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Abstract The underlying cell types mediating predisposition to obesity remain largely obscure.

Here, we integrated recently published single-cell RNA-sequencing (scRNA-seq) data from 727

peripheral and nervous system cell types spanning 17 mouse organs with body mass index (BMI)

genome-wide association study (GWAS) data from >457,000 individuals. Developing a novel

strategy for integrating scRNA-seq data with GWAS data, we identified 26, exclusively neuronal,

cell types from the hypothalamus, subthalamus, midbrain, hippocampus, thalamus, cortex, pons,

medulla, pallidum that were significantly enriched for BMI heritability (p<1.6�10�4). Using genes

harboring coding mutations associated with obesity, we replicated midbrain cell types from the

anterior pretectal nucleus and periaqueductal gray (p<1.2�10�4). Together, our results suggest

that brain nuclei regulating integration of sensory stimuli, learning and memory are likely to play a

key role in obesity and provide testable hypotheses for mechanistic follow-up studies.

Introduction
Identification of genes and cell types underlying susceptibility to human obesity remains a critically

important step toward a better understanding of mechanisms causing the disease (Hekselman and

Yeger-Lotem, 2020). Studies of monogenic obesity syndromes and rodent models of obesity have

identified melanocortin signaling circuits in the mediobasal and paraventricular hypothalamus as key

components in energy homeostasis and obesity (Morton et al., 2014; Farooqi and O’Rahilly, 2006;

Betley et al., 2013). Yet growing evidence suggests that susceptibility to obesity is distributed

across numerous brain areas that receive signals emanating from internal sources (e.g. viscerosen-

sory input from the gastrointestinal tract) or external stimuli (e.g. the sight or smell of food) that act

in concert to regulate feeding behavior and energy stores (Grill, 2006; Zeltser, 2018; Grill and

Hayes, 2012). However, despite an increasing number of genes, cell types and neuronal circuits

being implicated in murine energy homeostasis, the identity of brain cell types that drive susceptibil-

ity to human obesity remains largely unknown and a systematic assessment of cell types’ relevance

in obesity is currently lacking.

In recent years, genome-wide association studies (GWAS) have identified about a thousand com-

mon (minor allele frequency, MAF �0.1) single-nucleotide polymorphisms (SNPs) that associate with

body mass index (BMI, defined as weight in kilogram divided by height in meters squared), a herita-

ble and commonly used proxy phenotype for obesity (Locke et al., 2015; Yengo et al., 2018). In

general, the far majority of trait-associated SNPs are located in regulatory regions and hence, unlike

coding variants, tagging genetic intervals (or loci) rather than implicating specific genes. Importantly,

these loci represent an unbiased set of biological sign posts to genes and biological mechanisms

underlying susceptibility to obesity (Hirschhorn, 2009).

Genetic variants with rare frequencies (MAF <0.1) that are typically too low to be captured in

GWAS are thought to contribute ~50% to the heritability of BMI (Wainschtein et al., 2019). Many

such variants are coding mutations (Wainschtein et al., 2019) and hence well-suited to identify

causal genes underlying obesity. Lately, rare variant association studies have identified 14 coding
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variants across 13 genes in an exome chip analysis across >750,000 individuals (Turcot et al., 2018).

Interestingly, these genes, with the exception of MC4R, KSR2 and GIPR, have not previously been

implicated in obesity, suggesting that key biologic mechanisms underlying obesity have yet to be

identified.

Given that a majority of obesity-associated gene variants likely regulate gene expression rather

than impact protein function, gene expression data provide an effective scaffold to inform GWAS

data for obesity and other traits (Finucane et al., 2015; Calderon et al., 2017; Pers et al., 2015;

Hao et al., 2018). In 2016, we used microarray-based gene expression data to show that genes in

BMI GWAS loci are predominantly expressed in the brain (Locke et al., 2015) and we recently lever-

aged mouse; single-cell RNA-sequencing (scRNA-seq) to implicate mediobasal hypothalamic cell

types in obesity (Campbell et al., 2017). The growing number of BMI GWAS loci and genes impli-

cated through rare-variant association studies of common and syndromic forms of obesity, in con-

junction with the growing number of large-scale scRNA-seq atlases, provide a unique opportunity to

systematically uncover genes and cell types underlying biological circuits regulating susceptibility to

human obesity.

Here, we developed two computational toolkits for human genetics-driven identification of cell

types underlying disease and leveraged them to systematically identify cell types enriching for obe-

sity susceptibility by combining publicly available BMI GWAS summary statistics from >457,000 indi-

viduals with scRNA-seq data spanning 380 cell types representing adult mouse organs especially the

nervous system and 347 cell types from the adult mouse hypothalamus.

Results

Devising a robust cell type expression specificity metric and
prioritization framework
Similar to previous approaches (Campbell et al., 2017; Skene et al., 2018; Watanabe et al., 2019;

Bryois et al., 2020), we hypothesized that cell types exhibiting detectable expression of genes

colocalizing with BMI GWAS loci are more likely to underlie obesity than cell types in which these

genes are not expressed. Based on this reasoning, we developed CELLECT (CELL type Expression-

specific integration for Complex Traits) and CELLEX (CELL type EXpression-specificity), two toolkits

for genetic identification of likely etiologic cell types. Given GWAS summary statistics and scRNA-

seq data, CELLECT can quantify the enrichment of heritability in or near genes specifically expressed

in a given cell type using established genetic prioritization models, such as S-LDSC (Finucane et al.,

2015), RolyPoly (Calderon et al., 2017), DEPICT (Pers et al., 2015) or MAGMA covariate analysis

(Skene et al., 2018) (Materials and methods; Figure 1a). Importantly, whereas previous frameworks

for genetic prioritization of cell types have either relied on non-polygenic models (Campbell et al.,

2017), used binary or discrete representations of cell type expression (Finucane et al., 2015;

Skene et al., 2018) or used average expression profiles (Watanabe et al., 2019), CELLECT uses a

robust continuous representation of cell type expression. In Appendix 1, we provide a discussion of

our model, its assumptions and relationship to the ‘omnigenic’ model hypothesis (Liu et al., 2019;

Boyle et al., 2017). Conjointly, CELLEX was built on the observation that different measures of gene

expression specificity (ES) provide complementary information and it therefore combines four ES

metrics (see Materials and methods) into a single measure (ES�) representing the score that a gene

is specifically expressed in the given cell type (Materials and methods; Figure 1b). We first tested

and validated the ES approach on the Tabula Muris dataset (Tabula Muris Consortium et al., 2018),

a Smart-Seq2 scRNA-seq dataset derived from 17 organs from adult male and female mice, and on

the Mouse Nervous System dataset (Zeisel et al., 2018), a droplet-based scRNA-seq dataset

derived from 19 central and peripheral nervous system regions from late-postnatal male and female

mice. For both datasets, we computed gene expression specificities for the four metrics and com-

bined them into ES� across four cell types with known marker genes and found that ES� correctly

identified them as being among the most specifically expressed genes (Figure 1d,e). We respec-

tively identified a median of 2810 and 4020 specifically expressed genes per cell type and hierarchi-

cal clustering of cell types based on the ES� estimates largely reproduced the cell type dendrograms

from the respective original publications (Tabula Muris Consortium et al., 2018; Zeisel et al.,

2018), confirming that our ES approach enables cell types profiles to be compared across studies
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Figure 1. Overview of CELLECT and CELLEX and main datasets used (a) CELLECT quantifies the association between common polygenetic GWAS

signal (heritability) and cell type expression specificity (ES) to prioritize relevant etiological cell types. As input to CELLECT, we used BMI GWAS

summary statistics derived from analysis of UK Biobank data (N > 457,000 individuals) and ES was calculated using CELLEX. (b) CELLEX uses a ‘wisdom

of the crowd’ approach by averaging multiple ES metrics into ES�, a robust ES measure that captures multiple aspects of expression specificity. Prior to

Figure 1 continued on next page
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and single-cell protocols (Figure 1—figure supplements 1 and 2). In Appendix 2, we provide a

detailed description of the CELLEX workflow, its assumptions and we use re-sampling to demon-

strate the robustness of ES� compared to individual ES metrics. We implemented and released CEL-

LECT and CELLEX as open-source Python packages (see URLs). Here, we – due to its polygenic

nature and well-controlled type I error rate – used CELLECT with S-LDSC as the genetic prioritization

model to quantify the effects of cell type ES on BMI heritability. For each cell type, we reported the

P-value for the one-tailed test for positive contribution of the cell type ES to trait heritability (condi-

tional on a ‘baseline model’ that accounted for the non-random distribution of heritability across the

genome, see Materials and methods).

BMI variants enrich for central nervous system rather than peripheral
cell types
Using BMI GWAS summary statistics from a GWAS analysis of the UK Biobank (Bycroft et al., 2018)

comprising >457,000 individuals (Loh et al., 2018) and the Tabula Muris cell types, we first assessed

whether we could replicate the exclusive enrichment of BMI GWAS variants in brain tissues as

reported by Locke et al., 2015. Applying CELLECT to the 115 – mostly peripheral – cell types, we

identified two significantly enriched cell types, namely neurons and oligodendrocyte precursor cells

(Bonferroni correction-based false-discovery rate, FDR < 0.05; Figure 2a). When rerunning CELLECT

conditioning on the neuron cell type, the oligodendrocyte precursor cell type was no

longer significant, suggesting that we primarily observed a neuronal signal for the BMI GWAS var-

iants. In order to verify that our approach, in general, could identify relevant cell types for complex

traits, we computed enrichments for nine GWAS including cognitive, psychiatric, neurological, immu-

nological, lipid and anthropometric traits and disorders, and found that CELLECT prioritized etiolog-

ically relevant cell types across all six categories (Figure 2b). Cortical neurons were prioritized for

cognitive traits and psychiatric disorders (educational attainment, intelligence, schizophrenia), neuro-

nal cell types for insomnia, immune cells for multiple sclerosis and rheumatoid arthritis, growth-

related cell types for waist-to-hip ratio (adjusted for BMI) and height, and hepatocytes for low-den-

sity lipoprotein levels (see Figure 2—source data 3 for results across additional 29 traits). Finally,

using 1000 ‘null GWAS’ constructed based simulated Gaussian phenotypes with no genetic basis,

we found that CELLECT had a properly controlled type I error and that results were not confounded

by the median number of genes and transcripts per cell (there was a negligible correlation with the

number of cells for a given cell type [Pearson’s rho = 0.01, p=4.0�10�4], which disappeared when

we adjusted for the number of ES� genes for a given cell population [Figure 2—figure supplement

1]). These data establish the ability of this approach to validate previous evidence (Locke et al.,

2015) that BMI variants tend to colocalize with genes specifically expressed in neurons, while also

demonstrating that CELLECT is able to prioritize relevant cell types across a number of complex

traits.

Figure 1 continued

averaging ES metrics, CELLEX determines the significance of individual ES metric estimates (ESw), indicated by the red and gray colored areas. (c)

scRNA-seq datasets analyzed in this study. In total, the associations between 727 cell types and BMI heritability were analyzed. Anatograms modified

from gganatogram (Maag, 2018). (d) Example of the CELLEX approach for selected cell types and relevant marker genes. The log-scale distribution

plot of ESw illustrate differences of ES metrics. For each ES metric distribution, a black line is shown to indicate the cut-off value for ESw significance. In

most cases, the ES metrics identified the relevant marker gene as having a significant ESw. In all cases, the marker gene was correctly estimated as

having ES�~1. We note that the majority of genes have ES�=0 and were omitted from the log-scale plot. (e) ES� plots showing the specificity and

sensitivity of our approach. The plots depict ES� for the genes shown in panel (d) across all cell types in the respective datasets. For each marker gene,

the relevant cell type has the highest ES� estimate (high sensitivity) and cell types in which the given gene is likely to have a lesser role have near zero

ES� estimates (high specificity). BMI, body mass index; ES, expression specificity; GWAS, genome-wide association study; UK, United Kingdom; scRNA-

seq, single-cell RNA-sequencing.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Number of ES genes.

Figure supplement 2. Hierarchical clustering of cell types using ES�.
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Figure 2. Cell type prioritization across 17 tissues highlights a key role of the brain in obesity. (a) Prioritization of 115 Tabula Muris cell types identified

two cell types from the brain as significantly associated with BMI, namely oligodendrocyte precursor cells and neurons (shown in black; Bonferroni

significance threshold, PS-LDSC <0.05/115). (b) Heatmap of cell type prioritization for multiple GWAS traits. BMI results (first column) are the same as in

panel (a) and projected onto the heatmap. The four brain-related traits (second column) were associated with cell types in the brain, the two immune

traits (third column) were associated with immune cells, and anthropometric traits (fourth column) were associated with mesenchymal stem cells, which

are progenitor cells for muscle, bone and fat. Asterisks (*) mark cell types passing the per-trait Bonferroni significance threshold. The top bar plot shows

the estimated trait heritability. An overview of the GWAS files used in this work are available in the Figure 2—source data 1, metadata for the Tabula

Muris dataset are available in Figure 2—source data 2 and the CELLECT results for the Tabula Muris dataset are available in Figure 2—source data 3.

S-LDSC, stratified-linkage disequilibrium score regression; h2S-LDSC, trait SNP-heritability.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. GWAS overview.

Source data 2. Tabula Muris metadata.

Source data 3. Tabula Muris CELLECT results.

Figure supplement 1. Tests for confounding factors.
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A distributed set of neuronal cell types enrich for obesity susceptibility
We next assessed whether we could identify specific CNS cell types enriching for BMI-associated

variants. Applying CELLEX and CELLECT on 265 cell types from the across the Mouse Nervous Sys-

tem dataset, we identified 22 enriched cell types annotated to eight brain regions (Figure 3a). To

assess the specificity of the BMI GWAS signal in these 22 cell types, we computed enrichments for

the panel of nine other well-powered traits. As expected, none of the five traits primarily caused by

peripheral etiologies enriched for any nervous system cell type and several of 22 BMI GWAS-

enriched cell types also enriched for cognitive traits and psychiatric disorders (Figure 3b). Sixteen of

the 22 cell types were also enriched ‘intelligence’ and ‘worry’, two traits genetically anticorrelated

with obesity (overlapping sets of associated loci with opposite effect sizes) (Marioni et al., 2016;

Nagel et al., 2018).

Similar to previous work, we did not find any enrichment of genetic variants associated with BMI

in non-neuronal cell types (Campbell et al., 2017; Watanabe et al., 2019) nor did we detect enrich-

ment for a particular type of neurotransmitter type (Figure 3—figure supplement 1). Weighted

gene correlation network analysis (WGCNA [Langfelder and Horvath, 2008]) on expression data

from each of the 22 BMI-enriched cell types identified no significant modules (Figure 3—figure sup-

plement 2; top associated module, p=1.88�10�4; FDR � 0.1). These findings emphasize that the

BMI-associated variants most likely are distributed across hundreds of genes rather than the rela-

tively limited number of genes captured in cell-type-specific WGCNA modules (see Appendix 3 for a

discussion on limitations of identifying gene co-expression networks from cell type scRNA-seq data).

To assess the dependence of the results on a given enrichment methodology and BMI GWAS, we

re-computed enrichments using the Yengo et al., 2018 and Locke et al., 2015 BMI GWAS summary

statistics and the MAGMA tool (de Leeuw et al., 2015). We observed that the results were robust

to different GWAS sample sizes and inclusion of Metabochip array-based association data (Yengo

et al. and Locke et al. GWAS Pearson’s R = 0.98 and R = 0.83, respectively), and largely invariant to

the enrichment methodology used (Pearson’s R = 0.82; Figure 3—figure supplement 3). Finally,

during finalizing this work another study focused on Parkinson’s disease, reported BMI GWAS

enrichments for the same mouse nervous system cell types (overlap; 6/10) (Bryois et al., 2020).

Together, these results demonstrate that BMI-associated variants are likely to exert their effect

across multiple, predominantly neuronal cell types, several of which enrich for cognitive traits and

psychiatric disorders genetically correlated with obesity.

The enriched neuronal cell types share transcriptional similarities
The 22 BMI GWAS-enriched cell types mapped to eight brain regions, namely the subthalamus, mid-

brain, hippocampus, thalamus, cortex, pons, medulla and pallidum (Figure 4a). To assess the extent

to which shared transcriptional signatures could explain the enrichments across the 22 cell types, we

clustered all cell types based on their genes’ ES� values. Expectedly, midbrain cell types overall

grouped by their neuroanatomical proximities and neurotransmitter types by midbrain, hindbrain,

hippocampus/cortex clusters (Figure 4b). A notable exception was the DEINH3 cell type (isolated

from the hypothalamus region and subsequently remapped to the subthalamic nucleus by Zeisel

et al.) which grouped with the midbrain cell types. To further assess the transcriptional similarity

between the enriched cell types, we computed enrichments conditioned on each prioritized cell

type individually (Materials and methods). Contrary to our expectations, we found that none of the

other cell types remained significant when conditioning on the top-ranked subthalamic cell type

DEINH3 (Figure 4—figure supplements 1 and 2). Together these results indicate the brain cell

types enriching for BMI GWAS signal, despite their neuroanatomical differences, share transcrip-

tional signatures related to obesity, which current methods are not able to disentangle.

Ventromedial hypothalamic Sf1- and Cckbr-expressing cells enrich for
BMI GWAS
The total number of cell types in the hypothalamus has been significantly underestimated

(Kim et al., 2019a), therefore to assess whether the lack of enrichment for hypothalamic cell types

was due to sparse sampling of hypothalamic cells in the Mouse Nervous System dataset, we com-

puted enrichments for an additional set of 347 cell types sampled from the mediobasal hypothala-

mus (Campbell et al., 2017), the ventromedial hypothalamus (Kim et al., 2019a), the lateral
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Figure 3. Cell type prioritization of mouse nervous system cell types highlights cell types outside canonical energy homeostasis circuits. (a) Prioritization

of 265 mouse nervous system cell types identified 22 cell types from eight distinct brain regions as significantly associated with BMI. The highlighted

cell types passed the Bonferroni significance threshold, PS-LDSC <0.05/265. Cell types are grouped by the taxonomy described in Zeisel et al., 2018. (b)

Heatmap of cell type prioritization for multiple GWAS traits. The four brain-related traits (second column) were primarily associated with cortical

neurons (telencephalon projecting and interneuron cell types) and did not overlap with the BMI-associated cell types. The two immune traits (third

column) were associated with microglia, and anthropometric traits (fourth column) were predominantly associated with vascular cell types. Asterisks (*)

mark cell types passing the per-trait Bonferroni significance threshold. The top bar plot shows the estimated trait heritability. Metadata for the Mouse

Nervous System dataset are available in Figure 3—source data 1, CELLECT results for the Mouse Nervous System dataset are available in Figure 3—

source data 2, CELLEX expression specificity values for the BMI GWAS-enriched cell types are available in Figure 3—source data 3 and cognitive

traits and psychiatric disorders CELLECT results limited to the 22 BMI GWAS-enriched cell types are available in Figure 3—source data 4.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Mouse Nervous System metadata.

Source data 2. Mouse Nervous System CELLECT results.

Source data 3. Mouse Nervous System expression specificity results.

Source data 4. Mouse Nervous System results for other traits and diseases.

Source data 5. WGCNA results overview.

Source data 6. WGCNA results for the top module M1.

Source data 7. MAGMA results.

Figure 3 continued on next page
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hypothalamus (Mickelsen et al., 2019), the preoptic nucleus of the hypothalamus (Moffitt et al.,

2018) and the entire hypothalamus (Chen et al., 2017; Romanov et al., 2017). We identified four

non-overlapping significantly enriched cell populations, namely a ventromedial hypothalamic gluta-

matergic cell type (ARCME�NEURO29; p=4.9�10�5) expressing Sf1 (ES�=0.98 and ES�=0.99) and

Cckbr (cholecystokinin B receptor; ES�=0.98, ES�=0.95); a glutamatergic cell type from the lateral

hypothalamus (LHA-NEURO20; p=4.9�10�5); and two cell types from the preoptic area of the hypo-

thalamus (POA-NEURO21 and POA-NEURO66; p<1.0�10�4; Figure 5). Interestingly, ventromedial

hypothalamic neurons have previously been implicated in control of both body fat mass and blood

glucose levels; disrupted leptin signaling in Sf1-expressing ventromedial hypothalamic neurons ren-

ders mice more susceptible to diet-induced weight gain (Kim et al., 2011) and activation of ventro-

medial hypothalamic Sf1 neurons causes hyperglycemia (Meek et al., 2016). The two cell types also

expressed Bdnf (ES�=0.91, ES�=0.99); mutations in BDNF and its receptor, NTRK2, is a known cause

of monogenic obesity in humans and, in mice, BDNF signaling is required for normal energy homeo-

stasis and glucoregulatory control (Kamitakahara et al., 2016). (Bdnf and Ntrk2 were also specifi-

cally expressed in TEINH12 cell type, a cholecystokinin (Cck)-expressing interneuron, enriched in the

mouse nervous system analysis.) Noteworthy, clustering of the 347 hypothalamic cell populations

based on their ES� values resulted in clusters predominantly separating by cell type rather than by

study or single-cell technique, indicating that CELLEX is relatively robust to batch effects (Figure 1—

figure supplement 2).

There was no significant enrichment in neurons expressing the Pomc gene, a neuropeptide-

encoding gene with known coding mutations causing monogenic obesity in humans (4/5 of Pomc+

cell populations were nominally enriched; HYPR-NEURO24 (Pomc/Ttr), p=0.002; ARCME-NEURO21

(Pomc/Glipr1), p=0.01; HYPC-NEURO23 (Pomc/Cartp), p=0.03; HYPR-NEURO24 (Pomc),

p=3.0�10�3). We next tested whether the paucity of significant enrichments across hypothalamic

populations could be explained by either a limited ability of current hypothalamus scRNA-seq data-

sets to capture expression of relevant obesity genes or by a limited ability of CELLEX to correctly

detect these genes as being specifically expressed in relevant cell types. Towards that end, we first

compiled a set of 23 high-confidence obesity genes by merging a set of genes harboring protein-

altering variants associated with obesity and with a set of genes implicated in monogenic forms of

early-onset extreme obesity (both sets were obtained from Turcot et al., 2018; Figure 5—source

data 4). We then assessed whether these high-confidence obesity genes were robustly- (expressed

in �10% of the cells in a given population) and specifically (ES�>0) expressed within relevant medio-

basal hypothalamic arcuate-median eminence complex (Arc-ME) cell populations. By design, Pomc

expression was detected in each of the three Pomc+ cell populations; the leptin receptor was

detected in agouti-related peptide- and Trh/Cxcl12+ cell populations, two known leptin-sensing cell

populations; and, finally, Mc4r was only detected and specifically expressed in the Gpr50+ cell popu-

lation, which expressed several genes encoding receptors previously related to energy homeostasis

(Campbell et al., 2017) (Materials and methods; Figure 5b, lower panel). CELLEX correctly identi-

fied these three genes as specifically expressed in these six cell types. Among the 23 high-confi-

dence obesity genes, 20 were part of the Arc-ME dataset and 17 of them robustly and specifically

expressed in at least one neuronal Arc-ME cell population (Figure 5—figure supplement 1; Fig-

ure 5—source data 5). Moreover, four cell populations were enriched for the high-confidence obe-

sity genes ARCME-NEURO21 (Pomc/Glipr1+), ARCME-OTHER1 (a population of non-Arc-ME

neurons potentially from the retrochiasmatic area), ARCME-NEURO32 (Slc17a6/Trhr+; neurons

shown to be necessary and sufficient to induce satiety [Fenselau et al., 2017]) and ARCME-

NEURO28 (Qrfp+; an orexigenic neuropeptide involved in energy homeostasis [Chartrel et al.,

2016]; Bonferroni threshold p<0.05/34; Figure 5b, upper panel). We observed a high correlation

between the high-confidence obesity gene set- and CELLECT results across the hypothalamus cell

Figure 3 continued

Figure supplement 1. BMI-prioritized Mouse Nervous System cell type neurotransmitter classes BMI GWAS prioritized cell types prioritization enriched

for neurons.

Figure supplement 2. Genetic prioritization of cell type gene co-expression networks.

Figure supplement 3. Robustness of cell type prioritization results.
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Figure 4. Neuroanatomical location and transcriptional similarity of brain cell types enriching for BMI GWAS variants. (a) Sagittal mouse brain view

showing the 22 BMI GWAS-enriched cell types. The first two letters in each cell type label denote the developmental compartment (ME,

mesencephalon; DE, diencephalon; TE, telencephalon), letters three to five denote the neurotransmitter type (INH, inhibitory; GLU, glutamatergic) and

the numerical suffix represents an arbitrary number assigned to the given cell type. (b) Circular dendrogram showing the similarity of all Mouse Nervous

Figure 4 continued on next page
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types (Pearson’s rho = 0.50, p=1.1�10�5; Figure 5—source data 7). Moreover, we observed that

ES values increased with increasing cell population heterogeneity; 16 out of the 18 ARCME-detected

high-confidence obesity genes increased expression specificity when running CELLEX on all Arc-ME

cells compared to ARCME neurons-only (Figure 5—source data 8). Finally, we found that across the

Tabula Muris, Mouse Nervous System and Arc-ME datasets, 22 of the 23 high-confidence obesity

genes were among the 25% most specifically expressed genes in at least one cell type (Figure 5—

source data 9). Together these results indicate (a) that current hypothalamic single-cell data and our

CELLEX methodology are of a sufficient quality to detect relevant cell populations, that (b) upcom-

ing regional atlases with increased cellular heterogeneity will drive discovery of additional relevant

cell populations and cell states for complex traits, and that (c) the BMI GWAS and high-confidence

obesity genes’ approaches yield comparable results with a few notable exceptions (such as the

Pomc/Glipr1+ population).

Finally, to assess whether hypothalamic transcriptional patterns may explain less genetic heritabil-

ity compared to other brain areas in humans, we applied CELLEX and CELLECT on RNA-seq data

from the Genotype-Tissue Expression Consortium and found that the hippocampus and several

other brain areas exhibited stronger genetic enrichment signal than the hypothalamus (Figure 5c). In

contrast, the high-confidence obesity genes enriched most strongly for the hypothalamus

(p=3.9�10�4, FDR < 0.05; Figure 5—source data 12). These results support our previous observa-

tion that despite overlaps, obesity risk genes identified through rare-variant studies and genes near

associated BMI GWAS signals may point to slightly different regions of the brain, an observation

highlighting the importance of leveraging polygenic methodologies to identify cell types regulating

susceptibility to common obesity.

Genes with known links to human obesity genes implicate the dorsal
midbrain
As the high-confidence obesity genes have been identified independently of the BMI GWAS, we rea-

soned that we could use them to validate the cell types exhibiting the polygenic BMI GWAS signal.

We computed the enrichment of the high-confidence obesity genes within all 265 mouse nervous

system cell types and identified eight significantly enriched cell types (one-sided Wilcoxon rank sum

test, FDR < 0.05) of which two replicated cell types from the BMI GWAS analysis DEGLU5 and

MEGLU2 from the anterior pretectal nucleus and the periaqueductal grey, respectively; p<1.2�10�4.

The six remaining cell populations originated from areas implicated by the CELLECT analysis, namely

the midbrain (MBDOP1, periaqueductal grey; MBDOP2, ventral tegmental area and substantia nigra;

MEINH13, ventral/caudal midbrain; MEGLU14, the dorsal raphe nucleus), the hypothalamus

(HYPEP3, ventromedial hypothalamus), and the medulla (HBSER4, nucleus raphe medulla). We

observed a significant correlation between the high-confidence obesity genes enrichment- and CEL-

LECT enrichment results (Pearson‘s R = 0.54, p=3.0�10�21; Figure 5—figure supplement 2a), fur-

ther underscoring the validity of our findings, besides emphasizing that genes implicated in

monogenic obesity or implicated by obesity-associated protein-altering variants tend to colocalize

with BMI-associated GWAS loci (Figure 5—figure supplement 2b; Locke et al., 2015).

Interestingly, the leptin receptor, which regulates key energy homeostatic processes in the hypo-

thalamus and when defective may cause syndromic obesity (Choquet and Meyre, 2011) was only

specifically expressed in two out of the 22 BMI GWAS-enriched in the Mouse Nervous System data-

set cell types, namely glutamatergic cells from the periaqueductal grey and anterior nucleus of the

solitary tract (Figure 6a). By contrast, 17 of the enriched cell types expressed the serotonin receptor

Figure 4 continued

System dataset cell type expression specificity (ESm) values. Dendrogram edges colored by taxonomy described in Zeisel et al., 2018. Expectedly, the

cell types clustered according to their neuroanatomical origin. For clarity, only the labels of the 22 BMI GWAS enriched cell types are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Conditional CELLECT results.

Figure supplement 1. Conditional analysis of BMI GWAS-enriched mouse nervous system cell types conditional genetic prioritization analysis of BMI-

prioritized cell types.

Figure supplement 2. Correlation of mouse nervous system BMI GWAS-enriched cell types correlogram of cell type ES� Pearson’s correlations.
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Figure 5. BMI GWAS enrichment across hypothalamic cells and human tissues. (a) BMI GWAS enrichments across 347 hypothalamic cell types derived

from studies of the Arc-ME (ARCME), the ventromedial hypothalamus (VMH), the lateral hypothalamus (LHA), the preoptic nucleus of the hypothalamus

(POA) and the entire hypothalamus (HYPR and HYPC). For each study, CELLEX and CELLECT were run individually, and subsequently all cell types were

pooled and significance was determine based on Bonferroni correction (p<0.05/347). Four cell types were significantly enriched, namely POA-NEURO66

(Reln+; Moffitt et al., 2018) and POA-NEURO21 (Cck+/Ebf3+; Moffitt et al., 2018) from the preoptic area of the hypothalamus, ARCME-NEURO29

(Sf1+/Adcyap1+; Campbell et al., 2017) from the Arc-ME, and LHA-NEURO20 (Ebf3/Otb+; Mickelsen et al., 2019) from the lateral hypothalamus. (b)

CELLECT and high-confidence obesity genes enrichments for neuronal cell populations in the Arc-ME (upper panel). Expression of Mc4r, Pomc and

Lepr across Arc-ME neuronal populations, white squares means that the given gene is not expressed in at least 10% of the cells in the given cell

population, non-white squares denote increasingly specific gene expression (lower panel). (c) CELLECT enrichment analysis of Genotype-Tissue

Expression Consortium (GTEx) RNA-seq data. Orange bars denote significantly enriched tissues. The hypothalamus datasets’ metadata, CELLECT

results and expression specificity values for the enriched cell types are available in Figure 5—source datas 1–3. The GTEx tissue annotations, CELLECT

and high-confidence obesity genes enrichment results are available in Figure 5—source datas 10–12. POA, preoptic area of the hypothalamus; LHA,

lateral hypothalamus; ARCME, arcuate nucleus and median eminence complex; S-LDSC, stratified-linkage disequilibrium score regression.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Hypothalamus datasets metadata.

Source data 2. Hypothalamus CELLECT results.

Source data 3. Hypothalamus expression specificity results.

Source data 4. High-confidence obesity genes.

Source data 5. High-confidence obesity genes expression specificities.

Source data 6. High-confidence obesity genes enrichments.

Source data 7. High-confidence obesity genes CELLECT correlations.

Source data 8. Expression specificity and cell type heterogeneity.

Source data 9. High-confidence obesity genes CELLEX top quartile.

Source data 10. Genotype-Tissue Expression data annotation.

Source data 11. Genotype-Tissue Expression CELLECT enrichment results.

Source data 12. Genotype-Tissue Expression obesity genes enrichment results.

Figure supplement 1. Arc-ME neuronal cell population enrichments and expression levels across obesity genes CELLECT and high-confidence obesity

genes enrichments for neuronal cell populations in the Arc-ME (upper panel).

Figure 5 continued on next page
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5-Htr2c (5-hydroxytryptamine receptor 2C), a known regulator of energy and glucose homeostasis

(Berglund et al., 2013) and a target for anti-obesity pharmacotherapy (Halford et al., 2011;

Figure 6b). 5-Htr2c was most specifically expressed in the anterior pretectal nucleus (DEGLU5,

ES�=0.96), the cell type among our results which most specifically expressed Pomc (ES�=0.41). Mice

lacking the Htr2c in Pomc neurons are resistant to 5-Htr2c agonist Lorcaserin-induced weight loss

(Berglund et al., 2013) (for ES� plots of other selected genes, please refer to Figure 6—figure sup-

plement 1).

Together our results indicate that susceptibility to obesity conferred by common variants, while

enriching for some hypothalamic cell types such as VMH Sf1-expressing neurons, is distributed

across a mosaic of neuronal cell types of which a majority is involved in regulating integration of sen-

sory stimuli, learning and memory.

Figure 5 continued

Figure supplement 2. Convergence of cell type prioritization based on common and rare variants.

Figure supplement 3. High-confidence obesity genes enrichment in mouse nervous system cell types.

Figure 6. Expression specificity of the leptin- and serotonin receptors across BMI GWAS enriched cell types. (a) In the lipostatic model of obesity

originally defined by Kennedy, 1953, circulating concentrations of the leptin hormone signal the amount of energy stored in fat cells to the brain. The

plot shows gene ES� (y-axis) for each cell type (x-axis, ordered by increasing values of expression specificity, ES�) with BMI-prioritized cell types from

the Mouse Nervous System dataset highlighted. In our analysis, only two of the 22 BMI GWAS enriched cell types specifically expressed the leptin

receptor (MEGLU2, periaqueductal grey; and HBGLU2, nucleus of the solitary tract). (b) Seventeen of the 22 BMI GWAS enriched cell types specifically

expressed the serotonin (5-htr2c) receptor. The strongest enrichment was observed for DEGLU5, a glutamatergic cell type from the anterior pretectal

nucleus. ES�, expression specificity.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. ES� plot for selected genes ESm plots for genes selected based on their suggested role in appetite regulation, energy

homeostasis or obesity.
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Discussion
Here, we developed two scRNA-seq computational toolkits called CELLEX and CELLECT and

applied them to scRNA-seq data from a total of 727 mouse cell types, from late postnatal and adult

mice, to derive an unbiased map of cell types enriching for human genetic variants associated with

obesity. In total, we identified 26 BMI GWAS-enriched neuronal cell types, which, in line with previ-

ous considerations (Grill, 2006), demonstrates that susceptibility to human obesity is likely to be dis-

tributed across multiple, mainly neuronal, cell types across the brain, rather than being restricted to

a limited number of canonical energy homeostasis- and reward-related brain areas in the hypothala-

mus, midbrain and hindbrain. Among the enriched hypothalamic cell types, we identified VMH Sf1-

and Cckbr-expressing neurons, which previously have been implicated in glucose and energy

homeostasis. We show that while the polygenic enrichment signal is highly correlated with enrich-

ment of high-confidence obesity genes, this alignment diverges for hypothalamic neuron popula-

tions (including Pomc-positive neurons) suggesting that common genetic susceptibility to obesity

acts on a more broadly distributed set of neuronal circuits across the brain.

Processing of sensory stimuli and feeding behavior
Several of the enriched cell types localized to nuclei integrating sensory input and directed behavior.

The inferior colliculus (implicated by MEGLU7, MEGLU10 and MEGLU11) and medial geniculate

nucleus (MEINH3) process auditory input, the superior colliculus for translation of visual input into

directed behavior (MEGLU1 and MEGLU6), the anterior pretectal nucleus processes somatosensory

input (DEGLU5 and MEINH4), and the piriform cortex (TEGLU17) and anterior olfactory nucleus

(TEGLU19) processing odor perception. The superior colliculus and anterior pretectal nucleus have

both been implicated in predatory behavior (Shang et al., 2019; Antinucci et al., 2019) and project

to the zona incerta, a less well-described brain area situated between the thalamus and hypothala-

mus that receives direct input from mediobasal hypothalamic Pomc neurons (Wei et al., 2018). In

rats, lesioning of the zona incerta impairs feeding responses (Stamoutsos et al., 1979) while, con-

versely, in mouse models, optogenetic stimulation of GABAergic neurons in the zona incerta leads

to rapid, binge-like eating and body weight gain (Zhang and van den Pol, 2017). Activation of pro-

jections from the hypothalamic preoptic nucleus (DEINH5; POA-NEURO21, POA-NEURO66) to the

ventral periaqueductal gray (MEGLU2 and MBDOP1) induce object craving (Park et al., 2018),

whereas pharmacological inactivation of the periaqueductal gray decreases food consumption

(Tryon and Mizumori, 2018). Together, these findings suggest that susceptibility to obesity is

enriched in cell types processing sensory stimuli and directing actions related to feeding behavior

and opportunity.

Evidence supporting a key role of the learning and memory in obesity
Feeding is not an unconditioned response to an energy deficiency but rather reflecting behavior

conditioned by learning and experience (Woods and Begg, 2015). We previously showed that

genes in BMI GWAS loci enrich for genes specifically expressed in hippocampal postmortem gene

expression data (Locke et al., 2015). In this work, we identified specific brain cell types supporting a

role of memory in obesity. First, the parafascicular nucleus (DEGLU4), when lesioned in mice,

reduces object recognition memory (Castiblanco-Piñeros et al., 2011). Second, the retrosplenial

cortex (TEGLU4) is responsible for decisions made on past experiences (Hattori et al., 2019). Third,

among the two enriched glutamatergic hippocampal cell types (TEGLU21 and TEGLU23), the latter

expresses lipoprotein lipase as one of its top marker genes, an enzyme that causes weight gain

when pharmacological or genetically attenuated in mice (Picard et al., 2014). Similarly, fasting inhib-

its activation of hippocampal CA3 cells (based on c-fos levels) in mice (Azevedo et al., 2019) and

activation of glutamatergic hippocampal pyramidal neurons increases future food intake in rats most

likely by perturbing memory consolidation related to the previous meal (Holahan and Routtenberg,

2011). In sum, our results provide further evidence that processes related to learning and memory

play a key role in human obesity, and provide insights into specific cell types underlying hippocam-

pal-centric susceptibility to obesity.
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Limitations of our approach
Our results should be interpreted in the light of the underlying data and methodologies used to pri-

oritize the cell types. First, the scRNA-seq data analyzed here were derived from late postnatal, adult

and predominantly wild-type mice; future work is needed to assess the role of Pomc+, Agrp+ and

Mc4r+ and other hypothalamic cell types during developmental stages and relevant obesogenic per-

turbations in human obesity (Zeltser, 2018). Second, the datasets used in this work should not be

regarded as complete atlases because they are likely to miss relevant cell types such as Mc4r-posi-

tive neurons, which are known to play a key role in obesity. Third, one should keep in mind the over-

all assumption behind our approach, namely that in order for a given gene to confer genetic

susceptibility for a given disease it needs to be expressed in the given cell type or tissue, where

increasing expression is associated with increasing relevance. Thus, our approach is not designed to

detect cell types in which reduced expression of a specific gene predisposes to obesity. Fourth,

while studies have shown that the largest amount of variation is explained by organ rather than spe-

cies differences (Brawand et al., 2011), that the majority of neuronal genes showed similar laminal

patterning between human and mouse cortical samples (Zeng et al., 2012), and that broadly

defined cell types were conserved between mouse and human (Hodge et al., 2019), analyses of

human tissues may identify additional cell types critical to obesity development. Finally, given the

dependence of CELLECT results on other cell types in the given datasets, we, generally, recommend

running a ‘tiered’ prioritization strategy for CELLECT, where one preferably starts with analyzing

body-wide or organ-wide transcriptional atlases and then turns to more tissue-centric datasets.

While the high polygenicity of obesity and the inaccessibility of the human brain complicate

approaches to further establish the enriched cell types’ relevance in human obesity, we believe that

combinations of functional imaging techniques, postmortem single-nucleus analyses, enhancers to

gene maps and fine-mapping of BMI GWAS loci will be crucial to better understand their role in

human obesity.

Strategies for follow-up
Having identified GWAS-enriched cell populations only marks the start of the journey towards under-

standing how genetic variants render us susceptible to obesity. Two key questions marking the out-

set of this journey are; What is the subset of associated GWAS variants acting through the enriched

cell populations and what are the regulatory elements and effector genes (candidate causal genes)

through which these variants exert their effects? And, how is the given cell population affecting

physiology and downstream risk of obesity? Given that CELLECT is not specifically designed to iden-

tify effector genes but rather intended to identify cell populations enriching for GWAS signal, we

suggest to address these questions by focusing on (a) identifying the set of candidate causal variants

and effector genes conferring risk through the focal cell population, and (b) directly validating the

relevance of the focal cell population under relevant physiological and pharmacological conditions.

Fulco et al. recently proposed an elegant model to map enhancers to effector genes in a given

cell type (Fulco et al., 2019). Their so-called activity-by-contact model leverages single-cell chroma-

tin accessibility and enhancer activity data to identify cell type-specific enhancers and their target

genes. For the focal cell population, such an enhancer-gene map, when integrated with credible sets

of fine-mapped GWAS variants, would bring forward a set of testable hypotheses on how a set of

candidate causal variants act through a set of specific enhancers and effector genes to impact obe-

sity (or any other disease of interest). Additional confidence could be gained by adding in computa-

tional gene prioritization approaches such as DEPICT or MAGMA, for example by up-weighing

effector genes that are predicted to be functionally similar to candidate effector genes in the other

relevant cell populations. Given species-specific differences in gene regulation, these analyses would

need to be performed in animal models with at least partly conserved gene regulatory architectures,

human postmortem brain samples (ideally obtained from relevant cases and controls) and/or in

induced pluripotent stem cells models (ideally selected from individuals with relevant polygenic

backgrounds).

Given the challenges typically encountered in the journey aimed at identifying causal variants and

effector genes underlying obesity (for successful examples see Claussnitzer et al., 2015;

Smemo et al., 2014), we suggest in parallel to leverage transgenic animal models to directly assess

the relevance of the focal cell in obesity. Given that CELLEX provides marker genes specifically
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marking the focal cell population and that all enriched cell populations were of neuronal origin,

transgenic animal model techniques such as designer receptors exclusively activated by designer

drugs (DREADD)-based chemogenetic tools for activation or inhibition of neurons, transgenic techni-

ques for cell ablation, and fiber photometry techniques for real-time monitoring the impact of rele-

vant physiological environments or pharmacological treatments on the focal cell population, are

well-positioned to provide relevant insights into the role of the given cell type in the control of

energy homeostasis.

Relevance to human obesity
Despite these limitations, several lines of evidence suggest that the cell types identified herein to be

enriched for BMI GWAS signal are relevant to human obesity. First, weight gain is the most pro-

nounced side effect of subthalamic nucleus deep brain stimulation used to treat Parkinson patients

(Limousin and Foltynie, 2019), an adverse side effect that may involve the DEINH3 cell type map-

ping to the subthalamic nucleus. Second, lorcaserin (Belviq), an anti-obesity drug, acts on the 5-

HTR2C receptor to enhance serotonin signaling. Third, at the genetic level BMI is significantly corre-

lated with attention deficit/hyperactivity disorder (ADHD) (Demontis et al., 2019), and growing evi-

dence points to links between ADHD and eating disorders. For example, lisdexamfetamine

(Vyvanse), a medication used to treat ADHD, is also used to treat binge eating (McElroy et al.,

2016), while the ADHD medication methylphenidate (Ritalin) is known to reduce appetite

(Faraone et al., 2008). These pharmacological observations suggest that the shared heritability of

BMI and ADHD may involve pleiotropic gene variants acting through dorsal midbrain pathways.

Fourth, genetic predisposition to obesity is protective to feelings of worry (Millard et al., 2019),

supporting our findings that these two traits are potentially acting through overlapping cell types in

the dorsal midbrain. Finally, BMI variants associated with BMI in a GWAS conducted in Japanese

individuals enriched most highly for enhancers active in the hippocampus (Akiyama et al., 2017)

and maternal obesity is associated with reduced total hippocampal volume in reduced CA3 volume

in children (Page et al., 2018). Together these observations support a model in which integration of

sensory signals, the dopamine system and memory are likely to play key roles in regulating suscepti-

bility to obesity.

In conclusion, our results implicate specific brain nuclei regulating integration of sensory stimuli,

learning and memory in human obesity and provide testable hypotheses for mechanistic follow-up

studies. Our methodological framework provides a salient example of how human genetics data can

be integrated with murine scRNA-data to identify and map components of brain circuits underlying

obesity. We provide easy to use computational toolkits, CELLECT and CELLEX, which we envision

will greatly facilitate future functional interpretation of genetic association data.

Materials and methods

GWAS
For our primary analysis we obtained BMI GWAS summary statistics performed in UK Biobank partic-

ipants (Nmax = 457,824) (Loh et al., 2018). To examine the robustness of our results to changes in

GWAS cohort size, we performed secondary analyses on BMI GWAS summary statistics from two

meta-analyses described in Yengo et al., 2018 Nmax = 795,640, UK Biobank and GIANT cohorts and

Locke et al., 2015 (Nmax = 322,154; European subset). We note that these two studies include indi-

viduals genotyped on custom array chips (Illumina Metabochip), which violate certain assumptions of

S-LDSC, however, we show that this has a negligible effect on our results. Figure 2—source data 1

provides the full list of GWAS summary statistics analyzed here. We used the script ‘munge_sum-

stats.py’ (LDSC v1.0.0, see URLs) to prepare all GWAS summary statistics. All prepared statistics

were restricted to HapMap3 single nucleotide polymorphisms (SNPs), excluding SNPs in the major

histocompatibility complex region (chr6:25Mb-34Mb).

Single-cell RNA-seq datasets
For the Tabula Muris dataset (Tabula Muris Consortium et al., 2018; SmartSeq2 protocol) cell types

were defined as unique combinations of cell ontology and organ annotation (for example, ‘Lung-

Endothelial_cell’) resulting in n = 115 cell type annotations (of which one was defined as neuronal).
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For the Mouse Nervous System dataset (Zeisel et al., 2018; 10x Genomics protocol), we used the

‘ClusterName’ option as cell type annotations (n = 265, of which 214 were defined as neuronal). For

the hypothalamus, we leveraged datasets from six studies:

. Arc-ME: Arcuate nucleus and median eminence complex (Campbell et al., 2017 DropSeq pro-
tocol). We used the ‘Subcluster’ annotations (n = 65, of which 34 were defined as neuronal).

. POA: Preoptic area (Moffitt et al., 2018 10x Genomics protocol) dataset. We used the ‘Non-
neuronal.cluster.(determined.from.clustering.of.all.cells)’ annotations for non-neuronal cell
types (n = 21) and the ‘Neuronal.cluster.(determined.from.clustering.of.inhibitory.or.excitatory.
neurons)’ annotation for neuronal cell types (n = 66).

. LHA: Lateral Hypothalamic Area (Mickelsen et al., 2019, 10x Genomics protocol). We used
the ‘dbCluster’ annotations (n = 43, 30 neuronal).

. VMH: Ventromedial Hypothalamus (Kim et al., 2019a SMART-seq and 10x Genomics proto-
cols). We used the ‘smart_seq_cluster_label’ annotations for the SMART-seq dataset (n = 48,
of which 40 were defined as neuronal) and the ‘tv_cluster_label’ annotation for the 10x Geno-
mics dataset (n = 29, all neuronal).

. HYPC: Pan hypothalamus (Chen et al., 2017, DropSeq protocol). We used the ‘SVM_clusterID’
annotations (n = 45, 34 neuronal).

. HYPR: Pan hypothalamus (Romanov et al., 2017, Fluidigm C1 protocol) dataset, we used the
‘level1 class’ annotation for non-neuronal populations (n = 6) and the ‘level2 class (neurons
only)’ annotation for neurons (n = 54).

Code to download and reproduce preprocessing of all datasets are available via GitHub (see

URLs). Figure 2—source data 2, Figure 3—source data 1 and Figure 5—source data 1 list cell

type annotations, the number of cells per cell type and relevant metadata for the Tabula Muris,

Mouse Nervous System and hypothalamus datasets (for each hypothalamus dataset we list the cell

type labels used in this study as well as the cell type labels used in the original studies).

Single-cell RNA-seq data pre-processing
For each dataset, we began with a matrix of gene expression values. We normalized expression val-

ues to a common transcript count (with n = 10,000 transcripts as a scaling factor) and applied log-

transformation (log xþ 1ð Þ). Next we excluded ‘sporadically’ expressed genes following the approach

described in Skene et al., 2018 using a one-way ANOVA with cell type annotations as the grouping

factor and excluding all genes with p>10�5. We mapped mouse genes to orthologous human genes

using Ensembl (v. 91), keeping only 1–1 mapping orthologs.

Cell type labels
For the Mouse Nervous System dataset, we used (Zeisel et al., 2018) cell type annotations: the first

two letters in each cell type abbreviation denote the developmental compartment (ME, mesenceph-

alon; DE, diencephalon; TE, telencephalon), letters three to five denote the neurotransmitter type

(INH, inhibitory; GLU, glutamatergic) and the numerical suffix represents an arbitrary number

assigned to the given cell type. Likewise, for the Tabular Muris dataset, we used the cell type labels

as reported in their paper. For the six hypothalamic datasets, we added a label to allow the reader

to more easily understand, from which part of the hypothalamus a given cell type was sampled in

the original study (‘ARCME’, arcuate nucleus median eminence complex; ‘HYPC’, hypothalamus

Chen et al., 2017; ‘HYPR’, hypothalamus Romanov et al., 2017; ‘LHA’, lateral hypothalamus;

‘POA’, preoptic area; ‘VMH’, ventromedial nucleus) and the cell type it was annotated to in the origi-

nal work.

Mouse nervous system neurotransmitter annotation
We used the ‘Neurotransmitter’ column of the cell type metadata (from the mousebrain.org website)

to group neuronal cell types into six neurotransmitter classes (transmitter listed in parenthesis):

‘excitatory’ (glutamate), ‘inhibitory’ (GABA or glycine), ‘monoamines’ (adrenaline, noradrenaline,

dopamine, serotonin), ‘acetylcholine’ (acetylcholine), ‘nitric oxide’ (nitric oxide) and ‘undefined’ for

neurons not matching these classes or without neurotransmitter data. When cell types were anno-

tated with multiple transmitter classes in the ‘Neurotransmitter’ column (e.g. glutamate and adrena-

line), excitatory or inhibitory class took precedence in our assignment.
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CELLEX expression specificity
See Appendix 2 for a discussion on ES calculations, assumptions and limitations. CELLEX version

1.0.0 was used to produce all results reported in this manuscript. See URLs for a ready-to-use Python

implementation of CELLEX. We calculated expression specificity separately for the Tabula Muris, the

Mouse Nervous System and each of the hypothalamus datasets. Cell type expression specificity

weights (ESw) were calculated using four ES metrics her referred to us as Gene Enrichment Score

(GES) (Zeisel et al., 2018), Expression Proportion (EP) (Skene et al., 2018), Normalized Specificity

Index (NSI) (Dougherty et al., 2010) and Differential Expression T-statistic (DET). The mathematical

formulas for the ES metrics can be found in Appendix 2. For each ES metric, we separately com-

puted gene-specific ESw values before averaging them into a single ES estimate (ES�) using the fol-

lowing steps:

1. For each cell type we determined the set of specifically expressed genes, Gs, by testing the
null hypothesis that a gene is no more specific to a given cell type than to cells selected at ran-
dom. We computed empirical P-values of ES weights by comparing observed weights for cell
type c to ‘null’ weights obtained by sampling the dataset’s cell type annotations (including
annotations from cell type c without replacement).

2. For each cell type we calculated ESw* representing the genes’ score of being specifically
expressed in a given cell type. We assumed that each cell type has a set of specifically
expressed genes exhibiting a linearly increasing score reflecting its expression specificity. We
modeled this linearity assumption by rank normalizing ESw for genes, g, in Gs:

ESw�ðgÞ ¼ rankg ESw gð Þð Þ= Gsj jif g 2 Gs

ESw�ðgÞ ¼ 0 if g =2Gs

Note that ESw* are scaled such that ESw� 2 ½0; 1�.
3. For each cell type, we calculated ES�, representing a gene’s score of being specifically

expressed in a given cell type, by taking the mean ESw* across all ES metrics (we here assume
equal weighing of ES metrics).

We use ‘ES genes’ to denote the set of genes with ES�>0 for a given cell type. Hence, all genes

being part of at least one Gs for a specific cell type will be included in the set of ES genes for this

cell type. Figure 3—source data 3 and Figure 5—source data 3 show the number of ES genes for

the BMI GWAS-enriched Mouse Nervous System and hypothalamus cell types. We note that ES

genes include genes that were not only strictly specifically expressed (only expressed in the cell

type) but also those that were loosely specifically expressed (i.e. have higher expression in the cell

type). All cell type enrichment results were computed based on the ES� estimates. CELLEX can take

count data as well as transcripts per million-normalized data as input.

Expression specificity of known marker genes
First, to validate that our ES approach was able to delineate cell type-specific genes, we, for each of

the four ES metrics, computed ESw estimates across four cell types with genes known to be specifi-

cally expressed in these cell types, namely hepatocytes (Apoa2), pancreatic alpha-cells (Gcg), stria-

tum medium spiny neurons (Drd2) and mediobasal hypothalamic agouti related peptide (Agrp)-

expressing neurons (Agrp). The four ESw metrics and the combined ES� metric correctly ranked the

relevant genes at the top (Figure 1d). Conversely, plotting ES� values for these four genes across all

cell types revealed that hepatocytes and alpha-cells exhibited the highest ES� for Apoa2 and Gcg,

respectively, and that medium spiny neurons and Agrp-positive neurons exhibited the highest ES�
for Drd2 and Agrp, respectively (Figure 1e).

CELLECT genetic prioritization of trait-relevant cell types
See Appendix 1 for adiscussion on assumptions and limitations. CELLECT version 1.0.0 was used to

produce all results reported in this manuscript. See URLs for a ready-to-use Python implementation

of CELLECT. Throughout this paper, we report CELLECT cell type prioritization results using

S-LDSC, as this model has been shown to produce robust results with properly controlled type I

error (Finucane et al., 2018). Cell type prioritization results using MAGMA (de Leeuw et al., 2015)

can be found in Figure 3—figure supplement 3b and Figure 3—source data 7.
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Stratified linkage disequilibrium score regression
We used stratified S-LDSC (v. 1.0.0, URLs) to prioritize cell types after transforming cell type ES� vec-

tors into S-LDSC annotations. Running S-LDSC with custom annotations follows three steps: genera-

tion of annotation files, computation of annotation LD scores and fitting of annotation model

coefficients. We created annotations for each cell type by assigning genes’ ES� values to genetic var-

iants utilizing a 100 kilobase (kb) window of the genes’ transcribed regions. Fulco et al. showed that

most enhancers are located within 100 kb of their target promoters (Fulco et al., 2019). When a var-

iant overlapped with multiple genes within the 100 kb window, we assigned the maximum ES� value.

The relatively large window size was chosen to capture effects of nearby regulatory variants, as the

majority of trait-associated variants have been shown to be located in non-coding regions

(Gusev et al., 2014). Our results were robust to changes in window size (data not shown), consistent

with previous work (Skene et al., 2018; Finucane et al., 2018; Kim et al., 2019b). Following the

recommendation in Finucane et al., 2018, we constructed an ‘all genes’ annotation for each expres-

sion dataset, by assigning the value 1 to variants within 100 kb windows of all genes in the dataset.

We used hg19 (Ensembl v. 91) as the reference genome for genetic variant and gene chromosomal

positions. When constructing annotations, we used same 1000 Genomes Project SNPs

(Abecasis et al., 2012) as in the default baseline model used in S-LDSC. Next, we computed LD

Scores for HapMap3 SNPs (Altshuler et al., 2010) for each annotation using the recommended

settings.

For the primary cell type prioritization analysis, we jointly fit the following annotations: (i) the cell

type annotation; (ii) all genes annotation (iii) the baseline model (v1.1). For cell type conditional anal-

ysis (Figure 4—figure supplement 1) we added (iv) the cell type annotation conditioned on when

fitting the model.

We ran S-LDSC with default settings and the workflow recommended by the authors. We

reported p-values for the one-tailed test of positive association between for trait heritability and cell

type annotation ES�. We note that the correlation structure among ES� for cell type annotations can

lead to a distribution of p-values that is highly non-uniform (Finucane et al., 2018). Highly significant

p-values occur due to correlated cell types with true signal, whereas cell types negatively correlated

with the true signal have p-values near 1. For all results, we used Bonferroni correction within a trait

and dataset to control the FWER. We report the regression effect size estimate for each cell type

(source data: ‘Coefficient’ column), which represents the change in per-SNP heritability due to the

given cell type annotation, beyond what is explained by the set of all genes and baseline model. We

also report standard errors of effect sizes (‘Coefficient std error’ column), computed using a block

jackknife (Finucane et al., 2015). Finally, we report the ‘annotation size’ for each cell type, that

measures the proportion of SNPs covered by the cell type annotation (0 means no SNPs were cov-

ered by the annotation; 1 means all SNPs were covered). Annotation size was computed as the

mean of the cell type annotation.

S-LDSC heritability analysis
All S-LDSC heritability analyses and reported effect size estimates were obtained on the observed

heritability scale, with the exception of heritability estimates for case-control traits shown in the bar-

plots of Figure 2a and Figure 3b. Here, we report heritability estimates on the liability scale using

population prevalences listed in Figure 2—source data 1. (The liability scale is needed when the

aim of heritability analysis is to compare heritability estimates across traits. On a liability scale the

case-control trait is treated as if it has an underlying continuous liability, and then the heritability of

that continuous liability is quantified.) To interpret the heritability explained by our continuous-val-

ued ES� cell type annotations, we estimated the heritability of each ES� quintile. We modified the

script ‘quantile_M.pl’ (from the LDSC package) to compute heritability enrichment for five equally

spaced intervals of the cell types ES� annotations: (0–0.2), (0.2–0.4), (0.4–0.6), (0.6–0.8), (0.8–1), as

well as the interval including zero values only ([0–0]).

MAGMA cell type prioritization
To assess the robustness of the SNP-level S-LDSC cell type prioritization, we used an alternative

gene-level approach inspired by Skene et al., 2018 and tested the association of gene-level BMI

association statistics with cell type ES� using MAGMA (v1.07a) (de Leeuw et al., 2015). MAGMA
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was run with default settings to obtain gene-level association statistics calculated by combining SNP

association p-values within genes and their flanking 100 kb windows into gene-level Z-statistics,

while accounting for LD (computed using the 1000 Genomes Project phase 3 European panel;

Abecasis et al., 2012). Gene-level Z-statistic were corrected for the default MAGMA covariates:

gene size, gene density (a measure of within-gene LD) and inverse mean minor allele count, as well

the log value of these variables. Next, we used the R statistical language to fit a linear regression

model using MAGMA gene-level Z-statistics as the dependent variable and cell type ES� as the inde-

pendent variable. We report cell type prioritization p-values (from the linear regression model) as

the positive contribution of cell type ES� regression coefficient to BMI gene-level Z-statistics (one-

sided test).

Cell type geneset enrichment analaysis
To assess cell type enrichment of genesets associated with obesity, we tested if members of the

obesity geneset exhibited higher expression specificity (ES�) in a given cell type than non-members

of the geneset (all other genes in the dataset). Specifically, we used a Wilcoxon rank sum test with

continuity correction to obtain one-sided geneset enrichment p-values. We controlled the FWER

using the Bonferroni method calculated over all cell types and the rare variant obesity geneset

tested. As a precaution against unknown confounders, we also computed empirical p-values by per-

muting the expression specificity gene labels 10,000 times to obtain ‘null genesets’ of identical size,

and obtained near-identical results (data not shown). We obtained genes with rare coding variants

associated with obesity (n = 13 genes) and genes implicated in early onset- and extreme obesity

from Turcot et al. Table 1 and Supplementary Table 21, respectively. We combined these genes into

a single set of 23 high-confidence obesity genes.

Cell type gene co-expression networks
We identified cell type gene co-expression networks using robust weighted gene correlation net-

work analysis (rWGCNA) framework proposed by Langfelder and Horvath, 2008. To identify gene

co-expression networks (or gene modules) operating within a cell type, the input to WGCNA is

expression data for individual cell types. Briefly our framework consisted of the following steps:

1. We normalized the raw expression values to a common transcript count (with n = 10,000 tran-
scripts as a scaling factor), log-transformed the normalized counts (log(x+1)), and centered
and scaled each gene’s expression to Z-scores. Cell clusters with fewer than 50 cells were
omitted, and genes expressed in fewer than 20 cells were removed. We then used PCA to
select the top 5000 highly loading genes on the first 120 principal components. We mapped
mouse genes to orthologous human genes using Ensembl (v. 91), keeping only 1–1 mapping
orthologs.

2. We then used hierarchical clustering and hybrid tree cutting algorithms to identify gene mod-
ules. Module eigengenes, which summarize module expression in a single vector, were com-
puted and used to identify and merge highly correlated modules.

3. Finally, we computed gene-module correlations (kMEs), a measure of gene-module member-
ship, filtering out any genes which were not significantly associated with their allocated module
after correcting for multiple testing using the Benjamini-Hochberg method.

Genetic prioritization of cell type co-expression networks
Genetic prioritization of WGCNA gene modules followed the same framework as for prioritizing cell

types. That is, we used S-LDSC controlling for the baseline and ‘all genes’ annotations. Gene mod-

ules annotations were constructed by assigning the module genes’ kME values to variants within a

100 kb window of the genes’ transcribed regions. We restricted modules to contain at least 10

genes and at most 500 genes (removing 8 out of 571 modules), because S-LDSC is not well-

equipped for prioritizing annotations that span very small proportion of the genome, and unspecific

modules with a large number of weakly connected genes may have limited biological relevance.

Co-expression network visualizations
To create the network visualization of the cell type rWGCNA gene modules (Figure 3—figure sup-

plement 2b), we computed the Pearson’s correlation between module kME values (a measure of
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gene-module membership) and generate a weighted graph between modules using the positive cor-

relation coefficients only. To create the network visualization of the M1 gene module (Figure 3—fig-

ure supplement 2c), we computed the Pearson’s correlation between genes within the module,

using expression data from the cell type in which the module was identified (MEINH2). We then gen-

erate a weighted graph between genes using the positive correlation coefficients only. We then

mapped MAGMA BMI gene-level Z-statistics (calculated using 100 kb windows, as described above)

onto the network as node sizes. All networks were visualized using the R package ‘ggraph’ with

weighted Fruchterman-Reingold force-directed layout.

Cell type enrichment of co-expressed gene networks
To assess if gene modules were enriched in the expression specific genes of specific cell types, we

tested if module gene members exhibited higher expression specificity (ES�) in the given cell type

than non-members of the module (all other genes in the dataset). We obtained one-sided enrich-

ment p-values using the Mann-Whitney U test. We controlled the FDR by using the Bonferroni

method calculated over gene modules tested.

Tests for confounding factors and null GWAS construction
In order to test for technical bias in CELLECT genetic enrichment scores, we prioritized cell types

using GWAS based on randomly distributed phenotypes (’null GWAS’). We computed 1000 GWAS

based on 1000 Genomes Project Phase three genotyping data and simulated Gaussian phenotypes

randomly drawn from a N(0,1) distribution with no genetic bias. We then performed genetic prioriti-

zation across 115 cell types in the Tabula Muris dataset using CELLECT with S-LDSC for each null

GWAS.

S-LDSC prioritization p-values, which for null GWAS tend toward a uniform distribution, showed a

slight enrichment for P-values closer to 1, and a slight depletion close to 0. To verify that CELLECT

genetic prioritization p-values were not correlated with technical factors, we computed the Pearson

correlation between the -log10(S-LDSC p-value) for a cell type and the number of cells, median num-

ber of genes expressed, and median number of UMIs, respectively for each null GWAS. We used a

two-sided t-test to identify significant deviations from the expected mean correlation of zero.

The genotype-tissue expression consortium data and analysis
The genotype-tissue expression version eight gene expression read counts were obtained from their

portal (download date 6 May 2020). An initial set of 17,382 RNA-seq samples were filtered on quality

indicators using the same cutoffs as in GTEx Consortium et al., 2017. Next, to identify and remove

outliers, we used an approach similar to that of Wright et al., 2014: within each tissue-type (SMTSD

annotation), we computed the mean Pearson correlations of each sample to the others. We then

removed any samples whose expression profile had a mean correlation falling below the first quartile

by more than 1.5 times the interquartile range within that tissue-type, leaving 16,027 samples from

946 donors. Genes were then filtered, again using the cutoff from GTEx Consortium et al., 2017,

that is keeping genes with at least six reads in at least 10 samples. To ensure positive expression val-

ues as required by CELLEX, and given that common batch-correction techniques typically incur

partly negative expression values, we did not perform batch correction. The filtered gene read

counts were normalized within each broad tissue-type (SMTS annotation) using the DESeqDataSet-

FromMatrix(), estimateSizeFactors() and counts() commands from the DESeq2 R package (v1.22.2)

(Love et al., 2014). Finally, normalized counts were log-transformed (log2(x+1)), gene version num-

ber suffixes were removed from the GENCODE gene names, and samples were grouped by SMTSD

annotations for downstream analysis with CELLEX and CELLECT.

Code availability
CELLECT toolkit is available at Timshel, 2020; https://github.com/perslab/CELLECT (copy archived

at https://github.com/elifesciences-publications/timshel-2020). CELLEX is available at https://github.

com/perslab/CELLEX. Open source software implementations of CELLECT and CELLEX will be made

available upon publication. Code to reproduce analyses, figures and tables for this manuscript is

available at https://github.com/perslab/timshel-2020.
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URLs

. LDSC: https://github.com/bulik/ldsc

. MAGMA: https://ctg.cncr.nl/software/magma

. Robust WGCNA pipeline: https://github.com/perslab/wgcna-toolbox

. Genotype-Tissue Expression Consortium portal: https://gtexportal.org/home/datasets
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Watanabe K, Umićević Mirkov M, de Leeuw CA, van den Heuvel MP, Posthuma D. 2019. Genetic mapping of cell
type specificity for complex traits. Nature Communications 10:3222. DOI: https://doi.org/10.1038/s41467-019-
11181-1, PMID: 31324783

Wei Q, Krolewski DM, Moore S, Kumar V, Li F, Martin B, Tomer R, Murphy GG, Deisseroth K, Watson SJ, Akil H.
2018. Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. PNAS
115:E9489–E9498. DOI: https://doi.org/10.1073/pnas.1802237115, PMID: 30224492

Woods SC, Begg DP. 2015. Regulation of the motivation to eat. Current Topics in Behavioral Neurosciences 27:
15–34. DOI: https://doi.org/10.1007/7854_2015_381

Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K, Madar V, Jansen R, Chung W, Zhou YH, Abdellaoui A,
Batista S, Butler C, Chen G, Chen TH, D’Ambrosio D, Gallins P, Ha MJ, Hottenga JJ, Huang S, et al. 2014.
Heritability and genomics of gene expression in peripheral blood. Nature Genetics 46:430–437. DOI: https://
doi.org/10.1038/ng.2951, PMID: 24728292

Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, Hirschhorn J, Yang J, Visscher
PM, GIANT Consortium. 2018. Meta-analysis of genome-wide association studies for height and body mass
index in ~700000 individuals of european ancestry. Human Molecular Genetics 27:3641–3649. DOI: https://doi.
org/10.1093/hmg/ddy271, PMID: 30124842

Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La
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Appendix 1

CELLECT cell type prioritization
Introduction

Here we discuss the detailed methods and limitations of the CELLECT framework.

The relevance of using mouse scRNA-seq datasets

Our BMI cell type prioritization analysis was performed using mouse scRNA-seq atlases. We here dis-

cuss the relevance of using mouse scRNA-seq datasets to define cell types for genetic prioritization

for complex human traits.

Previous studies have compared the conservation of tissue gene expression. Brawand et al.,

2011 used RNA-seq expression data across multiple organs (cortex, cerebellum, heart, kidney, liver,

and testis) and 10 mammalian species (incl. human) and found the largest amount of variation was

explained by organ rather than species differences.

Previous studies have assessed the convergence of mouse and human central nervous system

(CNS) gene expression using gene co-expression analysis (Hawrylycz et al., 2015; Kelley et al.,

2018; Miller et al., 2010) and found weaker conservation of glial co-expression modules than neuro-

nal co-expression modules. In situ hybridization studies have reported that the majority of genes

(79%) showed similar cortical laminar patterning (Zeng et al., 2012). Along those lines, recent

scRNA-seq data from mouse and human midbrain found that cell types and gene expression levels

were generally conserved across species (La Manno et al., 2016).

The current most extensive study of CNS cell type conservation compared single-nucleus expres-

sion data from human and mouse cerebral cortex (Hodge et al., 2019) and found that broadly

defined cell types were conserved between mouse and human. However, they identified important

differences between cell type proportions and expression of specific genes, including cell type

marker genes exhibiting up to 10-fold expression differences.

In conclusion, although critical differences between mouse and human CNS gene expression data

have been identified, the broad expression patterns are likely to be conserved. Moreover, glial cell

types are more likely to exhibit weaker conservation compared to neuronal cell types. We believe

our genetic prioritization of likely etiologic cell types is more likely to suffer from false negatives (cell

types not prioritized because of lack of relevant human expression data) rather than false positives

(spuriously enriched cell types among our positive results).

Choice of window size and position for connecting SNPs and genes

An important step in the CELLECT pipeline is assigning gene ES� values to SNPs. As the majority of

trait-associated SNPs are located in non-coding regions (Gusev et al., 2014), it is desirable to select

a window size that maps the majority of regulatory GWAS variants to their proximal genes. Although

our results were largely robust to changes in window size and consistent with previous work

(Finucane et al., 2018; Kim et al., 2019a; Skene et al., 2018), we note that the SNP-to-gene map-

ping remains a critically important step that should be updated in subsequent versions of CELLECT.

In this work, we used the same window size as used in Finucane et al., 2018, that is, assigning

genes’ ES� values to SNPs within a 100 kb window on either side of a gene’s transcribed regions. A

recent large eQTL analysis in blood from >31,000 individuals found that 92% of the lead cis-expres-

sion quantitative trait loci (eQTL) SNPs mapped within 100 kb of the gene (Võsa et al., 2018), sug-

gesting that our mapping is likely to capture the majority of cis-regulatory variants. Consistent with

this, Gasperini et al., 2018 used CRISPR/Cas9 followed by scRNA-seq to identify CRISPR/Cas9-

induced eQTLs from >47,000 human cell line cells and found that regulatory variants were separated

from the TSS of their target genes by a median distance of 34.3 kb. Finally, work by Fulco et al.

reports that most enhancers are located within 100 kb of the target promoters (Fulco et al., 2019).
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Limitations of CELLECT
Linear relationship between expression specificity and trait heritability

The overall assumption behind our approach is that in order for a disease to manifest in a given cell

type the set of disease causal genes must be active and expressed in the given cell type. In other

words, we assume that high/increased expression and not decreased/lack-of expression of a gene

results in disease. This is a strong assumption to make about complex traits and it does not hold for

all diseases (e.g. cancer).

Our model assumes a linear effect of cell type expression specificity and trait heritability.

Although this assumption may not always hold, it appears to be reasonable in the continuous anno-

tations that we analyzed (Appendix 4—figure 1).

We leave it for future work to explore non-linear relationships between expression specificity and

trait heritability, and to investigate the effects of specificity for decreased or lack-of gene

expression.

Genetic architecture

The approach assumes that a cell type is etiologic for a particular disease if and only if genetic var-

iants near genes with high expression specificity in the cell type are enriched for heritability. More-

over, the CELLECT cell type prioritization assumes a polygenic trait architecture. Consequently, our

approach is unlikely to yield relevant results for traits driven by rare genetic mutations (not covered

by GWAS) or traits where the heritability is not mediated by transcriptional differences (i.e. changes

related to other molecular modalities such as proteins, posttranslational modifications or the

microbiome).

Common variation

We restricted our analysis to common variants (HapMap3 SNPs,>5% MAF), as S-LDSC has several

limitations when applied to rare variants. Prioritizing cell types using a model that includes both

common and rare variants could produce different results. We argue that our results are likely to be

robust to changes in the allele frequency spectrum. Firstly, we found that cell types enriched for rare

variant obesity genes overlapped with the S-LDSC BMI prioritized cell types (based on common var-

iants). Secondly, a recent study by Zhu and Stephens, 2018 compared the ability of genetic enrich-

ment methods (incl. S-LDSC) to detect the true enrichment signal based on 1000 Genomes Project

SNPs and HapMap3 SNPs, and found that all methods (S-LDSC included) produced similar results

using the two sets of SNPs as input. Thirdly, rare variants are unlikely to explain the majority of BMI

heritability: Gazal et al. estimated the low-frequency variants (MAF <5%) to explain 15% of BMI heri-

tability (Gazal et al., 2018) and recent work (under review) has reported that variants with

MAF <10% might explain as much as 51% of BMI heritability [Wainschtein et al., 2019]. In conclu-

sion, cell type prioritization results restricted to common variants are likely to converge with results

including rare variants.

Expression heritability mediated by cis- vs trans-eQTLs

As our model assumes that SNPs near genes with high expression specificity in etiologic cell types

are enriched for heritability, our model relies on the majority of gene regulatory variants (eQTLs) are

located nearby (cis-acting) instead of distant (trans-acting) to the target gene. That is, we assume

that heritability of gene expression can be sufficiently explained by cis-acting variation. There are

notable examples where the causal regulatory variant act in trans, for example the causal variant

located in the first intron of the FTO locus are located >1 Mb from its target regulatory genes IRX3/

IRX5 (Claussnitzer et al., 2015; Smemo et al., 2014), but the question how prevailing trans-acting

variation is remains unresolved. In support of the sufficiency of cis-variation, one study found that

cis-eQTLs explain a substantial proportion of trait heritability (40–80%) (Gamazon et al., 2018). In

addition, transcriptome-wide association studies (TWAS) leverage cis-eQTLs to predict expression

levels with a 60–80% prediction accuracy (Gamazon et al., 2015; Gusev et al., 2016). In contrast,

Liu et al., 2019 report that up to 60–90% of genetic variance in expression is due to trans-acting
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variation. We acknowledge that trans-acting effects are likely to play an important role in gene

expression heritability, but despite promising efforts (Fulco et al., 2019) cell type-specific enhancer

to gene maps have not been constructed yet and hence we based CELLECT on cis-regulatory var-

iants only.

Future directions

We envision several improvements of our approach. SNP-to-gene mapping could be improved by

levering for instance the ABC model propsed by Fulco et al., 2019 cell types to predict enhancer to

promoter maps to assign regulatory variants to genes. Alternatively, SNP-to-gene mapping could be

improved by using LD-informed loci definitions centered on SNPs. That is, each SNP would be

assigned ES� value based on the genes within the LD defined loci boundaries of the SNP (e.g. genes

within the region spanned by r2 <0.7).

It would be of interest to explore non-linear relationships between expression specificity and heri-

tability and to test whether down-regulated genes contribute to cell type heritability. Such analysis

would be possible leverage an extension of LDSC referred to as signed linkage disequilibrium profile

regression (Reshef et al., 2018), which allows detection of directional effects of signed functional

annotations.

Finally, we envision a data-driven approach to select the parameters of our approach,

for example SNP-to-gene parameters or non-linear transformation of expression specificity. A

genetic trait with known etiologic cell types could be used to select the set of parameters resulting

in the most significant prioritization of the known etiologic cell types.

Levering the omnigenic model to detect disease causal cell types

In the following we attempted to unify our cell type prioritization model with the so-called omnigenic

hypothesis proposed by Prichard and colleagues (Boyle et al., 2017; Liu et al., 2019). We here

describe the key assumptions and approach behind CELLECT.

Key assumptions and observations

Our key assumption is that in order for a disease to manifest in a given tissue or cell type the set of

disease causal genes must be active and expressed in the given tissue or cell type. That is, we

assume that high/increased expression and not decreased/lack-of expression of a gene results in the

given trait or disease (henceforth simply referred to as disease). This is a strong assumption to make

about complex traits and it may not hold for all diseases (e.g. cancer).

We assume that for a cell type to be causal to a given disease, it should express one or more

core genes. We note an important distinction between this assumption and the stronger more com-

monly used assumption that causal, disease cell types enrich for expression of all core genes (e.g.

testing for top expressed cell type genes for enrichment of genes harboring rare variants

Skene et al., 2018). Because core genes can function in orthologous pathways, we only assume

expression of one or more core genes.

We assume that core genes have cell type specific etiologic roles for common complex traits.

This assumption is justified by the strong negative selection of mutations in genes with a ubiquitous

function broadly affecting cellular function. (Detrimental mutations in genes with non-redundant

basic cellular function will not manifest in the population as a common disease.) We note that this

only holds true for heritable common diseases. for example core driver cancer genes may have basic

biological functions as observed with de novo mutations in TP53.

We reason that the majority of genes localizing in GWAS loci are peripheral genes that are more

likely than other genes to exhibit cell type-specific expression. This assumption is justified by two

steps of reasoning. Firstly, peripheral genes can only exert their effect on core genes if they are co-

expressed in a cell. They must operate within the same network of expressed genes in a cell (see

Boyle et al., 2017 Figure 4b). Secondly, GWAS is more well-powered to detect peripheral genes in

close proximity to core genes, if a shorter degree of separation between peripheral and core genes

increases the effect of the peripheral gene on the core gene (ibid.; Figure 4a). We note that under

the ‘small world’ network property of gene regulatory networks, most expressed genes in a cell type
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are only a few steps from the nearest core gene, possibly making the set of ‘peripheral genes in

close proximity to core genes’ quite large.

Biological examples of potential mechanisms

It has been shown that impaired signaling from the primary cilia of MC4R-positive neurons can cause

obesity in humans. In vitro and in vivo work from Siljee et al., 2018 demonstrated that MC4R obe-

sity-causing mutations impair the localization of MC4R to the cilia. The discovery of obesity-causal

mutations in ADCY3 provided evidence that ADCY3 plays a role in human obesity (Grarup et al.,

2018; Saeed et al., 2018). This example may demonstrate how genetic variation in one, herein

assumened, peripheral gene, ADCY3, can regulate/impair the function of a core gene, in this case,

MC4R, within the energy-regulating melanocortin signaling pathway. The omnigenic model suggests

that there are many yet unknown genetic regulators affecting MC4R (potentially also through pri-

mary cilia signaling or targeting) and hence contributing to the obesity heritability.

Our results for prioritized cell types could support this distinction between core and peripheral

gene. We find that the core gene (MC4R) is co-expressed with the peripheral gene (ADCY3) (Appen-

dix 1—figure 1). MC4R is highly specifically expressed and ADCY3 is moderately specifically

expressed.

Appendix 1—figure 1. Co-specific expression of Mc4r and Adcy3. The co-specific expression of

Mc4r and Adcy3 may serve as an example on how certain cell types may co-express a core gene

(Mc4r in this example) and peripheral genes (Adcy3 in this example). BMI-prioritized cell types are

highlighted in color.

The model

Our framework, CELLECT uses continuous LDSC annotations to identify likely disease causal cell

types. Here we explain why using continuous (i.e. weighted) annotations is an important improve-

ment over existing studies.

We assume that if a gene is specifically expressed in a given cell type, it is functionally important

for that cell type. That is, specifically expressed genes constitute the functionally distinct part of the

cell type. For instance, we have shown that DRD2 is specifically expressed in certain cell types from

the midbrain, suggesting the functional role of these cell types in the dopamine reward system. ES

genes will, by definition, not contain ubiquitous/equally expressed genes (e.g. basic cellular/biologi-

cal processes). Please also refer to Appendix 2.

Following our above assumptions, for a disease causal cell type we assume the following relation-

ship of cell type specific expression:

ES trait relevant core genesð Þ � ES trait peripheral genesð Þ >ES non trait relevant genesð Þ

We are now able to express our model for genetic identification of causal disease cell types.
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Formally we model a linear relationship between a gene’s disease heritability and cell type expres-

sion specificity:

Heritability geneð Þ ~ES geneð Þ

Appendix 1—figure 2 shows the concept of how the two above equations can be used to iden-

tify likely disease causal cell types.

Appendix 1—figure 2. Levering the omnigenic model to identify causal cell types using expression

specificity. A linear model can be used to identify causal cell types by testing for association

between gene expression specificity and gene heritability. Three scenarios are shown: a causal cell

type (left), a non-causal cell type (middle) and multiple causal cell types (right).

In support of this model, we showed that top expression specific genes in BMI-prioritized cell

types exhibit higher BMI heritability enrichment than non-expression specific genes.

Summary

We here provide a brief summary of the points discussed in the above sections.

Model assumptions and observations

. The ‘omnigenic’ genetic architecture of complex traits states that so-called peripheral genes
(peripheral referring to the core molecular function encoded by the core genes in the cell
type) explain the majority of heritability, and as a consequence, identifying heritability enrich-
ment using only core genes, will fail.

. To identify disease causal cell types, we estimate the disease heritability explained by specifi-
cally expressed genes.

. Likely disease causal cell types have one or more core genes specifically expressed and the
specifically expressed genes enrich for disease heritability.

. Core genes have cell type specific roles and are specifically expressed.

. Peripheral genes are co-expressed with at least one core gene in the disease-causal cell type.

. Peripheral genes are more likely than other genes to be specifically expressed.

. Many peripheral genes are shared among related traits. This leads to a partial overlap
between prioritized cell types for related traits. Core genes have little overlap between related
traits.

Results

. We show that the far majority of our prioritized cell types express one or more ‘core’ obesity
genes (as defined by the high-confidence obesity genes geneset). See Figure 5—figure sup-
plement 3.

. We show that top expression specific genes in prioritized cell types have higher BMI heritabil-
ity enrichment than non-specifically expressed genes (Appendix 4—figure 1).
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Appendix 2

CELLEX expression specificity
Introduction

At the core of using expression data for genetic identification of cell types underlying disease, lies

the problem of finding a meaningful vector representation of cell type expression profiles. In our

approach, we represent cell types by their expression specificity (ES) profile: a measure of relative

gene expression levels. To robustly estimate ES, we developed CELLEX.

Here we provide additional details and limitations of the CELLEX expression specificity frame-

work. We provide a comprehensive benchmark of ES metrics on single-cell RNA-sequencing (scRNA-

seq) and show that our combined metric, ES�, is most robust than single expression specificity meas-

ures. For an ES metric benchmark on bulk data we refer to Kryuchkova-Mostacci and Robinson-

Rechavi, 2016.

CELLEX expression specificity
Notation

We use the term ‘ES metric’ to describe the given metric used to compute ESw (see Appendix 2—

figure 1—source data 1 for an overview of the ES metrics used). ESw are gene-level statistics com-

puted for a given ES metric. ESw* are the genes’ likelihood of being specifically expressed given the

ES metric. ES� are the genes’ marginal likelihood of being specifically expressed.

Note that ES values are computed separately for each dataset. Appendix 2—figure 1 provides

an overview of the steps.

Appendix 2—figure 1. Overview of CELLEX expression specificity estimation In this work, we used

the optional steps for normalization and gene filtering. We also used ortholog mapping when

analyzing mouse scRNA-seq data.

The online version of this article includes the following source data is available for figure 1:

Appendix 2—figure 1—source data 1. ES metrics used in CELLEX.

Expression data pre-processing and normalization

For this work we normalized gene expression values using the default normalization approach for

CELLEX (described below). We note that the default CELLEX normalization can be disabled to allow

a for data input that has been normalized using a customized approach. The customized normaliza-

tion approach must not return negative values, as the ES metric calculation assumes that all normal-

ized input values are positive or zero.

Default normalization

As described above, we scale expression values to a common transcript count with n = 10,000 tran-

scripts as a scaling factor. Next, we apply log-transformation (xlog ¼ log xþ 1ð Þ). We apply this nor-

malization procedure for the following three reasons:

1. Common transcript count makes expression values comparable among cells.
2. Log-normalization is a variance-stabilizing transformation that dampens the effect of the

dynamic range. It transforms the expression data into a more well-behaved distribution that is
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better approximated by a normal distribution (we later compute ANOVA and t-statistics that
assume normality of the data).

3. This normalization procedure is a common, robust and proven-to-work method for scRNA-seq
(it is the default normalization technique for standard single-cell analysis packages such as
Seurat; Satija et al., 2015). This normalization method was also used by the authors of the two
primary data sets analyzed in our study: the Mouse Nervous System (Zeisel et al., 2018) and
Tabula Muris (Tabula Muris Consortium et al., 2018) datasets.

Despite the above strengths, we note two limitations of this normalization approach:

. When estimating the common transcript count ‘scaling factors’ for each cell, we assume each
cell has the same number of total molecules. This is an overly simplistic assumption as cell size
is Townes et al., 2019 generally correlated with the amount of mRNA in the cell.

. Log-transformation is an empirical choice for variance-stabilizing transformation. Recently
developed generalized linear models might provide better normalization (Hafemeister and
Satija, 2019; Townes et al., 2019).

We leave it for future work to explore additional normalization procedures and approaches to

correct for confounding factors between cell types prior to estimating ES weights.

Gene filtering

We observed that the ES metrics were prone to falsely estimating genes with ‘sporadic’ gene

expression levels as highly expression specific. We excluded these genes to reduce bias in the null

expectation for ESw and hence reduce false positive ES genes. Most notably, the EP metric would

estimate genes with very low expression appearing in few number of cells as highly expression spe-

cific. To solve this problem, we sought to estimate the background noise level for each gene,

enabling us to distinguish between genes with undetectable sporadic expression levels and genes

with confident expression levels. Following the approach described in Skene et al., 2018, we rea-

soned that genes with sporadic expression would fail to be statistically differentially expressed in at

least one cell type. We modelled this using one-way ANOVA with cell type annotations as the group-

ing factor and excluded all genes with p>10�5.

Invariance to gene filtering

The gene filtering and mouse-human ortholog mapping steps considerably reduces the number of

genes in the dataset. We computed ES weights after these gene filtering steps. All ES metrics

except EP were invariant to the ’gene universe’ of the dataset (all genes in the final dataset), conse-

quently ESw are generally robust to gene filtering operations. However, ESw* (denoting a genes like-

lihood of being specifically expressed) is sensitive to the ‘gene universe’ as we use a null distribution

pooled across genes to determine ESw significance (see the below section ‘Determining the set of

ES genes for each ES metric’ for details).

Choice of ES metrics

To implement a ‘wisdom of the crowd’ approach, we aimed at combining a diverse set of ES metrics.

We choose ES metrics based on their documented evidence to identify tissue expression specificity

based on bulk expression data (Kryuchkova-Mostacci and Robinson-Rechavi, 2016) or if they had

been successfully applied on scRNA-seq datasets. Lastly, we aimed for metrics to estimate over-

expression and not under-expression compared to other cell types.

Although we incorporated a t-test for differential expression as part of our ES metrics, we rea-

soned that test statistics or P-values from differential expression tests – for example DESeq2

(Love et al., 2014), MAST (Finak et al., 2015) – were not sufficient for making a useful ES metric. As

a result, we did not choose to build ESm purely from DE test statistics. The result of DE tests was a

list of genes ranked by the uncertainty or signal-to-noise ratio (P-value) of the estimate for difference

in expression between cell type populations. For instance, a gene exhibiting a subtle difference in

expression between two cell types and very low expression variance, would result in a highly signifi-

cant DE P-value. A useful ES metric should not be biased towards assigning high expression specific-

ity to identifying genes with low variance, in part because the variance of gene expression is
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confounded by the cell type clustering resolution. Cell types with high heterogeneity will have higher

variance of expression, resulting in downward-biased estimates of expression specificity for these

cell populations when using a DE test as ES metric. In summary, our ES metrics do not seek to cap-

ture the uncertainty of difference in expression, but instead the relative magnitude of difference in

expression between cell types.

Overview of ES metrics used in this study

We here provide a short overview of ES metrics and their interpretation. In Appendix 2—source

data 1 we use c to denote the focal cell type and g to denote the gene for expression specificity

estimation.

ES metrics formula

For all formulas, we calculate �g; c as the average expression of gene g in cell type c in a dataset with

C cell types and G genes.

Gene Enrichment Score

GES is computed as the fold-change weighted by the fraction of cells expressing the gene.

Zeisel et al., 2018 showed that this measure was effective at identifying marker genes for cell types

in the nervous system.

GESg; c ¼
�g; c

�g; c
�

fg; c

fg; c�

Here �g;c
� is the average expression of all other cell types, fg; c is fraction of cells in cell type c

with non-zero expression of gene g, and fg; c
� is the fraction of cells with non-zero expression in all

other cell types.

Expression Proportion

EP is calculated by dividing the expression of each gene in each cell type by the total expression of

that gene in all cell types. Intuitively EP estimates the proportion of g’s total mean expression con-

tributed by cell type c.

To remove the effect of differences in total expression between cell types, Skene et al., (2018)

first normalize �g; c by the total expression of cell type:

��
g; c ¼

�g; c
PG

g0 �g0; c

EP is then calculated as:

EPg; c ¼
��
g; c

PC
c0 �

�
g; c0

We note that the first normalization step has no effect on our results, since we use common mole-

cule count normalized expression data.

Normalized Specificity Index

The Normalized Specificity Index (NSI) is modified from Specificity Index (Dougherty et al., 2010).

Intuitively NSI estimates the average quantile (or relative rank) of gene g’s mean expression fold-

change across all cell types. NSI is given by the formula:

NSIg; c ¼
X

K

k 6¼c

rankg
�g; cþ�
�g; kþ�

� �

� 1

G� 1
= k� 1ð Þ
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Where rankg(�g;c / �g;k) gives the position of gene g in a descending-ordered list of ‘fold-change’

values for all genes, � is a small numerical constant to prevent the fold-change from going to infinity

as the denominator of the fold-change goes to zero.

We modified the SI metric from Dougherty et al., 2010 for two reasons. Firstly, SI was originally

developed for bulk gene expression data, which makes it less well-suited for count-based scRNA-

seq, which is comprises an inflation of zero values. Secondly, SI values may take on arbitrary large

values depending on the number of input genes, which makes the resulting SI values hard to inter-

pret. We sought to normalize the SI scale to an intuitive [0–1] scale. Specially, we made three rele-

vant modifications:

1. NSI is scaled by the number of genes to obtain a [0–1] scale.
2. NSI resolve ties using the minimum value instead of the average. This is relevant for sparse

scRNA-seq where many genes will be tied for zero values.
3. NSI contains a small constant, �, to prevent SI from going to infinity as the denominator of the

fold-change goes to zero.

We used the specificity.index() function of the pSI R package (v1.1, release 2014-01-30) as com-

parison for our modifications.

Differential Expression T-statistic

We compute the t-statistic for gene g as a measure of differential expression between the cell type c

and all other cell types.

DETg; c ¼
�g; c � �g; c

�

sg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=nc þ 1=nc
�

p

Here, as above, �g; c
� is the average expression of all other cell types, nc is the number of cells in

cell type c, nc� is the number of cells in all other cell types, and sg is the pooled standard deviation

estimate for gene g given by:

sg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PC
c0 nc0 � 1ð Þs2c0
PC

c0 nc0 � 1

s

Determining the set of ES genes for each ES metric

A key step in our approach is determining the set of ES genes for each ES metric. For each cell type

we determined the set of specifically expressed genes, Gs, by testing the null hypothesis that a gene

is more specific to a given cell type compared to cells selected at random. We compute empirical P-

values of ESw by comparing observed weights to ‘null’ weights obtained by permuting the dataset’s

cell type annotations.

Null distribution

We use an empirical null distribution because ESw for GES, NSI and EP do not have analytic statisti-

cal distributions to assess their significance. In addition, the analytical distribution for DET is not

well-calibrated for (genome-wide) single-cell DE tests.

To construct our empirical null distribution we shuffled cells corresponding to the null hypothesis:

gene X is equally specific to cell type A as it is to randomly selected cells. We constructed the null

distribution such that our ’null cell types’ had the same number of cells as the observed cell types.

We note that in our null distribution, we kept the ’cell entities’ and only the genes’ average expres-

sion will change. Side remark: an alternative approach to constructing the null distribution, would be

to shuffle genes corresponding to the null hypothesis that gene A is not more specific for cell type X

than randomly selected genes. However, this null variant is not ’scale resistant’ and will hence not

work if genes are not on the same normalized scale.
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Nominal significance cut-off

We use an empirical P-value to find the cut-off between expression specific and non-expression spe-

cific genes. We use nominal significance (p<0.05) for this p-value (instead of an FDR adjusted cut-off)

because we assume that our method is robust to inclusion of false positive ES genes.

Normalization assumptions for computing ESw*
For each cell type we calculate ESw*, representing the genes’ likelihood of being specifically

expressed in a given cell type and for a given ES metric, by rank normalizing ESw for genes in Gs:

ESw� geneð Þ ¼ rankg ESw geneð Þð Þ=jGs j if gene 2Gs

ESw� geneð Þ ¼ 0 if gene =2Gs

We set ESw*=0 for non-expression-specific genes (non-ES genes). This is important because we

assume that we cannot meaningfully distinguish between non-ES genes, and hence they should all

be given the same value.

Importantly, the rank normalization corresponds to the assumption that each cell type has a set

of expression specific genes exhibiting a linearly increasing likelihood of being expression specific to

the cell type. We apply this transformation to ensure ESw* have the same scale before combining

into ES�.

We note that this normalization strategy discards the ‘magnitude’ of the expression specificity

(see below section ‘Expression specificity profiles for ES metrics and average expression’ for conse-

quences of this). The linearity assumption essentially ’smooths’ the non-linearity of ESw into a linear

ESw* scale. We leave it for future work if other normalization strategies (e.g. inverse normal transfor-

mation or min/max) could offer an even better trade-off between dynamic range of expression spec-

ificity and robustness of the normalization.

Expression specificity profiles for ES metrics and average expression

As discussed above, the magnitude of expression specificity is not captured in ESw* and conse-

quently ES�. To illustrate this, we plotted expression specificity profiles for two genes from the

Mouse Nervous System dataset (Appendix 2—figure 2). The Agrp gene shows the same expression

specificity profiles for ES metrics and log-transformed mean expression; only few cell types have

high average expression levels (several order of magnitudes higher than the other cell types). The

Pomc gene exhibits a slightly different expression specificity profile as it is more ubiquitously

expressed. For both genes, the cell types with the highest average expression were also the top

expression specific genes across most ES metrics.
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Appendix 2—figure 2. Expression specificity profile for POMC (left) and AGRP (right) AGRP is

expressed in few cell types and POMC is expressed in slightly more cell types. Each panel row

shows a different ES metric (normalized average expression is shown in the bottom row panels). The

plot shows gene ESw (y-axis) for each cell type (x-axis, ordered by increasing values of ESw). The five

cell types with the largest ESw are highlighted. ESw values are estimated from the Mouse Nervous

System dataset.

Limitations of ES

Expression specificity is a relative measure as it depends on the background compendium of cell

types included in the dataset. This means that we would obtain dramatically different ES� values for

for example a neuronal cell type computed on the full Mouse Nervous System dataset and on a sub-

set consisting only of the neuronal cell types. As a consequence, ES� values for similar cell types in

two different datasets might be difficult to compare if they are computed on different background

cell type compendia. Because expression specificity is inherently context dependent, there is a need

for a ‘common reference’ dataset to ensure uniformity of values. We leave this for future work to

explore.

Future directions
Preprocessing of ES
Gene expression imputation methods could be used to alleviate drop-out effects (missing values)

causing downward bias of the cell type average expression estimates.
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Alternatives to rank ESw* normalization
We expect that other normalization strategies could offer a better trade-off between dynamic range

of expression specificity and robustness of the normalization.

Explore additional ES metrics
We find it unlikely that the four ES metrics used in this work captures all aspects of cell type expres-

sion specificity. It would be highly relevant to explore additional ES metrics.

Context dependence of ES
We envision two strategies to combat the context dependency of ES values. One solution is to calcu-

late a ’dataset diversity score’ that measures diversity of the background compendium of cell types

included in the dataset. This score could then potentially be taken into consideration when interpret-

ing the results. A second solution could be including a ‘common reference’ dataset as background

compendium of cell types. For example, use Seurat data integration methods (Stuart et al., 2019;

Butler et al., 2018) to align the Tabula Muris dataset with the dataset of interest.

Expression specificity robustness analysis
Aim

ES is inherently dependent on the cell type composition of the dataset. Still, the ESw* should primar-

ily reflect the properties of the cell type and not the context of the dataset. For example, we wish to

obtain similar ESw* when we replicate a scRNA-seq experiment even if the cell type composition has

shifted slightly. In other words, it is desirable for an ES metric to produce similar ESw* in varying con-

texts of cell type composition. We here aim at assess this characteristic: the robustness of ES met-

rics. A robust metric will yield similar results in changing cell type contexts.

Methods

To assess the robustness of ES metrics, we defined a Robustness Score (RS), which measures the

ability of an ES metric to reproduce ESw* in changing cell type computations. We used ESw*-baseline

to denote ESw* of a selected focal cell type computed on the full dataset, that is all cell types. Fur-

ther, ESw*-subset denotes ESw* of the focal cell type computed on a random subset of the data. For

a given focal cell type and data-subset-proportion, we performed the following procedure:

1. Create a subset of the dataset by randomly sampling the specified subset proportion (e.g.
20%) of cell types from the full dataset. The focal cell type is excluded during sampling.

2. Add the focal cell type to the sub-sampled dataset.
3. Compute ESw* for the focal cell type to obtain ESw*-subset.
4. Compute Pearson’s correlation coefficients between ESw*–baseline and ESw*–subset to obtain

RS-subset.

The sampling procedure was repeated 100 times for each ES metric and data subset proportion.

When computing RS-subset, we adjusted for zero-inflation by removing genes with zero values in

both ESw*-baseline and ESw*-subset. We reported RS values averaged over the 100 repetitions.

We performed the above procedure using 12 distinct Mouse Nervous System cell types as focal

cell types (ABC, ACNT1, ACTE1, COP1, DEINH3, EPMB, EPSC, MGL1, OPC, PVM1, TEGLU1,

VLMC1). To ensure the generalizability of our results, the 12 focal cell types were selected as repre-

sentatives of each major cell type class (astrocyte, ependymal, glia, neuronal, oligodendrocyte and

vascular cells). We summarized the results of each subset proportion across the 12 focal cell types

by computing the mean and standard deviation of the mean RS across cell types.

Results

We observed that ES� achieved the highest mean RS with low variation across all tested focal cell

types (Appendix 2—figure 3). GES exhibited the lowest mean RS with high variation across focal

cell types. The mean RS across all ES metrics was generally high (>0.8) for subsets greater than 10%
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of all cell types. All ES metrics exhibited similar mean RS for subsets greater than 50%. In summary,

ES� is the most robust ES metric to changes in cell type composition.

Appendix 2—figure 3. Robustness of ES metrics. The figure depicts the robustness score (RS) for

each ES metric as a function of cell type subset percentage. Each point represents the mean RS

across 12 focal cell types. Error bars indicate standard error of the mean.
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Appendix 3

Cell type gene co-expression networks
Introduction

Here we provide detailed methods for the gene module analysis and its limitations.

Gene module analysis

We identified cell type gene co-expression networks using a modified version of the robust WGCNA

(rWGCNA) framework proposed by Gandal et al., 2018. To identify gene co-expression networks

(gene modules) operating within a cell type, the input to rWGCNA was expression data for individual

cell types. Our framework consists of the following steps:

Pre-processing

We used the Seurat R package (version 2.3). We filtered out genes expressed in fewer than 20 cells

and removed any cell clusters containing fewer than 50 cells. The NormalizeData() function was used

for normalizing raw expression values to a common transcript count (with n = 10,000 transcripts as a

scaling factor), log-transformation (log(x+1)), before scaling and centering with the ScaleData() com-

mand to arrive at a matrix of Z-scores. Principal component analysis was carried out using the

RunPCA() function to find 120 Principal Components (PCs). Genes were then ranked by their highest

absolute loading value on any given PC and the top 5000 genes within each cell cluster were

selected for co-expression analysis. We mapped mouse genes to orthologous human genes using

Ensembl (v. 91), keeping only 1–1 mapping orthologs as done for the ES calcuations.

Robust weighted gene correlation network analysis and adjacency matrix
calculation

We used the WGCNA R package (version 1.66). For computing the gene-gene adjacency matrix we

used the Pearson correlation coefficient and the signed hybrid network parameter. The pickSoft-

Threshold() command was used to identify soft thresholding powers. Powers corresponding to the

top 95th percentile of network connectivity or above were discarded and the lowest soft threshold

power between 1 and 30 to achieve a scale free topology R squared fit of 0.93 was selected; if no

powers reached 0.93, the thresholding power with the highest R squared was chosen instead.

rWGCNA consensus topological overlap matrix calculation

The expression data was resampled as described in Gandal et al., 2018; drawing two thirds of the

cells at random without replacement 100 times. The consensusTOM() function was used with a con-

sensusQuantile of 0.2 to compute a signed consensus topological overlap matrix (TOM), and genes

were then filtered using the output of the goodGenesMS() function called by consensusTOM().

rWGCNA hierarchical clustering

The consensus TOM matrices were converted to distance matrices and the hclust() function was

used with the average method to cluster genes hierarchically. The cutreeHybrid() function was used

with a deepSplit of 2, minClusterSize of 15 and pamStage set to TRUE to carve the dendrogram into

modules. The mergeCloseModules() function was used to compute module eigengenes, the vector

of cell embeddings on the first principal component of each module’s expression submatrix. The

same function was used to merge modules, using a cutHeight of 0.15 or less, corresponding to a

Pearson correlation between module eigengenes of 0.85 or greater.

rWGCNA gene-module connectivity

The module eigengenes and expression matrices were used with the signedKME() function to com-

pute gene-module Pearson correlations, or kMEs, a measure of how close each gene is to each
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module. To ensure tightly connected modules, genes whose correlations with their assigned mod-

ules eigengene was not statistically significant after correcting for multiple testing, using the Benja-

mini-Hochberg false discovery rate (FDR) method, were removed.

Limitations of identifying gene modules from scRNA-seq data

In this section we discuss the relevance and limitations of identifying gene co-expression networks

on a by-cell type basis. Some of these limitations have also been discussed elsewhere (Chen and

Mar, 2018; Crow and Gillis, 2018) and may explain the lack of identified BMI prioritized cell type

gene co-expression networks. While WGCNA has primarily been applied to bulk RNA-seq expres-

sion data, several recent studies have demonstrated its effectiveness in single-cell data

(Nowakowski et al., 2017; Tasic et al., 2016). As gene-gene correlations reflect gene expression

variability, WGCNA analysis of heterogeneous bulk expression data consisting of several distinct cell

type populations, will result in a coarse set of genes modules, largely reflecting cell type heterogene-

ity. WGCNA analysis of pure cell type populations from scRNA-seq data will result in more specific

genes modules. However, constructing gene networks on pure cell type populations poses another

problem: the true gene-gene correlations are more difficult to estimate in expression data with lim-

ited gene expression heterogeneity (expression variability). In addition, scRNA-seq data have

increased technical noise (dropout effects) compared to bulk RNA-seq data, which reduces the abil-

ity to estimate the true gene-gene correlations.
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Appendix 4

Heritability of prioritized BMI cell types
Heritability of prioritized BMI cell types

In CELLECT we utilized a continuous representation of cell type expression, assuming there is a posi-

tive relationship between genes’ ES values and their importance for a given trait. Stratifying genes

into quintiles based on their ES values for a given cell type and calculating the enrichment of BMI

heritability for each stratum, showed that an increase in ES was reflected in an increase in BMI herita-

bility for the BMI-prioritized cell types (Appendix 4—figure 1a; first row). Other well-powered UKBB

anthropometric traits GWAS did not exhibit any relationship between ES quintile and trait heritability

for the BMI-prioritized cell types (Appendix 4—figure 1a; second and third rows). These results indi-

cate, that our models are well calibrated. To better understand the proportion of BMI heritability

explained by variants mapped to a certain cell type, we compared the proportion of BMI heritability

explained by each of the 10 cell types to the proportion trait-heritability explained by cell types

known to play a key role in the given trait or disease. We found that the most enriched cell type for

BMI, was the cortical TEGLU4 cell type, which comprised specifically expressed genes with genetic

variants accounting for 28.5% of the SNP heritability (h2g) for BMI (Appendix 4—figure 1b). Simi-

larly, we estimated that SNPs mapped to genes specifically expressed in the pancreatic beta cells,

an insulin secreting cell type playing a pivotal role in type 2 diabetes, explained 27.8% of the herita-

bility for type 2 diabetes; hepatocytes explained 27.1% in the heritability for low-density lipoprotein

(Teslovich et al., 2010); T cells explained 20.7% of the heritability for rheumatoid arthritis

(Okada et al., 2014); and, finally, mesenchymal stem cells explained 20.4% of the heritability for

human height (Loh et al., 2018; Appendix 4—figure 1b). These results show that genetic suscepti-

bility to obesity conferred by variants mapped to genes specifically expressed in the cortical cell

type roughly corresponds to the heritability conferred by pancreatic beta cell variants on type 2

diabetes.
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Appendix 4—figure 1. Heritability of BMI prioritized cell types. (a) Heritability enrichment of cell

type ESm intervals. Heritability enrichment was estimated using S-LDSC on cell type ES� annotations

partitioned into five equally spaced intervals and an interval including ES�=0. The intervals 0 and

(0.8–1) represent the heritability enrichment of by the variants with the lowest and highest ES�
values, respectively. Error bars represent 95% confidence intervals. The top, middle and bottom

panel show results for BMI, height and waist-hip ratio, respectively. BMI heritability enrichment

increases with increasing ES� value for prioritized cell types. (b) Proportion of BMI heritability

explained by prioritized cell types. We used S-LDSC to estimate the proportion of trait SNP

heritability explained by each cell type annotation. For comparison we report the proportion of

heritability explained by cell types with known etiology for selected traits: type 2 diabetes (T2D),

low-density lipoprotein (LDL), rheumatoid arthritis (RA) and human height. Circles are colored by

annotation size reflecting the proportion of variants covered by the cell type annotation (a value of

one means that all variants were covered). Error bars represent 95% confidence intervals.
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