Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss

  1. Oliver W Bayfield  Is a corresponding author
  2. Alasdair C Steven
  3. Alfred A Antson  Is a corresponding author
  1. University of York, United Kingdom
  2. NIAMS-NIH, United States

Abstract

The portal protein is a key component of many double-stranded DNA viruses, governing capsid assembly and genome packaging. Twelve subunits of the portal protein define a tunnel, through which DNA is translocated into the capsid. It is unknown how the portal protein functions as a gatekeeper, preventing DNA slippage, whilst allowing its passage into the capsid, and how these processes are controlled. A cryo-EM structure of the portal protein of thermostable virus P23-45, determined in situ in its procapsid-bound state, indicates a mechanism that naturally safeguards the virus against genome loss. This occurs via an inversion of the conformation of the loops that define the constriction in the central tunnel, accompanied by a hydrophilic–hydrophobic switch. The structure also shows how translocation of DNA into the capsid could be modulated by a changing mode of protein–protein interactions between portal and capsid, across a symmetry-mismatched interface.

Data availability

Cryo-EM reconstruction (EMD-4567) and atomic coordinates (PDB 6QJT) have been deposited with the wwPDB (www.wwpdb.org).

The following data sets were generated

Article and author information

Author details

  1. Oliver W Bayfield

    Chemistry, University of York, York, United Kingdom
    For correspondence
    oliver.bayfield@york.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Alasdair C Steven

    Laboratory of Structural Biology, NIAMS-NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alfred A Antson

    Chemistry, University of York, York, United Kingdom
    For correspondence
    fred.antson@york.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4533-3816

Funding

Wellcome (103460)

  • Oliver W Bayfield

Wellcome (206377)

  • Alfred A Antson

National Institute of Arthritis and Musculoskeletal and Skin Diseases (Intramural Research Program)

  • Alasdair C Steven

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: January 27, 2020
  2. Accepted: April 13, 2020
  3. Accepted Manuscript published: April 14, 2020 (version 1)
  4. Version of Record published: May 18, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,103
    views
  • 283
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oliver W Bayfield
  2. Alasdair C Steven
  3. Alfred A Antson
(2020)
Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss
eLife 9:e55517.
https://doi.org/10.7554/eLife.55517

Share this article

https://doi.org/10.7554/eLife.55517

Further reading

    1. Structural Biology and Molecular Biophysics
    Stephanie A Wankowicz, Ashraya Ravikumar ... James S Fraser
    Research Article

    In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift toward modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior Rfree and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g., Coot) and fit can be further improved by refinement using standard pipelines (e.g., Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.

    1. Structural Biology and Molecular Biophysics
    Katarzyna Drożdżyk, Martina Peter, Raimund Dutzler
    Research Advance

    The CALHM proteins constitute a family of large pore channels that contains six closely related paralogs in humans. Two family members, CALHM1 and 3, have been associated with the release of ATP during taste sensation. Both proteins form heteromeric channels that activate at positive potential and decreased extracellular Ca2+ concentration. Although the structures of several family members displayed large oligomeric organizations of different size, their function has in most cases remained elusive. Our previous study has identified the paralogs CALHM2, 4 and, 6 to be highly expressed in the placenta and defined their structural properties as membrane proteins exhibiting features of large pore channels with unknown activation properties (Drożdżyk et al., 2020). Here, we investigated whether these placental paralogs would form heteromers and characterized heteromeric complexes consisting of CALHM2 and CALHM4 subunits using specific binders as fiducial markers. Both proteins assemble with different stoichiometries with the largest population containing CALHM2 as the predominant component. In these oligomers, the subunits segregate and reside in their preferred conformation found in homomeric channels. Our study has thus revealed the properties that govern the formation of CALHM heteromers in a process of potential relevance in a cellular context.