties are qualitatively new traits that allow populations to invade previously inacces-

sible ecological niches (Simpson, 1953; Mayr, 1960). Novel traits are thus important drivers of spe-

ciation and adaptive radiations that promote biodiversity and ecological complexity. Indeed, many

major transitions in evolution have been mediated by novel traits such as photosynthesis, multicellu-

larity, endoskeletons, sociality, and cognition (Maynard Smith and Szathmary, 1997,

Lundgren et al., 2016, Erwin, 2017; Erwin, 2019).

We previously proposed a model in which novel traits can evolve in three distinct phases

(Blount et al., 2012). In the potentiation phase, mutations accumulate in a lineage that make it pos-

sible to evolve the trait. In the actualization phase, a specific mutation produces the trait. Newly

evolved traits are typically weak and ineffective. However, if the new trait confers even a slight

advantage, it may spread throughout a population and, in the refinement phase, be improved by

natural selection acting on subsequent mutations.

While potentiation and actualization enable the emergence of a novel trait, the capacity for

refinement affects the trait’s long-term persistence and potential to influence subsequent evolution

(Quandt et al., 2015; Erwin, 2015). Prospects for refinement depend on the capacity to generate
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heritable phenotypic variation that can improve the trait and integrate it with other aspects of organ-

ismal performance (Kirschner and Gerhart, 1998; Pigliucci, 2008), a facet of evolvability that we

call ‘refinement potential’.

Refinement potential is likely crucial for a population’s long-term success in a new niche. A novel

trait might allow a lineage to discover a new niche, but it does not guarantee long-term persistence.

The new conditions may expose the population to selection pressures that differ in important

respects from those of its ancestral niche, resulting in a mismatch between the organism and its envi-

ronment (Yeh, 2004; Schluter and Conte, 2009; Hu et al., 2017). Successful establishment can

depend on ameliorating this mismatch (Chang et al., 2011; Turkarslan et al., 2011), and failure to

further adapt may lead to invasion failures (Zenni and Nuñez, 2013). Adaptation to a new niche

therefore reflects a tension between evolvability and robustness (Lenski et al., 2006). The benefits

of refining a novel trait must outweigh the costs (if any) of integrating that trait into organismal

physiology.

Adaptation to novel niches has been widely studied in the context of invasive species that colo-

nize and adapt to unfamiliar environments (Davis, 2009; MacDougall et al., 2009; Logan et al.,

2019). However, the ongoing refinement of traits that provide access to novel niches has received

little attention, probably because most evolutionary novelties (and associated niche discoveries)

occurred in the distant past and are therefore difficult to study. Experimental evolution allows

researchers to overcome this challenge. It is possible to study evolutionary novelties that arise during

experiments with microbial (Blount et al., 2008; Ratcliff et al., 2012; Barrick and Lenski, 2013;

Kassen, 2019) and digital (Lenski et al., 2003) systems, in which evolution can be studied in real-

time.

One such system is the Long-Term Evolution Experiment with Escherichia coli (LTEE), in which 12

bacterial populations founded from a common ancestral strain have been propagated for >70,000

generations in a glucose-limited minimal medium, DM25 (Lenski et al., 1991). DM25 also contains

abundant citrate, which serves as an iron-chelating agent (Blount, 2016). Many bacteria can grow

aerobically on citrate, but most E. coli strains cannot because they are unable to transport citrate

into the cell (Koser, 1924; Hall, 1982; Reynolds and Silver, 1983; Pos et al., 1998).

Citrate was unexploited as a carbon and energy source in all of the LTEE populations until a Cit+

variant evolved in the population designated Ara�3 after ~31,000 generations (Blount et al., 2008).

The Cit+ trait arose in one of three coexisting lineages in this population by a genetic duplication

that activated a previously unexpressed di- and tricarboxylate transporter (Blount et al., 2012). The

benefit of this duplication mutation was contingent, at least in part, on that lineage’s prior evolution

of an enhanced ability to use acetate excreted into the medium as a byproduct of glucose metabo-

lism. That enhanced ability resulted from a mutation in citrate synthase that altered carbon flow into

the tricarboxylic acid cycle in a manner that was pre-adaptive for growth on citrate (Quandt et al.,

2015). Concurrently, the supply of competing beneficial mutations of large effect declined over time

in the LTEE, allowing the Cit+ lineage to escape competitive exclusion (Leon et al., 2018). The Cit+

trait radically altered this population’s ecology and subsequent evolution (Blount et al., 2008;

Blount et al., 2012; Quandt et al., 2015; Quandt et al., 2014; Turner, 2015; Turner et al., 2015).

Access to the large citrate pool in the medium led to a several-fold increase in population size

(Blount et al., 2008). Nonetheless, a Cit� lineage stably coexisted with the new Cit+ lineage for

some 10,000 generations, before finally going extinct (Blount et al., 2008; Blount et al., 2012;

Turner, 2015; Turner et al., 2015). Even after 70,000 generations, none of the other 11 populations

in the LTEE have evolved the ability to use the available citrate (Blount et al., 2018).

The emergence of Cit+ in the LTEE provides a powerful model system for studying the process of

evolutionary innovation. Cit+ variants can grow not only in DM25, which contains both glucose and

citrate, but also in DM0, a citrate-only medium in which E. coli normally cannot grow. How would

the Cit+ trait be refined if these variants colonized and adapted to this newly accessible citrate-only

environment? To address this question, we founded 12 new, initially clonal Cit+ populations and

allowed them to evolve in DM0 for 2500 generations. We also allowed a second set of 12 popula-

tions to evolve in the original DM25 medium for comparison. We sequenced the genomes of

evolved clones sampled from all 24 populations to find parallel genetic changes that indicate likely

targets of selection (Tenaillon et al., 2016; Deatherage et al., 2017). Among other parallel

changes, we identified numerous IS element insertions and several large gene amplifications. Our

results thus show that genomic structural variation involving transposable elements and

Blount et al. eLife 2020;9:e55414. DOI: https://doi.org/10.7554/eLife.55414 2 of 34

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.55414


amplifications can provide a rich source of plasticity and potential for novel trait refinement and

adaptation to new niches.

We also compared the growth of the DM0-evolved clones to that of their ancestors in both DM0

and DM25, and we examined fitness changes at the level of both whole populations and individual

clones. Although all populations show substantial adaptation reflected in their growth parameters,

we also found evidence of persistent maladaptation, suggesting that this new function poses meta-

bolic challenges that are difficult to overcome evolutionarily. Some individual evolved clones grow

more poorly than their ancestors, even in the medium in which they had evolved. The fitness assays

show atypically large variation across replicate assays of evolved populations and clones, as well as

some paradoxical apparent declines in fitness despite 2500 generations of evolution. We also

observed high levels of cell death in the ancestral and evolved Cit+ clones that we examined. This

experimental system thus sheds light not only on how new traits are refined during adaptation to a

novel niche, but also on how maladaptive phenotypes may persist for long periods in new

environments.

Results

Experimental design and phylogenetic analysis of sequenced strains
We isolated three Cit+ clones (CZB151, CZB152, and CZB154) from the 33,000-generation sample of

the Ara�3 population, and derived spontaneous Ara+ revertants of each clone (ZDB67, ZDB68, and

ZDB69, respectively). We used each of the six clones to found two populations that evolved in the

citrate-only medium (DM0) for 2500 generations and two populations that evolved for 2500
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Figure 1. Experimental design and sequenced clone derivations. We isolated three Cit+ clones (red hexagons) from generation 33,000 of LTEE

population Ara�3. We then derived Ara+ mutants (white hexagons) from those three LTEE clones. We used these six clones to found 24 populations.

Twelve populations evolved for 2500 generations in citrate-only medium, DM0 (cyan lines). The remaining 12 evolved for 2500 generations in glucose

and citrate medium, DM25 (black lines). The evolved clones we isolated after 2500 generations for genomic and phenotypic analysis are shown for each

population.
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generations in the medium containing both glucose and citrate (DM25) as a control (Figure 1).

Evolved clones were isolated from each of the 24 populations at the end of the experiment, and we

sequenced their genomes along with those of the six founding clones. We used these data to iden-

tify mutations that had accumulated during the evolution experiment.

We also used the genomic data to verify the presumed phylogenetic relationships among the

ancestral (including the Ara+ revertants) and evolved clones, in the context of the Cit+ lineage of the

Ara�3 population. This analysis showed that CZB154 is one mutation off the line of descent for the

post-33,000 generation Cit+ lineage in the Ara�3 population, as it subsequently evolved in the LTEE

(Blount et al., 2012). That mutation is a 1 bp deletion (GGGGGG ! GGGGG) in the promoter of

the hypothetical protein-coding gene ECB_03525. CZB151 does not have that mutation, but it pos-

sesses all of the other mutations found in the CZB154 clone, as well as two additional mutations.

One is a C!G transversion that causes a nonsynonymous E181K mutation in the insD transposase.

The other is a deletion of a CGCGG repeat that restores both the reading frame and function to the

pseudogene dcuS (Turner, 2015). The restored gene encodes a histidine kinase that regulates

anaerobic fumarate respiration (The UniProt Consortium, 2017; Jeske et al., 2019). CZB152, by

contrast, belongs to a lineage somewhat farther from the eventual line of Cit+ descent in the Ara�3

population, and it differs from CZB151 and CZB154 by several mutations (Blount et al., 2012).

Genomic analysis also showed that the Ara+ revertant ZDB67 differs from its parent clone, CZB151,

only in the expected restoration-of-function mutation in the araA gene. The Ara+ revertants ZDB68

and ZDB69 have secondary mutations relative to CZB152 and CZB154, respectively, in addition to

the expected mutation in araA. ZDB68 has a C!G transversion that introduces a nonsynonymous

T33I mutation in yfcC, which encodes a predicted inner-membrane protein; and ZDB69 has a 1 bp

deletion in nplI, which encodes a hypothetical protein of unknown function. All 24 evolved clones

evolved in DM0 or DM25 have the mutations that are unique to their ancestors. Therefore, no cross-

contamination that would compromise the independence of the evolved lines took place during the

experiment.

One evolved clone from population DM0�2, ZDBp874, lacks the citT amplification that confers

the Cit+ trait (Blount et al., 2008; Blount et al., 2012). That clone also displays a negative reaction

on Christensen’s Citrate agar, confirming a Cit� phenotype. We therefore sequenced the genome of

a second isolate, ZDBp875, from the same population. We verified that ZDBp875 has the Cit+ trait.

The ZDBp874 and ZDBp875 genomes share only a single derived mutation, an IS150 insertion at the

�35 position of the promoter of yhiO, which encodes universal stress protein B (UspB). The two

clones thus appear to belong to coexisting lineages that diverged early during their evolution in

DM0. We did not discover any additional Cit� variants in the DM0�2 population during a pheno-

typic screen of several hundred clones. Previous work has shown that the citT amplifications are

prone to spontaneous collapse back to a single copy (Blount et al., 2012). This collapse, which pre-

sumably occurs by homologous recombination, eliminates CitT expression and causes reversion to

the Cit� phenotype. The ZDBp874 clone could be either a recent and fortuitously sampled ‘amplifi-

cation collapse’ mutant or a representative of a rare and stably coexisting Cit� lineage in that

population.

Genome evolution is faster in the citrate-only environment than in the
control environment
The populations that evolved in the citrate-only DM0 medium accumulated more mutations than

those that evolved in DM25, which contains both glucose and citrate (Figure 2A vs. Figure 2B). The

DM0-evolved genomes had an average of 19.5 mutations, whereas the DM25-evolved genomes had

an average of 13.7 mutations (Mann-Whitney two-tailed test, p=0.0116). The DM0 genomes had an

average of 3.1 nonsynonymous SNPs in protein-coding genes, as compared to 1.1 on average for

the DM25 genomes. The DM0 genomes also had more IS insertions on average than the DM25

genomes (10.3 vs. 6.6), driven largely by IS150 insertions (8.5 vs. 4.9). The evolved genomes from

the DM0 and DM25 treatments had similarly low average numbers of synonymous mutations (0.1 vs.

0.3), deletions (3.8 vs. 3.8), non-IS insertions (0.8 vs. 0.8), consecutive bp-substitutions (0.1 vs. 0.1),

and SNPs outside of coding regions (1.4 vs. 1.1). The nearly identical numbers of synonymous muta-

tions and SNPs outside protein-coding genes that we see in genomes evolved in DM0 and DM25

imply that the disparities in nonsynonymous mutations and IS insertions between the two conditions

were, at least in part, driven by stronger selection in DM0, as opposed to a higher mutation rate or
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Figure 2. Numbers and types of mutations in evolved genomes. (A) Evolved genomes from the DM0 treatment after 2500 generations. (B) Evolved

genomes from the DM25 treatment after 2500 generations. (C) Evolved genomes in the 10 non-hypermutable LTEE populations after 5000 generations.

Mutations are color-coded according to the key: indel, insertions and deletions (excluding large duplications and amplifications); intergenic, intergenic

point mutations; mobile-element transpositions; multiple-base substitution, consecutive point mutations (including adjacent to and in conjunction with

indels); nonsense, nonsynonymous, and synonymous point mutations in protein-coding genes; pseudogene, mutations in pseudogenes.

The online version of this article includes the following source data for figure 2:

Source data 1. All evolved mutations found in the DM0-treatment and DM25-treatment clones.

Source data 2. Classification and counts of mutations in the 264 LTEE genomes, originally published as Supplementary Table 4 of Tenaillon et al., 2016.
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differences in population dynamics caused by the more stressful DM0 environment (Frenoy and

Bonhoeffer, 2018).

In both resource environments, the spectrum of mutations identified in evolved clones was domi-

nated by structural variation, including insertions, deletions, and mobile element transpositions

(Figure 2A,B). This spectrum is quite different from that observed in the LTEE populations.

Figure 2C shows the number and spectrum of mutations in clones isolated from 10 LTEE popula-

tions after 5000 generations (two other populations had evolved point-mutation hypermutability and

are not shown). Despite having evolved for twice as many generations, the LTEE clones have roughly

similar numbers of mutations as observed in our experiments. The mutational spectrum was domi-

nated by nonsynonymous point mutations in all but one of the LTEE populations, Ara+1. The muta-

tion spectrum in our study is similar to that particular population, which evolved an elevated rate of

IS150 transposition early in its history (Papadopoulos et al., 1999; Tenaillon et al., 2016). It is also

similar to that of a sub-lineage within another LTEE population, Ara�5, which also evolved IS150-

mediated hypermutability, but much later in that experiment (Tenaillon et al., 2016). Most clones

from the DM0 and DM25 treatments also have more deletions than the LTEE clones, again despite

having evolved for fewer generations. These differences suggest some genomic instability in our

study populations, in addition to the high rates of IS150 transposition.

Fitness changes after 2500 generations in DM0 and DM25
environments
We conducted competition assays with evolved population samples to measure their fitness in DM0

and DM25 (Lenski et al., 1991). We had difficulty in obtaining neutral derivatives of ancestral clones

with the opposite Ara marker state, possibly due to genomic instability. We therefore used CZB151

as a common competitor for the Ara+ populations and ZDB67 for the Ara� populations. Regardless

of the environment in which they evolved, the populations display high variance across replicates in

DM0 (Figure 3A), and most exhibit high variance across replicates in DM25 (Figure 3B). Eight of the

12 DM0-evolved populations have average fitness values in DM0 higher than their respective ances-

tral controls, but owing to the high variances, only two cases (DM0–6, DM0+6) appear compelling.

Even in DM25, where the variances are less extreme, only two DM25-evolved populations (DM25–5,

DM25–6) appear a bit more fit than their ancestors, while some DM0-evolved populations (DM0–1,

DM0–2, DM0–5) were clearly less fit in DM25.

We also examined fitness changes in evolved clones relative to their direct ancestors. We only

tested clones from populations for which we were able to obtain neutral ancestral variants with the

opposite Ara marker state. We saw much lower variability across the clonal replicates than we did

for the whole population samples. This reduced variance may reflect in part the higher replication

and longer duration of the assays using clones; it might also be the case that the within-population

genetic variation led to greater variation in the outcome of the whole-population competition assays.

Nonetheless, we still saw inconsistent and paradoxical fitness changes in some clones. Two DM0-

evolved clones (ZDBp880 and ZDBp886) were substantially less fit than their ancestors in DM0. All

DM25-evolved clones except ZDBp913 were also less fit in DM0 (Figure 4A). In DM25, one DM0-

evolved clone (ZDBp880) and one DM25-evolved clone (ZDBp915) were clearly less fit than their

ancestors (Figure 4B).

Changes in growth parameters after 2500 generations in DM0 and
DM25 environments
To assess changes in growth parameters at the end of the evolution experiment, we compared the

growth curves of evolved populations and clones to those of their respective ancestors (Figures 5–

9). To quantify changes in growth parameters more precisely, we estimated the slope of the log-

transformed growth curves over two separate intervals in DM25. In this medium, the Cit+ bacteria

undergo an apparent diauxic shift from growth on glucose to growth on citrate. Therefore, we chose

intervals of optical density (OD) in which the change in OD over time would correspond to the

respective growth rates on those resources. We also estimated the duration of the lag prior to initial

growth on glucose. A schematic of this method is shown in Figure 5. We calibrated the relevant

intervals based on the growth kinetics of two Cit� strains in DM25: the founding LTEE strain, REL606

(Figure 5—figure supplement 1), and the anomalous evolved clone, ZDBp874 (Figure 7—figure
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Figure 3. Fitness of evolved populations and their Cit+ ancestors relative to Cit+ ancestral clones CZB151 and ZDB67 in DM0 and DM25. To show the

difference in scale across panels, dashed gray lines are drawn at 1.0 (neutrality) and 1.5 on the y-axis. Ancestral strain CZB151 and its descendants are

shown in black, CZB152 and its descendants are in orange, and CZB154 and its descendants are in blue. (A) Fitness of evolved and ancestral

populations relative to CZB151 and ZDB67 in DM0, as measured in one-day competition assays. Some confidence limits extend beyond the range

shown on the y-axis. (B) One-day fitness of evolved and ancestral populations relative to CZB151 and ZDB67 in DM25, as measured in one-

day competition assays. Error bars are 95% confidence intervals.

The online version of this article includes the following source data for figure 3:

Source data 1. Colony counts for fitness competitions of evolved populations in DM0 growth medium (Panel A).

Source data 2. Colony counts for fitness competitions of evolved populations in DM25 growth medium (Panel B).
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Figure 4. Fitness of select evolved clones against their direct ancestors in DM0 and DM25. The dashed grey line shows neutrality. Ancestral strain

CZB151 and its descendants are shown in black, CZB152 and its descendants are in orange, and CZB154 and its descendants are in blue. (A) Fitness of

evolved clones relative to their direct ancestors in DM0 in a three-day competition assay. (B) Fitness of evolved clones relative to their direct ancestors

Figure 4 continued on next page
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supplements 1 and 2). In DM0, we estimated the duration of the lag phase and the growth rate on

citrate only.

On balance, the populations evolved higher exponential growth rates and shorter lag phases in

both DM0 and DM25. These demographic changes are consistent with those observed in the LTEE

(Vasi et al., 1994). Indeed, all DM0-evolved populations show improvements in their growth on cit-

rate in both DM0 and DM25 (Figure 6), whereas their growth on glucose in DM25 shows little or no

change. In DM0, the populations also exhibit markedly reduced lags prior to commencing growth

(Figure 6—figure supplements 1 and 2).

We observed substantially more variation in growth parameters among the evolved clones (Fig-

ures 7 and 8) than among the whole-population samples from which they were isolated. In fact,

some evolved clones grow more poorly than their ancestors, as shown by non-overlapping confi-

dence intervals on their growth parameter esti-

mates in Figure 7A. Two CZB151-derived, DM0-

evolved clones, ZDBp871 and ZDBp889, show

little or no improvement in DM0, and they are

markedly worse than CZB151 in DM25. Similarly,

the anomalous Cit� clone, ZDBp874, is not only

unable to grow in DM0, but also grows much

more poorly than its ancestor in DM25 (Fig-

ure 7—figure supplements 1 and 2). All other

DM0-evolved clones grow better than their

ancestors in DM0, and most also grow about as

well as their ancestors in DM25, with the addi-

tional exception of ZDBp901.

Our finding that some evolved clones are sig-

nificantly less fit than their ancestor, along with

the differences in the growth parameters of the

evolved clones and the whole populations,

implies that ecologically relevant genetic varia-

tion exists in both the DM0- and the DM25-

evolved populations. We therefore considered

the possibility that improved growth perfor-

mance on citrate always comes at a cost of

reduced growth on glucose. We used our sepa-

rate estimates of growth rates on glucose and

citrate in DM25 to determine if growth on the

two substrates was correlated. However, we

found no significant correlation between growth

rates on citrate and glucose for either the DM0-

evolved clones or whole populations

(Figure 9A). By contrast, the growth rates mea-

sured on citrate in the two media, DM0 and

DM25, are highly correlated for both clones and

populations (Figure 9B).

Figure 4 continued

in DM25 in a three-day competition assay. Error bars are 95% confidence intervals. We selected clones for fitness assays based only on the availability

of ancestral genotypes with confirmed, neutral, opposing Ara marker states.

The online version of this article includes the following source data for figure 4:

Source data 1. Colony counts for fitness competitions of evolved clones in DM0 growth medium (Panel A).

Source data 2. Colony counts for fitness competitions of evolved clones in DM25 growth medium (Panel B).

lo
g
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4
2

0
)

Time (h)
τ

Figure 5. Schematic of the log-slope method to

calculate growth rates. We loge-transformed optical

densities, and used the slope of the curve in the

interval OD420 nm = [0.01, 0.02] to calculate the

exponential growth rate on glucose (h�1), rglucose. We

used the slope of the curve in the interval OD420 nm =

[0.05, 0.1] to calculate the exponential growth rate on

citrate (h�1) rcitrate. In making this interpretation, we

assumed a diauxic shift between growth on glucose

and citrate, rather than simultaneous growth on both

substrates. In any case, growth rates during these

intervals are relevant phenotypes even without

assuming diauxie. We estimated lag time (t) as the

time (h) until OD420 nm = 0.01 was reached.

The online version of this article includes the following

source data and figure supplement(s) for figure 5:

Figure supplement 1. Growth curves for REL606 in

DM25.

Figure supplement 1—source data 1. Optical density

(420 nm) timeseries for REL606 growth in DM25

medium over more than 24 hr.
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Evidence of cell death in clones isolated from both DM0 and DM25
environments
The contribution of cell death to fitness in the LTEE is generally negligible compared to that of

growth (Vasi et al., 1994). However, we serendipitously discovered evidence of substantial cell

death in cultures of a Cit+ clone sampled from the Ara�3 population of the LTEE at 50,000 genera-

tions. This observation led us to examine the relationship between the Cit+ trait and cell death in

more detail by using fluorescence microscopy (Figure 10). We analyzed five clones: the LTEE ances-

tor, REL606; the 33,000-generation Cit+ clone, CZB151; one of its DM0-evolved descendants,

ZDBp871; one of its DM25-evolved descendants, ZDBp910; and the 50,000-generation Cit+ clone,

REL11364. We labeled cells from 24 hr stationary-phase cultures (i.e., when they would be trans-

ferred to fresh medium in the evolution experiment) using two-color live/dead stains

(Materials and methods).
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Figure 6. Growth parameters for whole-population samples that evolved in DM0 and their Cit+ ancestors. (A) Estimates of various growth parameters

for the ancestral strains and DM0-evolved populations at 2500 generations, using the log-slope method. Ancestral strain CZB151 and its descendants

are shown in black, CZB152 and its descendants are in orange, and CZB154 and its descendants are in blue. Units for growth rates are h�1, and units

for lag times are h. Bias-corrected and accelerated (BCa) bootstrap 95% confidence intervals around parameter estimates were calculated using 10,000

bootstraps. (B) Estimates of log2-transformed ratios of growth parameters for the evolved populations and their ancestors. The growth curves we used

to estimate these parameters are shown in Figure 6—figure supplements 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Optical density (420 nm) timeseries for DM0-evolved populations and their ancestors in DM0 and DM25 growth media.

Figure supplement 1. Growth curves of the 12 DM0-evolved whole-population samples, measured in DM0 and DM25.

Figure supplement 2. Loge-transformed growth curves of the 12 DM0-evolved whole-population samples, measured in DM0 and DM25.
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Proportions of dead cells were calculated for five independent cultures for each clone and

medium combination (except ZDBp910, for which we had problems with growth in DM0 and so

have only one replicate, and REL606, which cannot grow in DM0). Figure 10A shows representative

fields for each clone in DM0 and DM25. Figure 10B shows the resulting estimates of the proportion

of dead cells, along with 95% bias-corrected and accelerated (BCa) bootstrap confidence intervals

(DiCiccio and Efron, 1996) weighted by the number of cells analyzed and scored in the replicate

cultures. On average, 10.7% of the LTEE ancestral cells grown in DM25 were scored as dead in sta-

tionary phase. By contrast, when grown in the same DM25 medium, 29.6% and 39.9% of cells were

scored as dead for the Cit+ clones isolated from LTEE population Ara�3 at 33,000 (CZB151) and

50,000 generations (REL11364), respectively. We observed similarly high proportions of dead cells

for both clones in DM0 as well (33.1% and 44.2% for CZB151 and REL11364, respectively). These

results indicate that the evolution of aerobic growth on citrate in the LTEE was associated with ele-

vated mortality. Moreover, the increased mortality was not remedied even after almost 20,000
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Figure 7. Growth parameters for clones from populations that evolved in DM0 and their Cit+ ancestors. (A) Estimates of growth parameters for the

ancestral strains and DM0-evolved clones sampled at 2500 generations, using the log-slope method. CZB151 and its descendants are in black, CZB152

and its descendants are in orange, and CZB154 and its descendants are in blue. (B) Estimates of log2-transformed ratios of growth parameters for the

evolved clones and their ancestors. The growth curves we used to estimate parameters are shown in Figure 7—figure supplements 1 and 2. We

excluded the anomalous evolved Cit� clone. See Figure 6 for additional details.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Optical density (420 nm) timeseries for DM0-evolved clones and their ancestors in DM0 and DM25 growth media.

Figure supplement 1. Growth curves of the 12 DM0-evolved clones, measured in DM0 and DM25.

Figure supplement 2. Loge-transformed growth curves of the 12 DM0-evolved clones, measured in DM0 and DM25.
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generations since the new trait arose in the Ara�3 population. The two evolved clones we examined

from our evolution experiment, ZDBp871 and ZDBp910, show somewhat different patterns. Both

show lower mortality in glucose-containing DM25 (25.3% and 12.4% for ZDBp871 and ZDBp910,

respectively) but higher mortality in citrate-only DM0 (53.0% and 51.6% for ZDBp871 and ZDBp910,

respectively). The reduced mortality of ZDBp910 in DM25, in which it evolved for an additional 2500

generations, suggests that the apparent metabolic imbalance associated with growth on citrate may

be reduced by evolving in a medium that also contains glucose. It is even more surprising, then, that

we observed no comparable reduction in mortality in the 50,000-generation Ara�3 clone, which

might indicate that historically contingent ecological and genetic interactions are important for this

trait. Moreover, the very high death rate of ZDBp871 in DM0, the medium in which it evolved,
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Figure 8. Growth parameters of the 12 DM25-evolved clones and their 3 Cit+ ancestors. (A) Estimates of growth parameters for each ancestral and

DM25-evolved clone, using the log-slope method (Figure 2). Estimates for ancestral strain CZB151 and its descendants are shown in black, estimates

for CZB152 and its descendants are in orange, and estimates for CZB154 and its descendants are in blue. Units for growth rates r are h�1, and units for

lag times are h. Bias-corrected and accelerated (BCa) bootstrap 95% confidence intervals around parameter estimates were calculated using 10,000

bootstraps; no confidence interval is shown if a parameter could not be estimated accurately from the available data. Aberrant estimates that fall

outside of these ranges are not shown. (B) Estimates of log2-transformed ratios of growth parameters for the evolved clones and their ancestors. The

growth curves used to estimate these parameters are shown in Figure 8—figure supplements 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Optical density (420 nm) timeseries for DM25-evolved clones and their ancestors in DM25 growth medium.

Figure supplement 1. Growth curves of the 12 DM25-evolved clones, measured in DM25 only.

Figure supplement 2. Loge-transformed growth curves of the 12 DM25-evolved clones, measured in DM25.
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suggests that correcting the metabolic imbalance is even more difficult when citrate is the sole car-

bon and energy source.

Specificity of genome evolution in the DM0 and DM25 environments
We found evidence that the DM0 and DM25 environments selected for mutations in different genes.

Following Deatherage et al., 2017, we compared the distribution of ‘qualifying’ mutations—nonsy-

nonymous SNPs, deletions, duplications, and IS insertions that unambiguously affect single genes—

that arose during evolution in each medium. We identified all genes in which we found at least two

qualifying mutations across the 24 evolved Cit+ clones we sequenced. These genes are shown in Fig-

ure 11, where they are ranked by the absolute value of the difference in the number of qualifying

mutations between the DM0 and DM25 conditions.

We then used the method of Deatherage et al., 2017 to quantify the extent of parallelism in

genome evolution within and between the DM0 and DM25 treatments. We computed Dice’s Coeffi-

cient of Similarity, S, for each pair of evolved clones, where S ¼ 2 X \ Yj j= Xj j þ Yj jð Þ. Xj j and Yj j are
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Figure 9. Correlations between estimated growth rates across substrates and media for DM0-evolved clones and populations. All tests are two-tailed,

because growth rates across substrates and media might, in principle, exhibit tradeoffs. (A) Correlations between rglucose and rcitrate in DM25 are not

significant (Pearson’s r = 0.4788, d.f. = 12, p=0.0833 for clones; r = –0.0392, d.f. = 13, p=0.8897 for populations). (B) Correlations between rcitrate in DM0

and rcitrate in DM25 are highly significant (r = 0.7513, d.f. = 12, p=0.0020 for clones; r = 0.8041, d.f. = 13, p=0.0003 for populations). Circles and triangles

indicate ancestral and evolved samples, respectively. Colors distinguish the different Cit+ ancestors and their evolved descendants.

The online version of this article includes the following source data for figure 9:

Source data 1. Optical density (420 nm) timeseries for DM0-evolved populations and their ancestors in DM0 and DM25 growth media.

Source data 2. Optical density (420 nm) timeseries for DM0-evolved clones and their ancestors in DM0 and DM25 growth media.

Blount et al. eLife 2020;9:e55414. DOI: https://doi.org/10.7554/eLife.55414 13 of 34

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.55414


the cardinalities of the sets of genes with qualifying mutations in two clones, and X \ Yj j is the cardi-

nality of the set of genes with mutations in both clones. S thus ranges from 0, when the two clones

have no qualifying mutations in common, to 1, when both clones have qualifying mutations in exactly

the same set of genes. The grand mean similarity, Sm, is 0.135 across the 24 evolved clones. The

mean within-treatment similarity, Sw, is 0.177, meaning that two clones that evolved independently

in the same medium on average have 17.7% of mutated genes in common. By contrast, the mean

between-treatment similarity, Sb, is 0.096, meaning that two clones that evolved in different media

on average have only 9.6% of mutated genes in common. We evaluated the significance of the dif-

ference between Sw and Sb using a randomization test in which clones were permuted across sam-

ples 10,000 times, and the difference between the two measures was calculated for each

Figure 10. Elevated mortality in Cit+ strains. The Cit+ strains exhibit substantially elevated mortality in the citrate-

only DM0 medium; some also show high mortality in DM25 as well. REL606 is Cit� and cannot grow in DM0.

CZB151 was isolated from LTEE population Ara�3 at generation 33,000, and its descendants, ZDBp871 and

ZDBp910, had evolved for 2500 generations in DM0 and DM25 media, respectively. REL11364 was isolated from

LTEE population Ara�3 at generation 50,000. (A) Representative micrographs of the five clones in the two media.

We stained cells using the BacLight Viability Kit, and we scored them as dead if their red fluorescence exceeded

their green fluorescence (see Materials and methods). Scale bars (lower right corner) represent 5 mm. (B)

Proportion of dead cells in five replicate cultures of each strain grown in DM0 and DM25 medium each (except for

ZDBp910, with only one replicate). The wider symbols show estimated overall proportions weighted by the

number of cells analyzed in each replicate culture. We calculated bias-corrected and accelerated (BCa) bootstrap

95% confidence intervals using 10,000 bootstraps (except for ZDBp910), and we weighted by the number of cells

analyzed in each replicate.

The online version of this article includes the following source data for figure 10:

Source data 1. Cell death estimates.

Source data 2. Micrograph image segmentation and classification by SuperSegger software, part 1.

Source data 3. Micrograph image segmentation and classification by SuperSegger software, part 2.
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Figure 11. Parallel genetic evolution. Genes with mutations in two or more sequenced genomes from the DM0- and DM25-evolved populations,

ranked by the absolute value of the difference in the number of qualifying mutations (see main text) between DM0 and DM25. Mutations in the same

genes in the six non-mutator LTEE lineages and in a Cit+ clone from LTEE population Ara�3 (which evolved hypermutability), all at 50,000 generations,

are shown for comparison. Yellow, violet, or red fill indicates the presence of one, two, or three qualifying mutations, respectively. Mutation details are

provided in Supplementary file 5.

The online version of this article includes the following source data and figure supplement(s) for figure 11:

Source data 1. Counts of qualifying mutations in evolved clones.

Source data 2. Presence/absence of dctA and maeA amplifications in evolved clones.

Source data 3. Counts of qualifying mutations in non-mutator LTEE 50,000 generation clones.

Figure supplement 1. Parallel substitutions at the amino-acid level in citrate synthase, GltA.

Figure 11 continued on next page
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permutation. The observed difference between the DM0- and DM25-evolved clones was higher than

in any of the permutations. The greater genomic parallelism within than between environments is

therefore highly significant (p < 0.0001).

Five genes had significantly more parallel mutations in one environment than in the other. Eleven

of the 12 DM0-evolved Cit+ clones had qualifying mutations associated with yhiO, encoding the uni-

versal stress protein UspB, compared to 4 of 12 clones that evolved in DM25 (Fisher’s exact test:

p=0.0094). Similarly, we found qualifying mutations in gltA, which encodes citrate synthase, in 11 of

the DM0-evolved Cit+ clones, whereas only 3 of the DM25-evolved clones had mutations in that

gene (Fisher’s exact test: p=0.0028). The gene encoding isocitrate lyase, aceB, had only one qualify-

ing mutation among the DM0-evolved genomes, but nine in the DM25-evolved genomes (Fisher’s

exact test: p=0.0028). Among the DM0-evolved genomes, there are no qualifying mutations in

menC, which encodes O-succinylbenzoate synthase, but 5 DM25-evolved genomes have mutations

in that gene (Fisher’s exact test: p=0.0373). Six DM0-evolved genomes have qualifying mutations in

the fadL gene, which encodes an outer membrane long-chain fatty acid channel, but none of the

DM25-evolved genomes have mutations in this gene (Fisher’s exact test: p=0.0137). Moreover, we

found nine additional qualifying mutations associated with four other genes (fadA, fadE, fadD, and

fadR) in the fatty-acid degradation regulon among the DM0-evolved genomes, but none in the

DM25-evolved genomes. Mutations in the fad regulon thus show a strong signature of adaptation

specific to the DM0 medium. Thirteen of the 15 qualifying mutations in the fad regulon were mobile-

element insertions.

The environment was much more important than the ancestral genotype in determining the

genetic targets of selection. We found no difference in the total number of qualifying mutations

between the 24 evolved Cit+ clones when grouped by ancestor (i.e., CZB151, CZB152, CZB154)

(Kruskal-Wallis test, p=0.8873). Moreover, by using the same randomization test described above to

test the significance of the difference between Sw and Sb, we found no significant difference based

on ancestral genotype (p=0.5540, based on 10,000 replicates).

We also found five instances of parallel changes at the amino-acid level among the DM0-evolved

genomes. Three of the five occurred in gltA, which encodes citrate synthase: M172I, A162T, I114F.

All three of these substitutions are near the allosteric binding pocket for NADH (Figure 11—figure

supplement 1). Quandt et al., 2015 reported an A162V substitution that likewise affects NADH

binding, and which was previously shown to fine-tune carbon flux through citrate synthase

(Maurus et al., 2003). These three gltA mutations presumably have similar effects. We also saw par-

allel I197L substitutions in ygaF, which encodes a protein that dehydrogenates L-2-hydroxyglutarate

to alpha-ketoglutarate and replenishes the cell’s reduction potential by feeding electrons from this

reaction into the membrane quinone pool (Kalliri et al., 2008). There were parallel S351C substitu-

tions in atoS in ZDBp871 and the anomalous Cit� clone ZDBp874. This gene encodes the sensor

protein of a two-component regulatory system that stimulates short-chain fatty acid catabolism.

Unlike some mutations that might reduce or destroy a protein’s functionality, we expect that these

parallel amino-acid substitutions fine-tune protein function (Maddamsetti et al., 2017).

Contribution of transposable insertion elements to parallel evolution
Notwithstanding the parallel amino-acid substitutions described above, most of the parallel genomic

evolution reflects the activity of IS elements. In both environments, most new IS insertions are copies

of IS150 elements (Figure 12A and B). We compared the number of IS150 insertions in clones

evolved in the two media to the number that had accumulated through 50,000 generations in the

Ara�3 population of the LTEE (Figure 12C). The rates of IS150 insertion accumulation in the Ara�3

population and the DM25-evolved Cit+ populations are comparable, but much lower than in the

DM0-evolved populations. The difference between the DM0- and DM25-evolved genomes is signifi-

cant (Mann–Whitney U test, two-tailed p=0.0089), despite the high variability between genomes

within each group (Figure 2A and B).

Figure 11 continued

Figure supplement 1—source data 1. Annotation of evolved GltA residues on PDB structure 1NXG.
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Figure 12. Parallel IS-element insertions. (A) Counts of parallel IS-element insertions in labeled genes (including promoter and coding regions)

summed across sequenced DM0- and DM25-evolved genomes, and arranged by position on the E. coli chromosome, relative to the inferred last

common ancestor of all strains (Materials and methods). IS1 insertions are shown in pink, IS150 in lavender, IS186 in red, IS3 in black, and ISRSO11 in

green. Some genes contain multiple sites with parallel IS-element insertions. (B) Location of insertions, shown separately for the DM0- and DM25-

evolved genomes. Colors are the same as in panel A. (C) Total number of IS150 insertions in the DM0- and DM25-evolved genomes after 2500

generations. The corresponding numbers of IS-element insertions in clones isolated from LTEE population Ara�3 at time points over 50,000

generations of evolution are shown for comparison. DM0 clones are labeled as brown circles, DM25 clones as pink triangles, and LTEE Ara�3 clones as

tan squares.

The online version of this article includes the following source data for figure 12:

Source data 1. Table of IS-element insertions in evolved genomes.

Source data 2. Table of IS-element insertions in LTEE and Mutation Accumulation Experiment (MAE) genomes, originally published in Tenaillon et al.,

2016.
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Insertions of IS150 into new sites were strongly parallel across the independently evolved popula-

tions within, but not between, the two environments (Figure 12A and B). These systematic differen-

ces led us to hypothesize that the parallel IS insertions reflect the influence of selection, rather than

insertion-site biases (Figure 11, Figure 12B; Tenaillon et al., 2016). We evaluated this hypothesis

by conducting a randomization test for selection-driven parallel IS150 insertions over and above a

null model that assumes only insertion-site preferences (Materials and methods). The most extreme

observed case of parallelism at the base-pair level was an IS150 insertion at the �35 position of the

promoter for yhiO, which encodes the universal stress protein UspB, which happened in 9 of the 12

DM0 genomes (randomization test with 100,000 bootstraps: p=0.014). This test is even more conser-

vative because it excludes two other IS150 insertions affecting this same gene in the DM0 genomes:

an IS150 insertion at the �36 position of the promoter and another IS150 insertion in yhiO itself.

Therefore, we can reject the null hypothesis that site-specific insertion biases alone provide an ade-

quate explanation for the distribution of IS150 insertions. Given the conservative nature of this test,

it is quite possible that some other parallel IS-insertions also indicate positive selection.

Parallel amplification mutations in the DM0- and DM25-evolved
populations
We detected tandem amplifications of large genomic regions, often to high copy-number, in many

DM0- and DM25-evolved clones (Tables 1 and 2, Figure 13). All genomes include amplifications

containing the novel genetic module that evolved during the LTEE, which places one or more copies

of the citT gene under the control of the rnk promoter region, with the exception of the anomalous

Cit� clone ZDBp874 (Table 1). This new rnk-citT module provides access to citrate, and mutations

that increase its dosage improve growth on citrate (Blount et al., 2012; Van Hofwegen et al.,

2016).

Other amplifications include the dctA gene (Table 2). DctA is a proton motive force-driven, gen-

eralized di- and tricarboxylic acid transporter. During growth on citrate, the CitT antiporter protein

exports TCA cycle intermediates into the medium in exchange for citrate. DctA enables recovery of

those intermediates. Two mechanisms of increasing dctA expression have been shown to improve

growth on citrate. Quandt et al., 2014 identified mutations in the dctA promoter that cause high-

level expression. Van Hofwegen et al., 2016 showed that increased copy number of dctA is likewise

beneficial. We found evidence that these two mechanisms are anticorrelated. Two of the ancestral

clones, CZB151 and CZB154, have a shared (identical by descent) mutation in the promoter

sequence of dctA. The third ancestor, CZB152, lacks this mutation. Only one of the 16 evolved

descendants of CZB151 or CZB154 has a dctA amplification, whereas five of CZB152’s eight

descendants have such an amplification (Fisher’s exact test: p=0.0069). Also supporting this anticor-

relation, one of the three CZB152 descendants without a dctA amplification independently evolved

a mutation affecting that gene’s promoter.

We identified another set of parallel amplifications in six evolved genomes. These amplifications

are large and highly variable in extent, but all include at least the fdnI, yddM, adhP, maeA, rpsV, and

bdm genes. These amplifications were often present in high copy numbers. Three DM25-evolved

genomes have 2–13 copies, and three that evolved in DM0 have 28–59 copies (Table 2). In one

case, ZDBp889, the amount of DNA in the amplified region constitutes more than 15% of the total

evolved genome (Figure 13). By contrast, the amplifications of citT and dctA contain an average of

4–5 and 2–3 copies, respectively (Tables 1 and 2).

These long, high-copy-number amplifications must exert a metabolic burden, due to the costs of

additional DNA synthesis and increased gene expression (da Silva and Bailey, 1986; Lenski and

Nguyen, 1988). The repeated evolution of amplifications of this genomic region suggests that they

confer some selective benefit that outweighs their cost. We examined the genes shared among the

amplifications to identify which might confer this benefit. The rpsV gene, which encodes the 30S

ribosomal subunit protein D, appears to have been a minor target for adaptation to DM0 based on

parallel mutations (Figure 11). The maeA gene encodes an NAD+-dependent oxaloacetate-decar-

boxylating malate dehydrogenase (EC 1.1.1.38) that catalyzes the decarboxylation of malate to pyru-

vate. This plausible connection to citrate metabolism led us to hypothesize that increased maeA

dosage and expression provides the benefit that overcomes the cost imposed by the amplifications.
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Increased MaeA expression is highly beneficial in the citrate-only
environment
We tested our hypothesis that increased maeA dosage confers a fitness benefit by transforming the

ancestral strains CZB151 and CZB152 with a low-copy plasmid, RM4.6.2, which contains a copy of

maeA that is under the control of a strong constitutive synthetic promoter and ribosome-binding

site. These Ara� RM4.6.2 transformants were competed in DM0 against Ara+ mutants (ZDB67 and

ZDB68, respectively) of the same clones transformed with the empty-plasmid control. The RM4.6.2

transformants had a fitness advantage of ~28% in both the CZB151 (n = 6; mean fitness = 1.2790, t-

distributed 95% confidence interval: [1.2636, 1.2944]) and CZB152 (n = 6; mean fitness = 1.2778, t-

distributed 95% confidence interval: [1.2597, 1.2959]) backgrounds relative to their otherwise iso-

genic competitors. Overexpression of maeA is therefore highly beneficial in the DM0 environment,

and its benefit likely explains the high-copy-number amplifications containing maeA found in many

evolved clones.

Table 1. Copy number of amplified citT genes in sequenced clones.

Genome Medium Mean copy number Minimum copy number* Maximum copy number*

CZB151 DM25 4.21 3.39 5.47

CZB152 DM25 8.23 5.17 11.46

CZB154 DM25 4.14 1.72 9.83

ZDBp871 DM0 2.82 1.70 4.26

ZDBp875 DM0 11.37 8.05 14.93

ZDBp877 DM0 7.68 3.66 11.33

ZDBp880 DM0 3.82 1.79 5.93

ZDBp883 DM0 5.08 1.88 12.81

ZDBp886 DM0 4.76 2.27 6.88

ZDBp889 DM0 4.66 2.90 7.11

ZDBp892 DM0 5.69 2.21 8.76

ZDBp895 DM0 5.30 2.13 8.51

ZDBp898 DM0 6.14 2.77 9.73

ZDBp901 DM0 3.91 1.83 5.64

ZDBp904 DM0 3.84 1.78 5.68

ZDBp910 DM25 4.71 2.40 6.47

ZDBp911 DM25 3.13 1.58 5.01

ZDBp912 DM25 8.93 4.51 13.41

ZDBp913 DM25 4.83 2.68 6.94

ZDBp914 DM25 4.11 2.03 6.17

ZDBp915 DM25 3.31 1.78 5.19

ZDBp916 DM25 4.87 2.67 6.95

ZDBp917 DM25 3.20 1.77 4.63

ZDBp918 DM25 3.66 1.88 5.18

ZDBp919 DM25 2.91 2.06 3.81

ZDBp920 DM25 3.92 2.08 5.49

ZDBp921 DM25 5.76 2.93 9.15

*These bounds indicate the ratio of the minimum and maximum sequencing coverage measured at the citT locus to the mean coverage over the genome.

In all cases, the estimated copy number is significantly greater than one at p<0.0001, even after Bonferroni corrections for multiple tests of the same

hypothesis.

The online version of this article includes the following source data for Table 1:

Source data 1. Copy number of amplifications affecting citT, dctA, and maeA in the ancestral and evolved clones.
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We used RNA-Seq to verify that clones with maeA-containing amplifications have elevated tran-

scription of that gene. We compared the transcriptomes of two ancestral clones (CZB151 and

CZB152) and two DM0-evolved clones with maeA amplifications (ZDBp883, ZDBp889). Both evolved

clones do, indeed, have much higher levels of maeA expression than their respective ancestors

(Figure 14).

Despite the large fitness advantage conferred by increased maeA dosage in the citrate-only DM0

environment, most of the evolved Cit+ genomes we examined do not have maeA amplifications.

Moreover, although three of the DM25-evolved genomes in this study have large maeA amplifica-

tions (Table 2), none have been found in the sequenced genomes of Cit+ clones isolated from the

Ara�3 parent population in the LTEE itself. This discrepancy might be explained by the evolution of

increased maeA expression via other mutations. To evaluate this possibility, we also used RNA-Seq

to examine the transcriptome of ZDBp877, a DM0-evolved clone without a maeA amplification. In

contrast to ZDBp883 and ZDBp889, ZDBp877 expresses maeA at a level similar to that of the ances-

tral clones (Figure 14). This finding means that at least some, and perhaps all, of the evolved clones

without maeA amplifications lack mutations that boost its expression.

Transcriptomic analysis of DM0-evolved clones
We identified other potentially adaptive differences in transcription between the DM0-evolved

clones during growth in the DM0 medium (Figure 14). The two evolved clones with maeA amplifica-

tions, ZDBp883 and ZDBp889, both show increased expression of the fad fatty acid b-oxidation reg-

ulon, whereas ZDBp877, which lacks a maeA amplification, does not. ZDBp877 and ZDBp889, but

not ZDBp883, both downregulate the cytochrome bo3 terminal oxidase complex, cyoABCD. We also

found three genes with more extreme differential expression than maeA between the clones with

and without the maeA amplification. These genes are dinI, gltS, and ECB_03510, all three of which

are strongly downregulated in ZDBp877 in comparison to both clones with the amplification. DinI is

a DNA-damage inducible protein that regulates the SOS response. GltS is a glutamate/sodium

Table 2. Copy number of amplified maeA and dctA genes in sequenced clones from populations that evolved for 2500 generations

in either DM0 or DM25 environments.

Genome Medium Gene Mean copy number Minimum number* Maximum number* Adjusted p-value†

ZDBp880 DM0 dctA 2.33 1.67 3.26 <0.0001

ZDBp886 DM0 dctA 3.20 1.88 4.25 <0.0001

ZDBp898 DM0 dctA‡ 2.09 1.71 2.76 0.0023

ZDBp913 DM25 dctA 3.17 1.91 4.68 <0.0001

ZDBp918 DM25 dctA 3.41 1.80 5.19 <0.0001

ZDBp919 DM25 dctA 2.60 2.06 3.29 <0.0001

ZDBp883 DM0 maeA 58.47 22.61 95.46 <0.0001

ZDBp889 DM0 maeA 34.71 2.35 55.39 <0.0001

ZDBp904 DM0 maeA 28.08 15.30 44.72 <0.0001

ZDBp911 DM25 maeA 2.22 1.54 3.39 <0.0001

ZDBp917 DM25 maeA 4.72 3.56 6.18 <0.0001

ZDBp919 DM25 maeA 12.81 2.16 18.00 <0.0001

*These bounds indicate the ratio of the minimum and maximum sequencing coverage measured at the indicated locus to the mean sequencing coverage

over the genome.
†Significance levels are shown after Bonferroni corrections for multiple tests of the same hypothesis.
‡There may be two discontinuous amplifications of dctA in this genome, or there may be a single continuous amplification with a short region of low cover-

age within the gene. The second region of amplification has a similar copy number. We present data for only one region, which provides a conservative

estimate of the overall statistical significance in this case.

The online version of this article includes the following source data for Table 2:

Source data 1. Copy number of amplifications affecting citT, dctA, and maeA in the ancestral and evolved clones.
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symporter, while ECB_03510 encodes a protein of unknown function that lies immediately down-

stream of gltS.

These differences aside, we found largely similar changes in gene expression across the three

DM0-evolved clones relative to their ancestors (Figure 14). All three display strong downregulation

of the UspB stress protein encoded by yhiO, presumably caused by the parallel IS150 insertions into

that gene’s promoter. We also found extensive downregulation of genes encoding ribosomal pro-

teins (including rpsB, rpsU, rpsO, rpsT, rplE, rplJ, rplN, and rplX); genes involved in RNA transcrip-

tion (rpoA, rpoB, rpoC, rpoS, rho); and DNA-replication associated genes (gyrA). Other down-

regulated genes in the evolved clones include the nuo operon, which encodes NADH

Figure 13. Genetic amplifications in evolved clones. Genomic regions with significant amplifications in DM0- and DM25-evolved clones, arranged by

chromosomal position. The evolved clones from DM0 (top half) and DM25 (bottom half) are indicated at the near left, with the total amplified length

shown at the far left. Dashed vertical lines mark the maeA and dctA loci. The boundaries vary among the subset of genomes with amplifications that

encompass these genes; by contrast, the citT locus is amplified in all of these genomes, and with nearly uniform boundaries. Colors denote

amplification copy-number on a log2 scale from dark (low copy-number) to light (high copy-number).

The online version of this article includes the following source data for figure 13:

Source data 1. Table of amplifications discovered by examining sequencing coverage in evolved genomes.

Blount et al. eLife 2020;9:e55414. DOI: https://doi.org/10.7554/eLife.55414 21 of 34

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.55414


C
Z

B
1

5
2

_
1

C
Z

B
1

5
2

_
2

C
Z

B
1

5
1

_
4

C
Z

B
1

5
1

_
3

C
Z

B
1

5
1

_
1

C
Z

B
1

5
1

_
2

Z
D

B
p

8
7

7
_

3

Z
D

B
p

8
7

7
_

4

Z
D

B
p

8
8

3
_

4

Z
D

B
p

8
8

3
_

3

Z
D

B
p

8
8

3
_

1

Z
D

B
p

8
8

3
_

2

Z
D

B
p

8
8

9
_

2

Z
D

B
p

8
8

9
_

1

Z
D

B
p

8
8

9
_

3

Z
D

B
p

8
8

9
_

4

glpD

fadD
glpA
glpB

fadE
dctA
gltS

fadA
fadH
fadB
rpsV
glpT
glpC

sucC
rpoC
rpoA
rpoB
rpsB
rplE
cyoE
rplJ

ECB_03510
cyoB
cyoA

sucB
rpoS

rho
fadR
sulA
chpA
chpR

csiE
sbmC
recA
maeA
recN
yhiO
rpsO
rpsT
rplX
cyoD
cyoC
gyrA
rpsU
rplN

dinI
ECB_00826
ECB_00827

umuD
umuC
dinD

0

2

4

6

8

10

12

14

Figure 14. Transcriptomic analysis of ancestral and evolved clones. Differential expression analysis comparing two ancestral (CZB151 and CZB152) and

three evolved clones (ZDBp877, ZDBp883, ZDBp889), produced by sleuth (Pimentel et al., 2017). The colored bar (at right) shows the level of RNA

expression based on estimated counts and transformed as log2(1 + est_counts). The differentially expressed genes discussed in the main text are

Figure 14 continued on next page
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dehydrogenase in the respiratory electron transport chain, and key TCA cycle genes including those

encoding the 2-oxoglutarate dehydrogenase complex (sucB, sucC, and lpdA). By contrast, we see

strong upregulation of genes encoding certain prophage-associated proteins (ECB_00826 and

ECB_00827); some toxin-antitoxin pairs (chpA-chpR); proteins involved in recombinational DNA

repair (recA and recN); SOS response proteins (dinD, sulA, umuC, and umuD); proteins associated

with stationary phase (csiE and sbmC); a biofilm-associated stress protein (bhsA); and others of

unknown significance (Supplementary file 3).

The downregulation of transcription, translation, and NADH dehydrogenase genes and the

increased expression of stress-associated genes suggest that adaptation to DM0 involved reducing

growth rate (relative to the faster growth on glucose), presumably to achieve balanced growth on

citrate alone. The upregulation of fatty-acid b-oxidation genes (albeit less so in the ZDBp877 clone

without the maeA amplification) also indicates some remodeling of the connection between fatty

acid and citrate metabolism that is mediated by acetyl-CoA. Other changes, including the upregula-

tion of the fad operon encoding fatty acid degradation in ZDBp883 and ZDBp889, the anaerobic

glycerol-3-phosphate dehydrogenase operon (glpABCD) in ZDBp877 and ZDBp889, and the glyc-

erol-3-phosphate transporter (glpD and glpT) in ZDBp883 (Supplementary file 3), suggest adapta-

tion to scavenging on dead and dying cells in the DM0 populations.

Discussion
It is rarely feasible to examine evolution in action as organisms invade, colonize, and adapt to a new

niche in nature, especially with independently evolving replicates and control populations. In this

study, we investigated how E. coli variants with the new ability to grow aerobically on citrate

adapted to a novel, citrate-only resource environment in the laboratory. We examined the genomic

and phenotypic evolution of 12 initially clonal populations after 2500 generations in this new environ-

ment, along with 12 initially identical control populations maintained for the same time in the ances-

tral environment that contains glucose as well as citrate, to better understand their post-invasion

potential, including refinement of the Cit+ trait.

The founding clones grew poorly in their new medium, exhibiting long lag phases, slow growth,

and high variation in their growth kinetics. However, those founding clones had substantial potential

to adapt to citrate as their sole carbon and energy source, as the experimental populations evolved

shorter lag times and faster growth rates in DM0. The evolved populations also showed correlated

improvements in the ancestral glucose-citrate medium, DM25. These changes are consistent with

selection pressures typical for evolution experiments that use a serial batch-culture regime like that

of the LTEE (Vasi et al., 1994), upon which our experiment was based. In contrast to the LTEE, but

consistent with other lines of evidence that growth on citrate is stressful for E. coli, the growth-curve

trajectories and even stationary-phase optical densities exhibited substantial variability for replicate

assays performed using the same population sample. Assays of competitive fitness over the same 24

hr transfer cycle also showed extreme variability, especially in DM0, making it difficult to reliably esti-

mate overall fitness gains. Increasing the duration and replication of the fitness assays should help

reduce this variation in future work. Nonetheless, our difficulty in measuring adaptation in this sys-

tem is striking in contrast to the ease of doing so in the LTEE (Lenski et al., 1991; Wiser et al.,

2013). It is also possible that other demographic components of fitness besides shorter lag times

and faster growth rates are at play in this citrate-based system. Indeed, we observed extensive cell

death in Cit+ clones, and the level of mortality varied considerably even between replicate assays for

reasons that we do not understand.

The evolved clones exhibit even greater variation in their growth phenotypes. While most have

faster growth rates and shorter lag times, similar to the improvements observed at the population

level, some evolved clones grow only slightly better, or even worse, than their ancestors. Similarly,

Figure 14 continued

shown here. The numeric labels after the strain identifiers indicate the two or four biological replicates for each clone (i.e., RNA samples prepared from

independently revived cultures of that clone).

The online version of this article includes the following source data for figure 14:

Source data 1. RNA transcript quantification using kallisto software.
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most evolved clones show no significant increase in fitness, and some are less fit than their ancestor,

even in the environment where they evolved. In some cases, the fitness estimates are discordant

with measured growth characteristics. For example, one clone from a population that evolved in

DM25 (ZDBp917) has a lag time far longer than its ancestor, yet it has a marginally higher fitness.

Complex ecological interactions between genotypes might explain such discordant outcomes

between competitive fitness assays and growth parameters estimated in pure culture. For example,

non-transitive competitive interactions can give rise to evolved clones that are more fit than their

immediate predecessors, but less fit than their earlier ancestors (Paquin and Adams, 1983;

Buskirk et al., 2019). We cannot exclude the possibility of non-transitive dynamics in our system at

this time, but we note that they have not been observed in the LTEE on which our experiments are

based (de Visser and Lenski, 2002; Lenski, 2017). A more likely alternative is that the paradoxical

changes in fitness and growth are caused, in part, by cross-feeding and similar negative frequency-

dependent interactions. The ancestral clones, for example, might be better at invading some of the

evolved communities than they are at growing alone in the same medium. Similarly, some evolved

clones with paradoxical growth phenotypes might be specialized ecotypes that have adapted to

unknown niches, such as scavenging on dead cells or cross-feeding on metabolites produced by

coexisting lineages (Turner et al., 1996; Rozen et al., 2009; Velicer and Mendes-Soares, 2009;

Le Gac et al., 2012; Maddamsetti et al., 2015; Good et al., 2017). We will investigate the possibil-

ity of complex ecological interactions in future work.

Genomic plasticity reflecting copy-number variation and transposable-element activity played a

key role in adaptation to the citrate niche. These findings support and extend previous work showing

the importance of such plasticity in adaptation to other selective challenges (Chang et al., 2013;

Vandecraen et al., 2017; Press et al., 2019; Lauer and Gresham, 2019), including the rapid evolu-

tion of antibiotic heteroresistance in some pathogens (Nicoloff et al., 2019). Our work especially

bolsters previous demonstrations of the evolutionary importance of dynamic gene amplifications,

which increase the dosage of genes encoding specific products needed at higher levels

(Patrick et al., 2007; Andersson and Hughes, 2009). For example, Blank et al., 2014 found that E.

coli strains with single-gene knockouts rapidly re-evolved the capacity to grow in minimal medium in

part via amplifications that increased genome size by more than 20%. Such amplifications may also

impose substantial metabolic costs, and they are prone to recombination-mediated collapse, so they

are readily lost when the relevant gene products are no longer needed at higher levels. Amplifica-

tions also increase the opportunity for further mutations that may provide a benefit for a single

copy, thereby favoring subsequent collapse and elimination of the cost of multiple copies

(Andersson and Hughes, 2009; Brennan et al., 2015; Näsvall et al., 2012). In addition to their role

as substrates for promoting amplifications, IS elements seem to have both inactivated and modu-

lated the expression of various genes in our evolution experiment. The activity of some IS elements

appears to be increased by stress, which cells may experience when they invade a new niche to

which they are poorly adapted (Vandecraen et al., 2017). Of course, this plasticity is a double-

edged sword: the genomic instability that transposable elements cause can also produce deleterious

mutations, which could impede adaptation and might even lead to extinction, especially when small

founding populations invade a new niche.

Altogether, our results have several nuanced implications for evolution following the innovation-

driven discovery of new niches. They suggest that genomes often possess latent potential to refine

novel traits and adapt to new niches. This potential can be fulfilled not only by point mutations, but

also via larger mutations such as gene amplifications and transpositions that may allow more rapid

adaptation after niche discovery. Despite such adaptation, however, suboptimal traits may persist

long after the new niche has been successfully invaded. In our study, the evolved Cit+ bacteria’s

physiology shows an evolutionary mismatch with their growth on the newly accessible citrate, even

after thousands of generations of adaptation to that new niche. Evidence for the mismatch includes

erratic growth trajectories and fitness measures that suggest extreme sensitivity to small differences

in the environment, the identity of competitors, or both. It is also seen in the high levels of mortality

during stationary phase in some Cit+ clones, as shown using live-dead staining of cells. Further evi-

dence comes from analyses of transcriptomic data, which shows that some Cit+ lines evolved

increased expression of stress-associated genes during exponential phase. Thus, while a nascent

ecotype’s latent potential for adaptation may allow its establishment in a new niche (especially in the
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absence of established competitors), it may nonetheless continue to experience stress and suffer

from suboptimal phenotypes for a long time before becoming truly well suited to its new conditions.

Our findings also highlight that the fact that organisms are historically contingent patchworks of

traits and functions constructed by evolutionary tinkering, and so they are rife with design compro-

mises (Pittendrigh, 1958; Tinbergen, 1965; Jacob, 1977). Natural selection integrates these com-

plex assemblies into idiosyncratic, but usually robust and stable, biological systems. This stability can

be disrupted, however, such as when a novel trait that is beneficial, on the whole, nonetheless gen-

erates new stresses. These secondary tradeoffs are also implicit in Fisher’s geometric model of adap-

tation, in which mutations of large effect, including those that produce new functions, are especially

likely to disrupt other phenotypes (Fisher, 1930; Orr, 2000). We have shown that such disruptions

can persist for thousands of generations, which implies that re-evolving a stable, robust system in

which a novel trait is fully integrated with the preexisting physiology can be difficult.

Organisms typically maintain their physiological systems at a dynamic steady state. This homeo-

stasis implies that organisms have evolved to maintain physiological variables within an acceptable

range in the face of perturbations (Albergante et al., 2014). Failure to maintain homeostasis may

result in illness and even death. Viability is sometimes possible outside the usual range of homeosta-

sis, but often at the cost of stress and lasting damage to the organism. Our findings imply that the

disruptions caused by evolutionary novelties can maladaptively change the system parameters that

maintain homeostasis, thereby causing stress and increasing mortality. Many questions remain about

the nature and consequences of these homeostatic disruptions, as well as how novel traits might

eventually become well integrated with an organism’s existing physiology to restore its prior

homeostasis.

Our experimental system has the potential to address these and other questions about innova-

tion, adaptation, and maladaptation that are relevant to both evolutionary biology, in general, and

evolutionary medicine, in particular. In humans, for example, cultural innovations, including the agri-

cultural revolution, have vastly reshaped our diets and thereby also changed our gut microbiota

(McMichael et al., 2007; David et al., 2014). Contemporary high-calorie diets and sedentary life-

styles have led to an epidemic of associated illnesses, including hypertension, diabetes, and obesity.

Might new traits typically exhibit more phenotypic variation, reflecting greater sensitivity to intrinsic

stochasticity, lower robustness to environmental perturbations, or both? If growth on citrate by E.

coli required major changes in physiology and metabolism, then that innovation may have increased

fragility due to new difficulties in coordinating cell growth and division (Scott et al., 2014;

Schaechter, 2015). By disrupting existing physiological and metabolic processes, innovations can

introduce new compromises and imbalances, the resolution of which requires novel variation. That

new variation may, in turn, affect correlated traits and the organism’s overall robustness. We conjec-

ture that the evolutionary refinement of traits that open new niches may often promote evolvability

at the expense of robustness and overall good health (Lenski et al., 2006).

Materials and methods
Key resources are listed and described in Supplementary file 1: Key Resources Table.

Evolution experiment
We previously isolated three random Cit+ clones, designated as CZB151, CZB152, and CZB154,

from the 33,000-generation sample of LTEE population Ara�3 (Blount et al., 2008). We also iso-

lated spontaneous Ara+ revertants for each clone, designated as ZDB67, ZDB68, and ZDB69, respec-

tively. For long-term preservation, we inoculated Luria Bertani (LB) broth with isolated colonies of

each clone and its revertant, grew them overnight at 37˚C with orbital shaking at 120 rpm, and froze

samples of each at �80˚C with glycerol as cryoprotectant. We revived the clones and revertants

from the frozen stocks and grew them in LB overnight. We then diluted the LB cultures 10,000-fold

into 9.9 mL of Davis Mingioli (DM) minimal medium supplemented with 25 mg/L glucose (DM25),

and grew them at 37˚C with orbital shaking at 120 rpm. After 24 hr, we diluted these cultures 100-

fold in 9.9 mL of fresh DM25 and grew them for another 24 hr. This preconditioning acclimated the

bacteria to growing on citrate. The preconditioned cultures were then diluted 100-fold into 9.9 mL

of base DM medium (DM0), which lacks any glucose but contains 1 g/L (1,700 mM) of citrate for car-

bon and energy. We started two replicate populations from each LTEE-derived clone and each
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revertant, for a total of 12 DM0 populations. At the same time, we inoculated 12 populations into

DM25 (Figure 1). We maintained these DM25 populations at 37˚C with orbital shaking, and trans-

ferred them by 100-fold dilution into fresh DM25 every 24 hr (i.e., the same conditions as in the

LTEE) for 375 transfers and 2500 generations in total. The founding Cit+ clones grow poorly in the

citrate-only resource environment. They were unable to reach stationary phase or, in some cases,

exponential phase within 24 or even 48 hr. We therefore incubated the DM0 populations for 72 hr

after their initial inoculation so they could reach stationary phase before transfer to fresh medium.

We then diluted them 100-fold into 9.9 mL of DM0 every 48 hr for seven cycles (two weeks), and

then subsequently every 24 hr for a total of 375 transfers and 2500 generations. Every 37 days (~250

generations) samples of each population were frozen with glycerol at �80˚C.

Isolation of evolved clones
We revived each evolved population sample by inoculating 100 mL of the stock frozen at generation

2500 into 9.9 mL of LB broth and incubating overnight at 37˚C with orbital shaking. We then diluted

the revived DM0- and DM25-evolved populations 10,000-fold in 9.9 mL of DM0 or DM25, respec-

tively, and grew them for 24 hr at 37˚C with orbital shaking, followed by 100-fold dilution into fresh

DM0 or DM25 and another 24 hr period of growth at 37˚C with orbital shaking. We then diluted

each population 100,000-fold in 0.85% saline and spread 100 mL on an LB agar plate marked with

three dots on the bottom. We streaked the colony closest to each dot on an LB plate after 48 hr of

incubation at 37˚C, thereby providing three randomly chosen clones from each population. We then

inoculated an isolated colony of each clone into LB broth, grew it overnight, and froze it as before.

Fitness assays
We measured fitness by performing competition experiments modified from those described by

Lenski et al., 1991. We revived samples by inoculating 15 mL (for clones) or 100 mL (for whole popu-

lations) from a slightly thawed frozen stock into 10 mL of LB. These cultures then grew overnight at

37˚C with 120 rpm orbital shaking, after which we diluted each 10,000-fold into either DM25 or DM0

and preconditioned as described above. We inoculated 50 mL of each competitor’s preconditioned

culture into 9.9 mL of the corresponding medium, vortexed to mix, and then we spread 100 mL of

10�2 and 10�3 dilutions on Tetrazolium Arabinose (TA) indicator agar plates to estimate the compet-

itors’ initial densities. We estimated their densities again at the end of the assay by spreading 100

mL of 10�4 and 10�5 dilutions on TA plates. For whole populations, we assayed fitness with 3-fold

replication in one-day competitions, in which final densities were estimated after 24 hr. For the

evolved clones, we assayed fitness with 5-fold replication, and measured final densities after 3 days,

with 100-fold serial transfers to fresh medium after 24 and 48 hr. The realized growth rates of the

two competitors were determined from their starting and ending densities, accounting for the dilu-

tions. We calculated the fitness of an evolved clone or population as its realized growth rate divided

by that of the ancestral competitor. In the population fitness assays, ZDB67 was the common com-

petitor for all Ara� population samples, and CZB151 was the common competitor for all Ara+ popu-

lation samples.

Growth curves
We chose one of the three evolved clones from generation 2500 from each DM0 or DM25 popula-

tion, then revived and preconditioned it in DM0 or DM25 as described above. We diluted the cul-

tures 100-fold into 9.9 mL of DM0 or DM25, vortexed, and dispensed six 200 mL aliquots of each

culture into wells in a 96-well plate. We randomized well assignments for the cultures to minimize

position effects. We measured optical density (OD) at 420 nm wavelength every 10 min for 48 hr

using a Molecular Devices SpectraMax 384 automated plate reader. We discarded the measure-

ments taken before 30 min from our analysis.

Microscopy and cell viability analyses
We performed microscopy and viability analyses on cells derived from five clones: the LTEE ancestor

(REL606); one of the three Cit+ ancestors in our evolution experiment (CZB151); two of its descend-

ants that evolved in DM0 and DM25 for 2500 generations (ZDBp871 and ZDBp910, respectively);

and a Cit+ clone isolated at generation 50,000 of the LTEE (REL11364). We revived clones from the
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frozen stocks and preconditioned them as described above, except that the preconditioning steps in

DM0 or DM25 were extended to four daily passages to ensure acclimation to these environments.

We performed preparations for live/dead cell staining and microscopic analyses on the fifth day. In

these preparations, we concentrated the cells in each culture by centrifugation at 7,745 g for 8 min

and decanted the supernatant. We then resuspended the cell pellets in Corning tubes containing 10

mL of 0.85% saline, and incubated them at room temperature for 1 hr; we inverted the tubes every

15 min. We then centrifuged these cultures for an additional 8 min, decanted the supernatant, and

resuspended the cell pellets in 0.85% saline. We adjusted the volume of saline based on variation in

turbidity to ensure that we had sufficient cells in a typical field of view for microscopy. We examined

14–55 fields per replicate for each combination of strain and media treatment. Total cell counts

ranged from approximately 15,000 to 60,000 for the various combinations of clones and culture

media.

We used the LIVE/DEAD BacLight Viability Kit for microscopy (ThermoFisher #L7007), following

the manufacturer’s directions for fluorescently labeling cells. In short, we mixed components A and

B in equal amounts, added 1 ml to each culture containing resuspended cells, and incubated them

for 20 min in the dark to prevent photobleaching. After labeling, we fixed 3 mL of each sample onto

a 1% agarose pad and performed fluorescent microscopy using a Nikon Eclipse Ti inverted micro-

scope. Phase-contrast images were taken using diascopic illumination with an exposure time of 100

ms. Fluorescence was measured with an exposure time of 200 ms at 25% power of the fluorescent

light source using two filter sets, 49003-ET-EYFP and 49008-ET-mCherry Texas Red (Chroma), which

correspond to the fluorescence spectra of ‘live’ and ‘dead’ cells, respectively. All images were taken

at 100� magnification.

We analyzed micrographs using SuperSegger, an image-processing package (Stylianidou et al.,

2016). We first filtered the data, keeping only those values for segmented regions in the micrograph

that were scored by the neural-network classifier as having P(Cell = True) > 75%. (Region scores

range between �50 and 50, so we used data only from regions with values between 25 and 50). We

then used the fluorescence values from the SuperSegger output and scored individual cells as ‘live’

or ‘dead’ depending on whether the fluorescence signal on the green (YFP) channel was greater or

lesser, respectively, than the signal on the red (RFP) channel. We calculated the proportion of dead

cells across the many fields examined for each of the five replicate cultures that we analyzed for

each combination of clone and growth medium, and we used these values in the statistical analyses.

Genomic analysis and copy-number variation
We thawed the 3 Cit+ founder strains (CZB151, CZB152, CZB154), their respective Ara� derivatives

(ZDB67, ZDB68, ZDB69), and 25 evolved clones (one Cit+ clone from each DM0 and DM25 evolved

population, plus the anomalous Cit� clone ZDBp874) and grew them overnight in LB broth. We iso-

lated genomic DNA from each sample using the Qiagen Genomic-tip 100/G DNA extraction kit. The

genomic DNA was then sequenced using the platforms in the core facilities shown in

Supplementary file 4.

For genomes sequenced at UT Austin, we purified DNA from E. coli cultures using the PureLink

Genomic DNA Mini Kit (Invitrogen). For each sample, we fragmented 1 mg of purified DNA using

dsDNA Fragmentase (New England Biolabs). We then used the KAPA Low Throughput Library Prep-

aration kit (Roche) to construct Illumina sequencing libraries according to the manufacturer’s instruc-

tions with two exceptions. First, we reduced reaction volumes by half. Second, we designed DNA

adapters that incorporate additional 6-base sample-specific barcodes such that the barcodes are

sequenced as the first bases of both read 1 and read 2. We performed paired-end sequencing with

300-base reads on an Illumina MiSeq at the University of Texas at Austin Genome Sequencing and

Analysis Facility. Reads were demultiplexed using a custom python script. We trimmed barcodes

and adapter sequences using Trimmomatic version 0.38 (Bolger et al., 2014).

When available, we combined short-read data from different platforms before mutation identifi-

cation. We identified mutations using breseq version 0.33.2 (Deatherage and Barrick, 2014). We

used a bash script called ‘generate-LCA.sh’ to infer the last common ancestor (LCA) of all evolved

strains by taking the intersection of mutations found in previously curated genomes for CZB152 and

CZB154; those curated founder genomes (and others) are available at: https://github.com/bar-

ricklab/LTEE-Ecoli (Barrick, 2015). We further analyzed the mutations called by breseq relative to
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the LCA using custom python and R scripts available and described at: https://github.com/rohan-

maddamsetti/DM0-evolution (Maddamsetti, 2019).

We used the following algorithm to find copy-number variation in the genomes. The breseq pipe-

line models 1� copy number using a negative binomial distribution fit to coverage, truncating high

and low coverage that might be caused by amplifications and deletions, respectively. We then iden-

tified all positions in the genome that rejected that negative binomial at an uncorrected p = 0.05.

Finally, we calculated a Bonferroni-corrected p-value for contiguous stretches of the genome in

which the 1� null model was rejected at each site. We examined coverage at sites separated by the

maximum read length to ensure they were not spanned by a single read. For example, in the case of

a region of elevated coverage that was 1000 bp in length, covered by 150-base Illumina sequencing

reads, the value of P(coverage = min)6 would be calculated, where min is the minimum coverage in

that region, P(coverage = min) is the probability of that minimum coverage under the negative bino-

mial null model, and six represents the (integer) number of sites that are 150 bp apart in the 1000

bp stretch. The output was then filtered for regions longer than 2 � 150 = 300 bp to remove poten-

tial false positives. The Bonferroni calculation included corrections for checking every site in the

genome in addition to the number of sites that passed the initial 0.05 cutoff for deviations from the

negative binomial expectation. All gene amplifications detected in the DM0- and DM25-evolved

genomes are reported in Supplementary file 2.

Statistical test for selection on parallel IS150 insertions
To test for positive selection on parallel IS150 insertions, we simulated a null model of insertion-site

preferences based on the observed data. We conservatively assumed that IS150 elements can only

insert into the positions where we observed insertions in one or more sequenced genomes from

either this experiment or the LTEE (Tenaillon et al., 2016). We also assumed that the probability of

IS150 transposing into a given site is proportional to the observed number of IS150 insertions at that

site across the sequenced genomes, as would be the case if mutational biases alone accounted for

the parallel IS150 insertions. We then used the non-parametric bootstrap method (100,000 repli-

cates) to calculate the probability that any particular site would be hit by so many IS150 elements

among the DM0-evolved genomes, holding the number of IS insertions over that group fixed.

RNA-Seq and transcriptome analysis
We performed RNA-Seq on six clones: the three Cit+ clones from the LTEE used as ancestors in our

evolution experiment (CZB151, CZB152, and CZB154) and three evolved descendants isolated after

2500 generations of adaptation to DM0 (ZDBp877, ZDBp883, and ZDBp889). We revived each clone

from a frozen stock in LB as described above. For preconditioning to minimal medium, we diluted

each culture 10,000-fold into DM25 with four-fold replication and allowed them to grow for 24 hr at

37˚C with 120 rpm orbital shaking. We then diluted the 16 resulting cultures 100-fold in DM0 and

grew them for 48 hr at 37˚C with shaking, for preconditioning to the citrate-only medium. We diluted

the mature cultures 100-fold again into fresh DM0, and grew them to OD600 0.2 – 0.3, correspond-

ing to mid-log phase, at which point we extracted their RNA using the cold phenol-ethanol method

(Bhagwat et al., 2003). We recovered RNA using a Qiagen RNeasy MiniKit (#74104), and removed

DNA with a Qiagen RNase-free DNase set (#79254). RNA was diluted to 50 ng/mL with nuclease-

free water and cDNA amplified by RT-PCR. Purified cDNA was then sequenced by Admera Health

(South Plainfield, NJ). We used kallisto version 0.44 (Bray et al., 2016) to quantify RNA transcripts

and sleuth (Pimentel et al., 2017) to conduct differential-expression analysis and visualization. These

results are presented in Supplementary file 3.

Construction of maeA plasmid
We constructed a medium-copy-number plasmid based on the kanamycin resistance cassette-con-

taining plasmid, pSB3K3, in which the maeA gene was placed under the control of a strong constitu-

tive synthetic promoter and ribosome binding site, P089-R052, described by Kosuri et al., 2013.

We used PCR to amplify the maeA gene from REL606 and the pSB3K3 plasmid. We ordered the

P089-R052 promoter as an oligonucleotide. We assembled these components using circular poly-

merase cloning (Quan and Tian, 2009) and Gibson assembly (Gibson, 2011). We performed drop

dialysis using Millipore membrane filters (VSWP01300) for 15 min to desalt the assembly reactions
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before electroporation. We isolated transformants on LB-Kanamycin plates and used PCR to find col-

onies that contained the P089-R052–maeA insert. We used Sanger-sequencing of plasmid inserts to

verify that no unintended point mutations had occurred during construction. We designated the final

plasmid containing the P089-R052-maeA insert in the pSB3K3 backbone RM4.6.2.

Competition experiments to assess fitness effects of maeA
We transformed the Cit+ ancestral clones CZB151 and CZB152 and their Ara+ revertants, ZDB67 and

ZDB68, respectively, with the plasmid RM4.6.2. We also transformed the same clones with the

empty pSB3K3 vector. We froze stock cultures of each transformant at �80˚C with glycerol as a

cryoprotectant.

We competed each RM4.6.2 transformant against its cognate pSB3K3 transformant in the clone

with the opposite Ara marker state. Briefly, we revived all eight transformants in LB supplemented

with 50 mg/mL kanamycin and grew them overnight at 37˚C with 120 rpm orbital shaking. We then

diluted each overnight culture 10,000-fold in 9.9 mL DM0 and incubated for 48 hr at 37˚C with

orbital shaking, after which they were diluted 100-fold in fresh DM0 every 48 hr three times to accli-

mate cells to the citrate-only resource environment. We commenced the competition assays the

next day by inoculating 9.9 mL DM0 with 50 mL each of an RM4.6.2 transformant and the oppositely

marked pSB3K3 transformant, with fourfold replication for a total of 16 competitions. We ran three-

day competitions to estimate fitness as described above.

Data availability statement
All analysis and statistical scripts have been deposited at www.datadryad.org (https://doi.org/10.

5061/dryad.7wm37pvpp). RNA-Seq data have been deposited in the NCBI SRA under accession

PRJNA553503. Genome sequencing data have been deposited in the NCBI SRA under accession

PRJNA595472. Analysis code is also available at: https://github.com/rohanmaddamsetti/DM0-

evolution (Maddamsetti, 2019; copy archived at https://github.com/elifesciences-publications/

DM0-evolution).

Acknowledgements
We thank Joshua Franklin and Yann Dufour for helpful discussions and assistance with the micros-

copy work; Simon D’Alton for assistance with genome sequencing; Daniel Barich for help in handling

transcriptomics data; Neerja Hajela and Devin Lake for assistance in the laboratory; Jean Vila, Erik

Quandt, Daniel Deatherage, Dacia Leon, Debora Marks, David Ding, Yarden Katz, Helen Murphy,

and Kyle Card for helpful discussions; and Sandeep Venkataram, Sébastien Wielgoss, and anony-
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