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Abstract Traveller screening is being used to limit further spread of COVID-19 following its

recent emergence, and symptom screening has become a ubiquitous tool in the global response.

Previously, we developed a mathematical model to understand factors governing the effectiveness

of traveller screening to prevent spread of emerging pathogens (Gostic et al., 2015). Here, we

estimate the impact of different screening programs given current knowledge of key COVID-19 life

history and epidemiological parameters. Even under best-case assumptions, we estimate that

screening will miss more than half of infected people. Breaking down the factors leading to

screening successes and failures, we find that most cases missed by screening are fundamentally

undetectable, because they have not yet developed symptoms and are unaware they were

exposed. Our work underscores the need for measures to limit transmission by individuals who

become ill after being missed by a screening program. These findings can support evidence-based

policy to combat the spread of COVID-19, and prospective planning to mitigate future emerging

pathogens.

Introduction
As of February 20, 2020, the 2019 novel coronavirus (now named SARS-CoV-2, causing the disease

COVID-19) has caused over 75,000 confirmed cases inside of China and has spread to 25 other coun-

tries (World Health Organization, 2020b). (HCoV-19 has been proposed as an alternate name for

the virus; Jiang et al., 2020). Until now, local transmission remained limited outside of China, but as

of this week, new epidemic hotspots have become apparent on multiple continents (World Health

Organization, 2020a; Jankowicz, 2020; Sang-Hun, 2020; Schnirring, 2020a). Many jurisdictions

have imposed traveller screening in an effort to prevent importation of COVID-19 cases to unaf-

fected areas. Some high-income countries have escalated control measures beyond screening-based

containment policies, and now restrict or quarantine inbound travellers from countries known to be

experiencing substantial community transmission. Meanwhile, in many other countries, screening

remains the primary barrier to case importation (Guardian reporting team, 2020; Schengen Visa

Info, 2020). Even in countries with the resources to enforce quarantine measures, expanded arrival

screening may be the first logical response as the source epidemic expands to regions outside

China. Furthermore, symptom screening has become a ubiquitous tool in the effort to contain local

spread of COVID-19, in settings from affected cities to cruise ships to quarantines. Our analysis is

pertinent to all of these contexts.

Gostic et al. eLife 2020;9:e55570. DOI: https://doi.org/10.7554/eLife.55570 1 of 18

RESEARCH ADVANCE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.55570
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


It is widely recognized that screening is an imperfect barrier to spread (Bitar et al., 2009;

Cowling et al., 2010; Gostic et al., 2015; Mabey et al., 2014; Quilty et al., 2020), due to: the

absence of detectable symptoms during the incubation period; variation in the severity and detect-

ability of symptoms once the disease begins to progress; imperfect performance of screening equip-

ment or personnel; or active evasion of screening by travellers. Previously we estimated the

effectiveness of traveller screening for a range of pathogens that have emerged in the past, and

found that arrival screening would miss 50–75% of infected cases even under optimistic assumptions

(Gostic et al., 2015). Yet the quantitative performance of different policies matters for planning

interventions and will influence how public health authorities prioritize different measures as the

international and domestic context changes. Here we use a mathematical model to analyse the

expected performance of different screening measures for COVID-19, based on what is currently

known about its natural history and epidemiology and on different possible combinations of depar-

ture and arrival screening policies.

First we assess the probability that any single individual infected with SARS-CoV-2 would be

detected by screening, as a function of time since exposure. This individual-level analysis is not a

comprehensive measure of program success, but serves to illustrate the various ways in which

screening can succeed or fail (and in turn the ways it can or cannot be improved). Further, these

analyses emphasize the importance of the incubation period, and the fraction of subclinical cases, as

determinants of individual screening outcomes. We define subclinical cases as those too mild to

show symptoms detectable in screening (fever or cough) after passing through the incubation period

(i.e. once any symptoms have manifested). The true fraction of subclinical COVID-19 cases remains

unknown, but anecdotally, many lab-confirmed COVID-19 cases have not shown detectable symp-

toms on diagnosis (Hoehl et al., 2020; Nishiura et al., 2020; Hu et al., 2020). About 80% of clini-

cally attended cases have been mild (The Novel Coronavirus Pneumonia Emergency Response

Epidemiology Team, 2020), and clinically attended cases have been conspicuously rare in children

and teens (Chen et al., 2020; The Novel Coronavirus Pneumonia Emergency Response Epidemi-

ology Team, 2020; Huang et al., 2020; Li et al., 2020), raising the possibility that subclinical cases

may be common.

Next, we assess the overall effectiveness of a screening program by modeling screening out-

comes in a hypothetical population of infected travellers, each with a different time since exposure

(and hence a different probability of having progressed through incubation to show detectable

symptoms). Crucially, the distribution of times since exposure will depend on the epidemiology of

the source population, so this overall measure is not a simple average of the individual-level out-

comes. We estimate the fraction of infected travellers detected, breaking down the ways in which

screening can succeed or fail. An alternate measure of program success is the extent to which

screening delays the first importation of cases into the community, possibly providing additional

time to train medical staff, deploy public health responders or refine travel policies (Cowling et al.,

2010). To quantify the potential for screening to delay case importation, we estimate the probability

that a given screening program would detect the first n or more imported cases before missing an

infected person.

Screening will be less effective in a growing epidemic, due to an excess of recently-exposed and

not-yet-symptomatic travellers (Gostic et al., 2015). In the context of COVID-19, we consider both

growing and stable epidemic scenarios, but place greater emphasis on the realistic assumption that

the COVID-19 epidemic is still growing. Since late January 2020, the Chinese government has

imposed strict travel restrictions and surveillance on population centers heavily affected by COVID-

19 (BBC News, 2020; Cellan-Jones, 2020), and numerous other countries have imposed travel and

quarantine restrictions on travellers inbound from China. Until about Feb. 20, 2020, these measures

had appeared to successfully limit community transmission outside of China, but all the while multi-

ple factors pointed to on-going risk, including evidence that transmission is possible prior to the

onset of symptoms (Yu et al., 2020; Hu et al., 2020), and reports of citizens seeking to elude travel

restrictions or leaving before restrictions were in place (Ma and Pinghui, 2020; Mahbubani, 2020).

Now, in the week following Feb. 20, 2020, new source epidemics have appeared on multiple
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continents (World Health Organization, 2020a), and the the risk of exportation of cases from

beyond the initial travel-restricted area is growing.

As the epidemic continues to expand geographically, arrival screening will likely be continued or

expanded to prevent importation of cases to areas without established spread. At the same time,

there is great concern about potential public health consequences if COVID-19 spreads to develop-

ing countries that lack health infrastructure and resources to combat it effectively (de Salazar et al.,

2020). Limited resources also could mean that some countries cannot implement large-scale arrival

screening. In this scenario, departure screening implemented elsewhere would be the sole barrier –

however leaky – to new waves of case importation. It is also important to recognize that, owing to

the lag time in appearance of symptoms in imported cases, any weaknesses in screening would con-

tinue to have an effect on known case importations for up to two weeks, officially considered the

maximum incubation period (World Health Organization, 2020c). Accordingly, we consider scenar-

ios with departure screening only, arrival screening only, or both departure and arrival screening.

The model can also consider the consequences when only a fraction of the traveller population is

screened, due either to travel from a location not subject to screening, or due to deliberate evasion

of screening.

Our analysis also has direct bearing on other contexts where symptom screening is being used,

beyond international air travel. This includes screening of travelers at rail stations and roadside spot

checks, and screening of other at-risk people including people living in affected areas, health-care

workers, cruise ship passengers, evacuees and people undergoing quarantine (Hoehl et al., 2020;

Japan Ministry of Health, Labor and Welfare, 2020; Nishiura et al., 2020; Schnirring, 2020c).

Below, we chiefly frame our findings in terms of travel screening, but these other screening contexts

are also in the scope of our analysis. Any one-off screening effort is equivalent to a departure screen

(i.e. a single test with no delay), and our findings on symptom screening effectiveness over the

course of infection are directly applicable to longitudinal screening in quarantine or occupational

settings.

The central aim of our analysis is to assess the expected effectiveness of screening for COVID-19,

taking account of current knowledge and uncertainties about the natural history and epidemiology

of the virus. We therefore show results using the best estimates currently available, in the hope of

informing policy decisions in this fast-changing environment. We also make our model available for

public use as a user-friendly online app, so that stakeholders can explore scenarios of particular

interest, and results can be updated rapidly as our knowledge of this new viral threat continues to

expand.

Results

Model for COVID-19 screening
The core model has been described previously (Gostic et al., 2015), but to summarize briefly, it

assumes infected travellers can be detained due to the presence of detectable symptoms (fever or

cough), or due to self-reporting of exposure risk via questionnaires or interviews. These assumptions

are consistent with WHO traveller screening guidelines (World Health Organization, 2020b;

World Health Organization, 2020c). Upon screening, travellers fall into one of four categories: (1)

symptomatic but not aware of exposure risk, (2) aware of exposure risk but without detectable

symptoms, (3) symptomatic and aware that exposure may have occurred, and (4) neither symptom-

atic nor aware of exposure risk (Figure 1). Travellers in the final category are fundamentally unde-

tectable, and travellers in the second category are only detectable if aware that they have been

exposed and willing to self report.

In the model, screening for symptoms occurs prior to questionnaire-based screening for exposure

risk, and detected cases do not progress to the next stage. This allows us to track the fraction of

cases detected using symptom screening or risk screening at arrival or departure. Additionally,

building on the four detectability classes explained above, the model keeps track of four ways in

which screening can miss infected travellers: (1) due to imperfect sensitivity, symptom screening may

fail to detect symptoms in travellers that display symptoms; (2) questionnaires may fail to detect

exposure risk in travellers aware they have been exposed, owing to deliberate obfuscation or misun-

derstanding; (3) screening may fail to detect both symptoms and known exposure risk in travellers
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who have both and (4) travellers not exhibiting symptoms and with no knowledge of their exposure

are fundamentally undetectable. Here, we only consider infected travellers who submit to screening.

However, the supplementary app allows users to consider scenarios in which some fraction of

infected travellers intentionally evade screening (Figure 1E).

The probability that an infected person is detectable in a screening program depends on: the

incubation period (the time from exposure to onset of detectable symptoms); the proportion of sub-

clinical cases (mild cases that lack fever or cough); the sensitivity of thermal scanners used to detect

fever; the fraction of cases aware they have high exposure risk; and the fraction of those cases who

would self-report truthfully on a screening questionnaire. Further, the distribution of individual times

since exposure affects the probability that any single infected traveller has progressed to the symp-

tomatic stage. If the source epidemic is still growing, the majority of infected cases will have been

recently exposed, and will not yet show symptoms. If the source epidemic is no longer growing (sta-

ble), times since exposure will be more evenly distributed, meaning that more infected travellers will

have progressed through incubation and will show detectable symptoms.

We used methods described previously to estimate the distribution of individual times since

exposure in a growing or stable epidemic, given various values of the reproductive number R0

(Gostic et al., 2015). Briefly, early in the epidemic when the number of cases is still growing, the

model draws on epidemiological theory to assume that the fraction of cases who are recently

exposed increases with R0. The distribution of times since exposure is truncated at a maximum value,

which corresponds epidemiologically to the maximum time from exposure to patient isolation, after

which point we assume cases will not attempt to travel. (Isolation may occur due to hospitalization,

or due to confinement at home in response to escalating symptoms or COVID-19 diagnosis. In the

non-travel context, this would correspond to cases that have been hospitalized or otherwise diag-

nosed and isolated.) Here, we approximate the maximum time from exposure to isolation as the

sum of the mean incubation time, and mean time from onset to isolation. To consider the

Figure 1. Model of traveller screening process, adapted from Gostic et al. (2015). Infected travellers fall into one

of five categories: (A) Cases aware of exposure risk and with fever or cough are detectable in both symptom

screening and questionnaire-based risk screening. (B) Cases aware of exposure risk, but without fever or cough are

only detectable using risk screening. (C) Cases with fever or cough, but unaware of exposure to SARS-CoV-2 are

only detectable in symptom screening. (D–E) Subclinical cases who are unaware of exposure risk, and individuals

that evade screening, are fundamentally undetectable.
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epidemiological context of a stable epidemic in the source population we assume times since expo-

sure follow a uniform distribution across the time period between exposure and isolation.

Parameters, uncertainty and sensitivity analyses
As of February 20, 2020, COVID-19-specific estimates are available for most parameters, but many

have been derived from limited or preliminary data and remain subject to considerable uncertainty.

Table 1 and the Methods summarize the current state of knowledge. Here, we used two distinct

approaches to incorporate parameter uncertainty into our analysis.

First, to estimate the probability that an infected individual would be detected or missed we con-

sidered a range of plausible values for the mean incubation time, and the fraction of subclinical

Table 1. Parameter values estimated in currently available studies, along with accompanying uncertainties and assumptions.

Ranges in the final column reflect confidence interval, credible interval, standard error or range reported by each study referenced.

Parameter
Best estimate
(Used in Figure 2)

Plausible
range
(Used in
Figure 3)

References
and notes

Mean incubation period 5.5 days
Sensitivity: 4.5 or 6.5
days

4.5–6.5
days

3–6 days, n = 4 (Chan et al., 2020)*
5.2 (4.1–7.0) days, n < 425 (Li et al., 2020)†

5.2 (4.4–6.0) days, n = 101 (Lauer et al., 2020)†

6.5 (5.6–7.9) days, n = 88 (Backer et al., 2020)†
Incubation period
distribution

Gamma distribution
with mean as above, and
standard
deviation = 2.25

Percent of cases subclinical
(No fever or cough)

Best case scenario: 5%
Middle case scenario: 25%
Worst case scenario: 50%

Clinical data:
83% fever, 67% cough, n = 6 (Chan et al., 2020)
83% fever, 82% cough, n = 99 (Chen et al., 2020)
98% fever, 76% cough, n = 41 (Huang et al., 2020)
43.8% fever at hospital admission,
88.7% fever during hospitalization, n = 1099 (Guan et al., 2020)
Active monitoring after repatriation
flights or on cruise ships: %
asymptomatic at diagnosis
31.2% (111/355) (Japan Ministry of Health,
Labor and Welfare, 2020)
65.2% (5 of 8) (Nishiura et al., 2020)
70.0% (7 of 10) (Dorigatti et al., 2020)

R0 No effect in
individual-level
analysis.

1.5–4.0 2.2 (1.4–3.8) (Riou and Althaus, 2020)
2.2 (1.4–3.9) (Li et al., 2020)
2.6 (1.5–3.5) (Imai et al., 2020)
2.7 (2.5–2.9) (Wu et al., 2020)
4.5 (4.4-4.6) (Liu et al., 2020)
3.8 (3.6-4.0) (Read et al., 2020)
4.08 (3.37–4.77) (Cao et al., 2020)
4.7 (2.8–7.6) (Sanche et al., 2020)
6.3 (3.3-11.3) (Sanche et al., 2020)
6.47 (5.71–7.23) (Tang et al., 2020)

Percent of travellers aware of
exposure risk

20% 5–40% We assume a low percentage, as no specific risk factors have been identified, and
known times or sources of exposure are rarely reported in existing line lists.

Sensitivity of infrared thermal
scanners for fever

70% 60–90% Most studies estimated sensitivity between 60–88% (Bitar et al., 2009; Priest et al.,
2011; Tay et al., 2015). But a handful of studies estimated very low sensitivity (4–30%).
In general, sensitivity depended on the device used, body area targeted and ambient
temperature.

Probability that travellers
self-report exposure risk

25% 5–25% 25% is an upper-bound estimate based on outcomes of past screening initiatives.
(Gostic et al., 2015)

Time from symptom onset to
patient isolation
(After which we assume
travel is not possible)

No effect in
individual-level
analysis.

3–7 days Median 7 days from onset to hospitalization (n = 6) (Chan et al., 2020)
Mean 2.9 days onset to patient isolation (n = 164) (Liu et al., 2020)
Median 7 days from onset to hospitalization (n = 41) (Huang et al., 2020)
As awareness increases, times to isolation may decline.

* From family cluster.

† Parametric distributions fit to cases with known dates of exposure or travel to and from Wuhan.
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cases. We focus on the incubation period and subclinical fraction of cases because screening out-

comes are particularly sensitive to their values. All other parameters were fixed to the best available

estimates listed in Table 1.

Second, we considered a population of infected travellers, each with a unique time of exposure,

and in turn a unique probability of having progressed to the symptomatic stage. Here, the model

used a resampling-based approach to simultaneously consider uncertainty from both stochasticity in

any single individual’s screening outcome, and uncertainty as to the true underlying natural history

parameters driving the epidemic. Details are provided in the methods, but briefly, we constructed

1000 candidate parameter sets, drawn using Latin hypercube sampling from plausible ranges for

each parameter (Table 1). Using each parameter set, we simulated one set of screening outcomes

for a population of 30 infected individuals. As of February 20, 2020, 30 approximates the maximum

known number of cases imported to any single country (World Health Organization, 2020b), and

thus our analysis incorporates a reasonable degree of binomial uncertainty. The actual number of

infected travellers passing through screening in any given location may be higher or lower than 30,

and will depend on patterns of global connectivity, and on the duration of the source epidemic

(Chinazzi et al., 2020; de Salazar et al., 2020). Finally, we analysed the sensitivity of screening

effectiveness (fraction of travellers detected) to each parameter, as measured by the partial rank cor-

relation coefficient (PRCC) (Marino et al., 2008).

Figure 2. Individual outcome probabilities for travellers who screened at given time since infection. Columns show

three possible mean incubation periods, and rows show best-case, middle-case and worst-case estimates of the

fraction of subclinical cases. Here, we assume screening occurs at both arrival and departure; see Figure 2—

figure supplement 1 and Figure 2—figure supplement 2 for departure or arrival screening only. The black

dashed lines separate detected cases (below) from missed cases (above). Here, we assume flight duration = 24 hr,

the probability that an individual is aware of exposure risk is 0.2, the sensitivity of fever scanners is 0.7, and the

probability that an individual will truthfully self-report on risk questionnaires is 0.25. Table 1 lists all other input

values.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2.

Figure supplement 1. Departure screening only.

Figure supplement 2. Arrival screening only.

Gostic et al. eLife 2020;9:e55570. DOI: https://doi.org/10.7554/eLife.55570 6 of 18

Research advance Epidemiology and Global Health

https://doi.org/10.7554/eLife.55570


Figure 3. Population-level outcomes of screening programs in a growing epidemic. (A) Violin plots of the fraction

of infected travellers detected, accounting for current uncertainties by running 1000 simulations using parameter

sets randomly drawn from the ranges shown in Table 1. Dots and vertical line segments show the median and

central 95%, respectively. Text above each violin shows the median and central 95% fraction detected. (B) Mean

fraction of travellers with each screening outcome. The black dashed lines separate detected cases (below) from

missed cases (above). (C) Fraction of simulations in which screening successfully detects at least n cases before the

first infected traveller is missed.

Figure 3 continued on next page
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Individual probabilities of detection
First, the model estimated the probability that any single infected individual would be detected by

screening as a function of the time between exposure and the initiation of travel (Figure 2). Incuba-

tion time is a crucial driver of traveller screening effectiveness; infected people are most likely to

travel before the onset of symptoms. Here we considered three mean incubation times, which

together span the range of most existing mean estimates: 4.5, 5.5 and 6.5 days (Table 1). Addition-

ally, we considered three possible fractions of subclinical cases: 50% represents a worst-case upper

bound, 5% represents a best-case lower bound, and 25% represents a plausible middle case.

(Table 1, Materials and methods). Since resubmission, a new delay-adjusted estimate indicates that

34.6% of infections are asymptomatic (Mizumoto et al., 2020), intermediate between our middle

and worst-case scenarios.

Even within the narrow range tested, screening outcomes were sensitive to the incubation period

mean. For longer incubation periods, we found that larger proportions of departing travellers would

not yet be exhibiting symptoms – either at departure or arrival – which in turn reduced the probabil-

ity that screening would detect these cases, especially since we assume few infected travellers will

realize they have been exposed to COVID-19.

A second crucial uncertainty is the proportion of subclinical cases, which lack detectable fever or

cough even after the onset of symptoms. We considered scenarios in which 5%, 25% and 50% of

cases are subclinical, representing a best, middle and worst-case scenario, respectively. The middle

and worst-case scenarios have predictable and discouraging consequences for the effectiveness of

traveller screening, since they render large fractions of the population undetectable by fever screen-

ing (Figure 2). Furthermore, subclinical cases who are unaware of their exposure risk are never

detectable, by any means. This is manifested as the bright red ‘undetectable’ region which persists

well beyond the mean incubation period. For a screening program combining departure and arrival

screening, as shown in Figure 2, the greatest contributor to case detection is the departure fever

screen. The arrival fever screen is the next greatest contributor, with its value arising from two fac-

tors: the potential to detect cases whose symptom onset occurred during travel, and the potential

to catch cases missed due to imperfect instrument sensitivity in non-contact infrared thermal scan-

ners used in traveller screening (Table 1). Considering the effectiveness of departure or arrival

screening only (Figure 2—figures supplement 1, 2), we see that fever screening is the dominant

contributor in each case, but that the risk of missing infected travellers due to undetected fever is

substantially higher when there is no redundancy from two successive screenings.

Overall screening effectiveness in a population of infected travellers
during a growing or stable epidemic
Next we estimated the overall effectiveness of different screening programs, as well as the uncer-

tainties arising from the current partial state of knowledge about this recently-emerged virus. We

modeled plausible population-level outcomes by tracking the fraction of 30 infected travellers

detained, given a growing or stable epidemic and current uncertainty around parameter values. We

separately consider the best, middle and worst-case scenarios for the proportion of infections that

are subclinical, and for each scenario we compare the impact of departure screening only (or equiva-

lently, any on-the-spot screening), arrival screening only, or programs that include both.

The striking finding is that in a growing epidemic, even under the best-case assumptions, with

just one infection in twenty being subclinical and all travellers passing through departure and arrival

screening, the median fraction of infected travellers detected is only 0.30, with 95% interval extend-

ing from 0.10 up to 0.53 (Figure 3A). The total fraction detected is lower for programs with only

Figure 3 continued

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3A.

Source data 2. Source data for Figure 3B.

Source data 3. Source data for Figure 3C.

Figure supplement 1. Population-level screening outcomes given that the source epidemic is no longer growing.

Figure supplement 2. Plausible incubation period distributions underlying the analyses in Figure 3.
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one layer of screening, with arrival screening preferable to departure screening owing to the possi-

bility of symptom onset during travel. Considering higher proportions of subclinical cases, the overall

effectiveness of screening programs is further degraded, with a median of just one in ten infected

travellers detected by departure screening in the worst-case scenario. The key driver of these poor

outcomes is that even in the best-case scenario, nearly two thirds of infected travellers will not be

detectable (as shown by the red regions in Figure 3B). There are three drivers of this outcome: (1) in

a growing epidemic, the majority of travellers will have been recently infected and hence will not yet

have progressed to exhibit any symptoms; (2) we assume that a fraction of cases never develop

detectable symptoms; and (3) we assume that few people are aware of their exposure risk. As

above, the dominant contributor to successful detections is fever screening.

In an epidemic that is no longer growing (Figure 3—figures supplement 1), screening effective-

ness is considerably higher, as a lower proportion of travellers will be recently exposed. This is

shown by the smaller, red ‘undetectable’ region in Figure 3—figures supplement 1B. In a stable

epidemic, under the middle-case assumption that 25% of cases are subclinical, we estimate that

arrival screening alone would detect roughly one third (17–53%) of infected travelers, and that a

combination of arrival and departure screening would detect nearly half (23–63%) of infected travel-

lers. In short, holding all other things equal, screening effectiveness will increase as the source epi-

demic transitions from growing to stable, owing simply to changes in the distribution of ‘infection

ages,’ or times since exposure.

To assess the potential for screening to delay introduction of undiagnosed cases, we evaluated

the fraction of simulations in which screening during a growing epidemic would detect the first n or

more infected travellers (Figure 3C). Depending on the screening strategy (arrival, departure or

both) and assumed subclinical fraction (5%, 25%, or 50%), the probability of detecting at least the

first two cases ranged from 0.02 to 0.11, and the probability of detecting three or more cases was

never better than 0.04 (Figure 3C). In all tested scenarios, more than half of simulations failed to

detect the first imported case, consistent with probabilities of case detection in Figure 3A. Probabil-

ities of detecting the first n consecutive cases were marginally higher in the stable epidemic context

(Figure 3—figures supplement 1), but still the probability of detecting at least the first three cases

was never better than 0.13, and the probability of detecting the first four cases was never better

than 0.06 in any tested scenario. Taken together, these results indicate that screening in any context

is very unlikely to delay case importation beyond the first 1–3 cases, and often will not delay the first

importation at all. What duration of delay this yields will depend on the frequency of infected

travellers.

Sensitivity analysis
In the context of a growing epidemic, sensitivity analysis using the method of Latin hypercube sam-

pling and partial rank correlation (Marino et al., 2008) showed that the fraction of travellers

detected was moderately sensitive to all parameters considered – most coefficient estimates fell

between 0.1 and 0.3 in absolute value (Figure 4). Sensitivity to R0 was somewhat higher than sensi-

tivity to other parameters, but the difference was not statistically remarkable. R0 and the mean incu-

bation period were negatively associated with the fraction of cases detected. An increase in either

of these parameters implies an increase in the probability an infected traveller will be undetectable,

either because they have been recently exposed (R0), or have not yet progressed to the symptomatic

stage (mean incubation time). The positive association between the fraction of cases detected and

the sensitivity of thermal scanners, sensitivity of risk questionnaires, or the fraction of travellers aware

of exposure risk is intuitive. Finally, the duration from onset to isolation effectively describes the win-

dow of time in which we assume a symptomatic individual could initiate travel. Here, a wider window

is associated with increased screening effectiveness, because it will lead to a higher proportion of

infected travellers who are symptomatic. Figure 4 shows results from the middle case scenario, in

which 25% of cases are subclinical. Considering scenarios where more or fewer cases are subclinical,

we see increased influence of the factors based on exposure risk (questionnaire sensitivity and the

fraction of cases aware of their exposure) as the proportion of cases with detectable symptoms

declines (Figure 4—figures supplement 1).

In the context of a stable epidemic, a greater proportion of infected travellers will have pro-

gressed to show detectable symptoms, and so screening effectiveness was more sensitive to param-

eters that impact symptom screening efficacy (thermal scanner sensitivity, and to the time from
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symptom onset to isolation). Note that by construction, model outcomes are insensitive to parame-

ter R0 in the stable epidemic context. As a result, R0 coefficient estimates are very small (non-zero

due to stochasticity in simulation outcomes), and never significant. (Figure 4—figures supplement

2).

Interactive online app for public use
We have developed an interactive web application using the R package Shiny (Chang et al., 2019)

in which users can replicate our analyses using parameter inputs that reflect the most up-do-date

information. The supplementary user interface can be accessed at https://faculty.eeb.ucla.edu/lloyd-

smith/screeningmodel. Please note that while the results in Figures 3 and 4 consider a range of

plausible values for each parameter, the outputs of the Shiny app are calculated using fixed, user-

specified values only.

Discussion
The international expansion of COVID-19 cases has led to widespread adoption of symptom and risk

screening measures, in travel-associated and other contexts, and programs may still be adopted or

expanded as source epidemics of COVID-19 emerge in new geographic areas. Using a mathematical

model of screening effectiveness, with preliminary estimates of COVID-19 epidemiology and natural

history, we estimate that screening will detect less than half of infected travellers in a growing epi-

demic, and that screening effectiveness will increase marginally as growth of the source epidemic

decelerates. We found that two main factors influenced the effectiveness of screening. First, symp-

tom screening depends on the natural history of an infection: individuals are increasingly likely to

show detectable symptoms with increasing time since exposure. A fundamental shortcoming of

screening is the difficulty of detecting infected individuals during their incubation period, or early

after the onset of symptoms, at which point they still feel healthy enough to undertake normal activi-

ties or travel. This difficulty is amplified when the incubation period is longer; infected individuals

have a longer window in which they may mix socially or travel with low probability of detection.

Figure 4. Sensitivity analysis showing partial rank correlation coefficient (PRCC) between each parameter and the

fraction (per-simulation) of 30 infected travellers detected. Outcomes were obtained from 1000 simulations, each

using a candidate parameter sets drawn using Latin hypercube sampling. Text shows PRCC estimate, and *

indicates statistical significance after Bonferroni correction (threshold = 9e-4 for 54 comparisons).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4, and Figure 4—figures supplement 1.

Figure supplement 1. PRCC analysis comparing cases where 5%, 25% or 50% of cases are subclinical.

Figure supplement 2. PRCC analysis assuming the source epidemic is no longer growing.
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Second, screening depends on whether exposure risk factors exist that would facilitate specific

and reasonably sensitive case detection by questionnaire. For COVID-19, there is so far limited evi-

dence for specific risk factors; we therefore assumed that at most 40% of travellers would be aware

of a potential exposure. It is plausible that many individuals aware of a potential exposure would vol-

untarily avoid travel and practice social distancing–if so, the population of infected travellers will be

skewed toward those unaware they have been exposed. Furthermore, based on screening outcomes

during the 2009 influenza pandemic, we assumed that a minority of infected travellers would self-

report their exposure honestly, which led to limited effectiveness in questionnaire-based screening.

The confluence of these two factors led to many infected people being fundamentally undetectable

in our model. Even under our most generous assumptions about the natural history of COVID-19,

the presence of undetectable cases made the greatest contribution to screening failure. Correctable

failures, such as missing an infected person with fever or awareness of their exposure risk, played a

more minor role.

Our conclusion that screening would detect no more than half of infected travellers in a growing

epidemic is consistent with recent studies that have compared country-specific air travel volumes

with detected case counts to estimate that roughly two thirds of imported cases remain undetected

(Niehus et al., 2020; Bhatia et al., 2020). Furthermore, the finding that the majority of cases missed

by screening are fundamentally undetectable is consistent with observed outcomes so far. Analyzing

a line list of 290 cases imported into various countries (Dorigatti et al., 2020), we found that symp-

tom onset occurred after the date of inbound travel for 72% (75/104) of cases for whom both dates

were available, and a further 14% (15/104) had symptom onset on the date of travel. Even among

passengers of repatriation flights, or quarantined on a cruise ship off the coast of Japan (who are all

demonstrably at high risk), numerous cases have been undetectable in symptom screening, but have

still tested positive for SARS-CoV-2 by PCR (Dorigatti et al., 2020; Hoehl et al., 2020;

Japan Ministry of Health, Labor and Welfare, 2020; Nishiura et al., 2020; Hu et al., 2020). The

onset of viral shedding prior to the onset of symptoms, or in cases that remain asymptomatic, is a

classic factor that makes infectious disease outbreaks difficult to control (Fraser et al., 2004).

Our results emphasize that the true fraction of subclinical cases (those who lack fever or cough at

symptom onset) remains a crucial unknown, and strongly impacts screening effectiveness. Reviewing

data from active surveillance of passengers on cruise ships or repatriation flights, we estimate that

up to half of cases show no detectable symptoms at the time of diagnosis. To complicate matters

further, the fraction of subclinical cases may vary across age groups. Children and young adults have

been conspicuously underrepresented, even in very large clinical data sets (Chen et al., 2020;

The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020;

Huang et al., 2020; Li et al., 2020). Only 2.1% of the first 44,672 confirmed cases were observed in

children under 20 years of age (The Novel Coronavirus Pneumonia Emergency Response Epidemi-

ology Team, 2020). The possibility cannot be ruled out that large numbers of subclinical cases are

occurring in young people. If an age-by-severity interaction does indeed exist, then the mean age of

travellers should be taken into account when estimating screening effectiveness.

There are some limitations to our analysis. Parameter values for COVID-19 may be affected by

bias or censoring, particularly in the early stages of an outbreak when most cases have been recently

infected, and when severe or hospitalized cases are overrepresented in the available data. In particu-

lar, the tail of the incubation period distribution is difficult to characterize with precision using lim-

ited or biased data.

As country-specific screening policies can change rapidly in real-time, we focused on a general

screening framework rather than specific case studies. We also assumed traveller adherence and no

active evasion of screening. However, there are informal reports of people taking antipyretics to

beat fever screening (Mahbubani, 2020), which would further reduce the effectiveness of these

methods. With travel restrictions in place, individuals may also take alternative routes (e.g. road

rather than air), which would in effect circumvent departure and/or arrival screening as a control

measure. Our quantitative findings may overestimate screening effectiveness if many travellers

evade screening.

Our results have several implications for the design and implementation of traveller screening pol-

icies. If the infection is not yet present in a region, then arrival screening could delay the introduction

of cases, but consistent with previous analyses, (Cowling et al., 2010), our results indicate such

delays would be minimal. Our findings indicate that for every case detected by travel screening, one
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or more infected travellers were not caught, and must be found and isolated by other means. We

note that even with high R0 and no control measures in place, a single case importation is not

guaranteed to start a sustained chain of transmission (Kucharski et al., 2020; Lloyd-Smith et al.,

2005). This is particularly true for infections that exhibit a tendency toward superspreading events,

as increasingly reported for COVID-19, but the flipside is that outbreaks triggered by superspread-

ing are explosive when they do occur (Lloyd-Smith et al., 2005).

We did not analyze second-order benefits from screening, such as potential to raise awareness.

Official recommendations emphasize that screening is an opportunity for ‘risk communication’ in

which travellers can be instructed how to proceed responsibly if symptoms develop at the destina-

tion (World Health Organization, 2020d). Alongside increased general surveillance/alertness in

healthcare settings, such measures could help reduce the risk of local transmission and superspread-

ing, but their quantitative effectiveness is unknown. Once limited local transmission has begun,

arrival screening could still have merit as a means to restrict the number of parallel chains of trans-

mission present in a country. Once there is generalized spread which has outpaced contact tracing,

departure screening to prevent export of cases to new areas will be more valuable than arrival

screening to identify additional incoming cases. Altogether, screening should not be viewed as a

definitive barrier to case importation, but used alongside on-the-ground response strategies that

help reduce the probability that any single imported case spreads to cause a self-sustaining local

epidemic. The cost-benefit tradeoff for any screening policy should be assessed in light of past expe-

riences, where few or no infected travellers have been detected by such programs (Gostic et al.,

2015).

While our findings indicate that the majority of screening failures arise from undetectable cases

(i.e. those without symptoms or knowledge of their exposure), several factors could potentially

strengthen the screening measures described here. With improved efficiency of thermal scanners or

other symptom detection technology, we would expect a smaller difference between the effective-

ness of arrival-only screening and combined departure and arrival screening in our analysis. Alterna-

tively, the benefits of redundant screening (noted above for programs with departure and arrival

screens) could be gained in a single-site screening program by simply having two successive fever-

screening stations that travellers pass through (or taking multiple measurements of each traveller at

a single station). As risk factors become better known, questionnaires could be refined to identify

more potential cases. Alternatively, less stringent definition of high exposure risk (e.g. contact with

anyone with respiratory symptoms) would be more sensitive, but at the expense of large numbers of

false positives detained, especially during influenza season.

The availability of rapid PCR tests would also be beneficial for case identification at arrival, and

would help address concerns with false-positive detections by screening. If such tests were fast,

there may be potential to test suspected cases in real time based on questionnaire responses, travel

origin, or borderline symptoms; at least one PCR test for SARS-CoV-2 claimed to take less than an

hour has already been announced (Biomeme, 2020). However, such measures could prove highly

expensive if implemented at scale. There is also scope for new tools to improve the ongoing tracking

of travellers who pass through screening, such as smartphone-based self-reporting of temperature

or symptoms in incoming cases (Dorigatti et al., 2020). Smartphone or diary-based surveillance

would be cheaper and more scalable than intense, on-the-ground follow-up, but is likely to be lim-

ited by user adherence.

Our analysis underscores the reality that respiratory viruses are difficult to detect by symptom

and risk screening programs, particularly if a substantial fraction of infected people show mild or

indistinct symptoms, if incubation periods are long, and if transmission is possible before the onset

of symptoms. Quantitative estimates of screening effectiveness for COVID-19 will improve as more

is learned about this recently-emerged virus, and will vary with the precise design of screening pro-

grams. However, we present a robust qualitative finding: in any situation where there is widespread

epidemic transmission in source populations from which travellers are drawn, travel screening pro-

grams can slow (marginally) but not stop the importation of infected cases. Screening programs

implemented in other settings will face the same challenges. By decomposing the factors leading to

success or failure of screening efforts, our work supports decision-making about program design,

and highlights key questions for further research. We hope that these insights may help to mitigate

the global impacts of COVID-19 by guiding effective decision-making in both high- and low-resource
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countries, and may contribute to prospective improvements in screening policy for future emerging

infections.

Materials and methods

Modeling strategy
The model’s structure is summarized above (Figure 1), and detailed methods have been described

previously (Gostic et al., 2015). Here, we summarize relevant extensions, assumptions and parame-

ter inputs.

Extensions
Our previous model tracked all the ways in which infected travellers can be detected by screening

(fever screen, or risk factor screen at arrival or departure). Here, we additionally keep track of the

many ways in which infected travellers can be missed (i.e. missed given fever present, missed given

exposure risk present, missed given both present, or missed given undetectable). Cases who have

not yet passed the incubation period are considered undetectable by fever screening, even if they

will eventually develop symptoms in the future. In other words, no traveller is considered ‘missed

given fever present’ until they have passed the incubation period and show detectable symptoms.

Infected travellers who progress to symptoms during their journey are considered undetectable by

departure screening, but detectable by arrival screening.

Additionally, we now provide a supplementary user interface, which allows stakeholders to test

input parameters of interest using up-to-date information. Here, in addition to the analyses pre-

sented in this study, we implemented the possibility that some fraction of infected travellers deliber-

ately evade screening.

Basic reproduction number, R0

Existing point estimates for R0 span a wide range (2.2–6.47), but most fall between 2.0 and 4.0

(Table 1). The vast majority of these estimates are informed by data collected very early in the out-

break, before any control measures were in place. However, several studies already demostrate

decreases in the reproductive number over time, as a consequence of social distancing behaviors,

and containment measures (Kucharski et al., 2020; Liu et al., 2020). Realistically, R0 will vary consid-

erably over time, and across locations, depending on the social context, resource availability, and

containment policies. Our analysis considers a plausible range of R0 values spanning 1.5–4.0, with

4.0 representing a plausible maximum in the absence of any behavioral changes or containment

efforts, and 1.5 reflecting a plausible lower bound, given containment measures may already be in

place at the time of introduction.

Fraction of subclinical cases
To estimate the upper-bound fraction of subclinical cases, we draw on data from active surveillance

of passengers quarantined on a cruise ship off the coast of Japan, or passengers of repatriation

flights. These data show that 50–70% of cases are asymptomatic at the time of diagnosis

(Dorigatti et al., 2020; Nishiura et al., 2020; Schnirring, 2020c; Schnirring, 2020b). We estimate

that 50% subclinical cases is a reasonable upper bound: due to intensive monitoring, cases in repatri-

ated individuals or in cruise ship passengers will be detected earlier than usual in the course of infec-

tion–and possibly before the onset of symptoms. From clinical data (where severe cases are likely

overrepresented), we estimate a lower bound of 5%: even among clinically attended cases, 2–15%

lack fever or cough, and would be undetectable in symptom screening (Chan et al., 2020;

Chen et al., 2020; The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team,

2020; Huang et al., 2020). In addition to the upper and lower bound scenarios, we consider a plau-

sible middle-case scenario in which 25% of cases are subclinical. A very recent delay-adjusted esti-

mate indicates 30-40% of infections on the cruise ship quarantined off the coast of Japan are

asymptomatic, so the truth may fall somewhere between our middle and worst-case scenarios

(Mizumoto et al., 2020).
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Incubation period distribution
We use a gamma distribution to model individual incubation times. We choose this form over the

Weibull and lognormal distribution for ease of interpretation (gamma shape and scale parameters

can be transformed easily to mean and standard deviation). So far, best-fit gamma distributions to

COVID-19 data have had mean 6.5 and standard deviation 2.6 (Backer et al., 2020), or mean 5.46

and standard deviation 1.94 (Lauer et al., 2020). Here, to model uncertainty around the true mean

incubation time, we fix the standard deviation to 2.25 (intermediate between the two existing esti-

mates), and allow the mean to vary between 4.5 and 6.5 days (Figure 2—figure supplement 2). The

95th percentile of the distributions we consider fall between 8.7 and 10.6 days, slightly below the

officially accepted maximum incubation time of 14 days, and consistent with existing estimates

(Table 1; Backer et al., 2020; Lauer et al., 2020).

Effectiveness of exposure risk questionnaires
The probability that an infected traveller is detectable using questionnaire-based screening for expo-

sure risk will be highest if risk factors with high sensitivity and specificity are known. Currently, official

guidance recommends asking whether travellers have visited a country with epidemic transmission, a

healthcare facility with confirmed cases, or had close contact with a confirmed or suspected case

(World Health Organization, 2020c). Given the relative anonymity of respiratory transmission, we

assume that a minority of infected travellers would realize that they have been exposed before

symptoms develop (20% in Figure 2, range 5–40% in Figure 3). Further, relying on a previous

upper-bound estimate (Gostic et al., 2015) we assume that only 25% of travellers would self-report

truthfully if aware of elevated exposure risk.

Table 1 summarizes the state of knowledge about additional parameters, as of February 20,

2020.

Code and data availability
All code and source data used to perform analyses and generate figures is archived at https://

github.com/kgostic/traveller_screening/releases/tag/v2.1. (Gostic, 2020; copy archived at https://

github.com/elifesciences-publications/traveller_screening).
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