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Abstract Peptidoglycan (PG) is the main component of bacterial cell walls and the target for

many antibiotics. PG biosynthesis is tightly coordinated with cell wall growth and turnover, and

many of these control activities depend upon PASTA-domain containing eukaryotic-like serine/

threonine protein kinases (PASTA-eSTK) that sense PG fragments. However, only a few PG

biosynthetic enzymes are direct kinase substrates. Here, we identify the conserved ReoM protein

as a novel PASTA-eSTK substrate in the Gram-positive pathogen Listeria monocytogenes. Our data

show that the phosphorylation of ReoM is essential as it controls ClpCP-dependent proteolytic

degradation of the essential enzyme MurA, which catalyses the first committed step in PG

biosynthesis. We also identify ReoY as a second novel factor required for degradation of ClpCP

substrates. Collectively, our data imply that the first committed step of PG biosynthesis is activated

through control of ClpCP protease activity in response to signals of PG homeostasis imbalance.

Introduction
The cell wall of Gram-positive bacteria is a complicated three-dimensional structure that engulfs the

cell as a closed sacculus. The main component of bacterial cell walls is peptidoglycan (PG), a network

of glycan strands crosslinked together by short peptides (Vollmer et al., 2008a). PG biosynthesis

starts with the conversion of UDP-GlcNAc into lipid II, a disaccharide pentapeptide that is ligated to

a membrane-embedded bactoprenol carrier lipid (Typas et al., 2012). This monomeric PG precursor

is then flipped from the inner to the outer leaflet of the cytoplasmic membrane by MurJ- and Amj-

like enzymes called flippases (Ruiz, 2008; Sham et al., 2014; Meeske et al., 2015). Glycosyltransfer-

ases belonging either to the bifunctional penicillin binding proteins (PBPs) or the SEDS (shape, elon-

gation, division and sporulation) family then transfer the disaccharide pentapeptides to growing PG

strands, which are finally crosslinked by a transpeptidation reaction catalysed by bifunctional (class

A) or monofunctional (class B) PBPs (Sauvage et al., 2008; Meeske et al., 2016; Emami et al.,

2017; Taguchi et al., 2019). Numerous hydrolytic or PG-modifying enzymes are also required to

adapt the sacculus to the morphological changes that occur during bacterial cell growth and division

(Vollmer et al., 2008b; Uehara and Bernhardt, 2011) or to alter its chemical properties for instance

for immune evasion (Moynihan et al., 2014). A suite of regulators ensure that spatiotemporal con-

trol of PG synthesis is balanced against PG hydrolysis in cycles of bacterial growth and division

(Booth and Lewis, 2019).
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The activity of several key enzymes along the PG biosynthetic pathway is regulated by PASTA

(PBP and serine/threonine kinase associated) domain-containing eukaryotic-like serine/threonine pro-

tein kinases (PASTA-eSTKs) (Dworkin, 2015; Manuse et al., 2016; Egan et al., 2017). These mem-

brane-integral enzymes comprise a cytoplasmic kinase domain linked to several extracellular PASTA

domains (Manuse et al., 2016). These proteins are stimulated by free muropeptides and lipid II (that

accumulate during damage and turnover of PG) on interaction with their PASTA domains (Mir et al.,

2011; Hardt et al., 2017; Kaur et al., 2019). PknB, a representative PASTA-eSTK from Mycobacte-

rium tuberculosis, phosphorylates GlmU, a bifunctional uridyltransferase/acetyltransferase important

for synthesis of UDP-GlcNAc, and in so doing reduces GlmU activity (Parikh et al., 2009). M. tuber-

culosis MviN, a MurJ-like flippase, is also a substrate of PknB and, in its phosphorylated state,

P-MviN is inhibited by its binding partner, FhaA (Gee et al., 2012). M. tuberculosis PknB also phos-

phorylates both the class A PBP PonA1 (Kieser et al., 2015) and the amidase-like protein CwlM,

which is essential for growth (Deng et al., 2005; Boutte et al., 2016; Turapov et al., 2018). CwlM

is membrane-associated and interacts with MurJ to control lipid II export (Turapov et al., 2018).

However, when phosphorylated, P-CwlM re-locates from the membrane to the cytoplasm

(Turapov et al., 2018) where it allosterically activates MurA 20–40-fold (Boutte et al., 2016). MurA

catalyzes the first committed step of PG biosynthesis by transferring an enoylpyruvate moiety to

UDP-GlcNAc; MurA is essential in M. tuberculosis and in many other bacterial species tested

(Brown et al., 1995; Kock et al., 2004; Griffin et al., 2011; Rismondo et al., 2017). Finally, the Lis-

teria monocytogenes PASTA-eSTK, PrkA, phosphorylates YvcK, which is required for cell wall

homeostasis in a so far unknown way (Pensinger et al., 2016).

Numerous additional proteins acting to coordinate cell wall biosynthesis with cell division are sub-

strates of PASTA-eSTKs in other Gram-positive bacteria (Manuse et al., 2016), including the late cell

division protein GpsB of Bacillus subtilis (Macek et al., 2007; Pompeo et al., 2015). We have shown

previously that GpsB from L. monocytogenes is important for the last two steps of PG biosynthesis,

i. e. transglycosylation and transpeptidation, by providing an assembly platform for the class A PBP,

PBP A1 (Rismondo et al., 2016; Cleverley et al., 2016; Cleverley et al., 2019; Halbedel and

Lewis, 2019), and this adaptor function of GpsB is maintained in at least B. subtilis and Streptococ-

cus pneumoniae (Cleverley et al., 2019). An L. monocytogenes DgpsB mutant is impaired in PG bio-

synthesis and cannot grow at elevated temperatures (Rismondo et al., 2016), but this phenotype is

readily corrected by a suppressor mutation, which mapped to clpC (Rismondo et al., 2017). ClpC is

the ATPase subunit of the ClpCP protease that degrades substrate proteins upon heat stress

(Molière and Turgay, 2009). MurA (aka MurAA in B. subtilis) is a ClpCP substrate in both B. subtilis

and L. monocytogenes (Kock et al., 2004; Rismondo et al., 2017) and strongly accumulates in a L.

monocytogenes DclpC mutant (Rismondo et al., 2017). Thus, a deficiency in the final two enzymatic

steps of PG biosynthesis in the absence of GpsB is corrected by mutations in clpC that increase the

amount of the first enzyme of the same PG biosynthetic pathway.

We here have isolated further gpsB suppressor mutations affecting previously unstudied Listeria

genes. We demonstrate that these proteins control the ClpCP-dependent degradation of MurA in a

PrkA-dependent and hitherto unprecedented manner. One of them is phosphorylated by PrkA and

this phosphorylation is essential. Our results represent the first molecular link between PrkA-depen-

dent protein phosphorylation and control of PG production in low G/C Gram-positive bacteria and

explain how PG biosynthesis is adjusted in these bacteria to meet PG production and repair needs.

Results

gpsB suppressor mutations in the lmo1503 (reoM) and lmo1921 (reoY)
genes
A L. monocytogenes DgpsB mutant is unable to replicate at 42˚C, but readily forms suppressors cor-

recting this defect (Rismondo et al., 2017). Previously isolated gpsB suppressors carried a mutation

in the clpC gene, important for the stability of the UDP-N-acetylglucosamine 1-carboxyvinyltransfer-

ase MurA (Rismondo et al., 2017). We have characterised three more shg (suppression of heat sen-

sitive growth) suppressor mutants (shg8, shg10 and shg12) isolated from a DgpsB mutant incubated

on a BHI agar plate at 42˚C. These three shg strains grew as fast as the wild type when cultivated at
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37˚C or 42˚C, whereas the parental DgpsB mutant grew at a reduced rate at 37˚C and did not grow

at 42˚C (Figure 1A–B), as shown previously (Rismondo et al., 2016).

Sequencing of the shg8, shg10 and shg12 genomes identified one SNP in each strain that was

absent from the parental DgpsB mutant. Strain shg8 carried a mutation in the uncharacterized

lmo1921 gene (herein named reoY, see below) that exchanged H87 into tyrosine; the same gene

was affected by the introduction of a premature stop codon after the 73rd reoY codon in strain

shg10. Strain shg12 carried a mutation in the ribosomal binding site (RBS) of the lmo1503 gene

Figure 1. Suppression of the growth defects of a L. monocytogenes DgpsB mutant by reoM and reoY mutations. (A–B) Effect of suppressor mutations

on growth of the DgpsB mutant. Growth of L. monocytogenes strains EGD-e (wt), LMJR19 (DgpsB), shg8 (DgpsB reoY H87Y), shg10 (DgpsB reoY TAA74)

and shg12 (DgpsB reoM RBS mutation) in BHI broth at 37˚C (A) and 42˚C (B). (C–D) Effect of DreoM and DreoY deletions on growth of L.

monocytogenes. Growth of L. monocytogenes strains EGD-e (wt), LMJR19 (DgpsB), LMSW30 (DreoM), LMSW32 (DreoY), LMJR137 (DgpsB DreoM) and

LMJR120 (DgpsB DreoY) in BHI broth was recorded at 37˚C (C) and 42˚C (D). All growth experiments were performed three times and average values

and standard deviations are shown.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overexpression of reoM but not reoY affects growth of the L. monocytogenes DgpsB mutant.

Figure supplement 2. Effect of reoM and reoY deletions on cell morphology.
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(renamed reoM), encoding an IreB-like protein, the function of which is not understood (Hall et al.,

2013).

Whether the mutation in the RBS of reoM in strain shg12 affected reoM expression was not clear.

Therefore, the reoM gene was deleted from the genome of the wild type and the DgpsB mutant.

While deletion of reoM had no effect on growth of wild type bacteria, it completely suppressed the

growth defects of the DgpsB mutant at both 37˚C and 42˚C (Figure 1C–D). It is thus likely that the

mutation in the reoM RBS impairs its expression. Likewise, deletion of reoY completely restored

growth of the DgpsB mutant at both temperatures (Figure 1C–D).

Expression of an additional copy of reoM impaired growth of the DgpsB mutant without affecting

the growth of wild type bacteria, whilst expression of a second copy of reoY had no effect (Fig-

ure 1—figure supplement 1A,B). The expression of reoM is thus inversely correlated with the

growth of the DgpsB mutant. Finally, the physiology of the DreoM and DreoY mutants was examined;

their cell lengths were wild type-like and unaffected by the presence or absence of gpsB, suggesting

the absence of cell division defects in the DreoM or DreoY mutants (Figure 1—figure supplement

2A,B). Scanning electron micrographs of DreoM and DreoY single mutants revealed that these bacte-

ria had a normal rod-shape, but that the DgpsB DreoM and DgpsB DreoY double mutants were par-

tially bent (Figure 1—figure supplement 2C), implying the presence of some shape maintenance

defects along the lateral cell cylinders.

ReoM and ReoY affect the stability of MurA
Suppression of the DgpsB phenotype can be achieved by the accumulation of MurA

(Rismondo et al., 2017). Consequently, MurA levels were determined in DreoM and DreoY mutant

strains by western blotting. MurA accumulated by at least eight-fold in comparison to the wild type

in the absence of reoM or reoY (Figure 2A), and reached similar levels to a mutant lacking clpC,

which encodes the ATPase subunit of the ClpCP protease (Figure 2A). MurAA, the B. subtilis MurA

homologue, is degraded by the ClpCP protease in vivo (Kock et al., 2004). In order to test whether

reoM and reoY exert their effect on MurA in a ClpC-dependent manner in L. monocytogenes, MurA

levels were determined in DclpC DreoM and DclpC DreoY double mutants. The MurA levels in DclpC,

DreoM and DreoY single mutants were the same as in DclpC DreoM and DclpC DreoY double mutant

strains (Figure 2B). Likewise, the MurA level in a mutant lacking murZ, previously shown to contrib-

ute to MurA accumulation (Rismondo et al., 2017), is not additive to the MurA level in DclpC cells

(Figure 2B). Reintroduction of reoM, reoY and murZ into their respective single mutant backgrounds

complemented their phenotypes (Figure 2—figure supplement 1A and Figure 5C below). There-

fore, ReoM, ReoY and MurZ likely affect the ClpCP-dependent degradation of MurA. Combinations

of DreoM, DreoY and DmurZ deletions did also not exert any additive effect on accumulation of

MurA (Figure 2—figure supplement 1B), further validating the conclusion that these genes all

belong to the same pathway.

We then tested the hypothesis that ReoM and ReoY control proteolytic stability of MurA and fol-

lowed MurA and DivIVA degradation over time in cells that had been treated with chloramphenicol

to block protein biosynthesis. MurA was almost completely degraded in wild type cells 80 min after

chloramphenicol treatment (Figure 2C), whereas DivIVA was stable (Figure 2—figure supplement

2B). By contrast, no MurA degradation was observed in mutants lacking clpC, reoM or reoY

(Figure 2C), which together demonstrates that ReoM and ReoY are as important for MurA degrada-

tion as is ClpC.

The effect of ReoM and ReoY on MurA levels is conserved
Homologues of the 90-residue ReoM protein are found across the entire Firmicute phylum, and

include IreB, a substrate of the protein serine/threonine kinase IreK and its cognate phosphatase

IreP from Enterococcus faecalis (Hall et al., 2013), whereas ReoY homologues are present only in

the Bacilli. A reoY homologue has been identified as a DireK suppressor in E. faecalis (Banla et al.,

2018), but the function of the E. faecalis reoY and reoM homologues remains unknown. In B. subtilis,

ReoM corresponds to YrzL (e-value 3e�29) and ReoY to YpiB (4e�61), but neither protein has been

studied thus far. To assess whether YrzL and YpiB were also crucial for control of MurAA levels in B.

subtilis, cellular protein extracts from B. subtilis DyrzL and DypiB mutants were probed by western

blot (Figure 2D). MurAA accumulated by at least 12-fold in these strains in comparison to the wild
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Figure 2. Effect of the reoM, reoY and clpC genes on levels of MurA in L. monocytogenes and MurAA in B. subtilis. (A) Effect of reoM and reoY

deletions (single or when combined with gpsB deletion) on MurA (above) and DivIVA levels (middle) in L. monocytogenes strains EGD-e (wt), LMJR19

(DgpsB), LMSW30 (DreoM), LMSW32 (DreoY), LMJR137 (DgpsB DreoM) and LMJR120 (DgpsB DreoY) and quantification of MurA levels (below). Strain

LMJR138 (DclpC) was included for comparison. Non-relevant lanes were excised from the blots (dotted lines). Average values ± standard deviations

were shown (n = 3). Statistically significant differences compared to wild type are marked by asterisks (p<0.05, t-test). (B) Effect of reoM, reoY and murZ

deletions when combined with clpC deletion on MurA (above) and DivIVA levels (middle) in L. monocytogenes strains EGD-e (wt), LMJR138 (DclpC),

LMJR104 (DmurZ), LMJR171 (DclpC DmurZ), LMSW30 (DreoM), LMSW50 (DclpC DreoM), LMSW32 (DreoY) and LMSW51 (DclpC DreoY) and quantification

of MurA levels (below). Strain LMJR123 (imurA, i - is used to denote IPTG-dependent alleles) grown in the presence or absence of IPTG was included

for comparison. Average values and standard deviations were shown (n = 3) and n. s. means not significant (p<0.05, t-test). (C) Western blots following

MurA degradation in vivo. L. monocytogenes strains EGD-e (wt), LMJR138 (DclpC), LMSW30 (DreoM) and LMSW32 (DreoY) were grown to an OD600 of

1.0 and 100 mg/ml chloramphenicol was added. Samples were taken before chloramphenicol addition and after several time intervals to analyse MurA

levels. MurA signals were quantified by densitometry and average values and standard deviations are shown (n = 3). Statistically significant differences

are marked with asterisks (p<0.05, t-test). (D) Effect of the reoM and reoY homologues yrzL and ypiB, respectively, on MurAA (above) and DivIVA levels

(middle) of B. subtilis and quantification of MurAA levels (below). Strains BKE00860 (DclpC), BKE22180 (DgpsB), BKE22580 (DypiB/reoY) and BKE27400

(DyrzL/reoM) were grown to mid-logarithmic growth phase before total cellular proteins were isolated. B. subtilis 168 (wt) was included as control. That

Figure 2 continued on next page
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type. Furthermore, the amount of MurAA was also increased by 12-fold in the DclpC mutant. Taken

together, these data indicate that ReoM and ReoY functions are conserved in both species. We thus

propose to rename lmo1503 (yrzL) as reoM (regulator of MurA(A) degradation) and analogously

lmo1921 (ypiB) as reoY.

Several other ClpC substrates are known in B. subtilis, including the glutamine fructose-6-phos-

phate transaminase GlmS and the acetolactate synthase subunit IlvB (Gerth et al., 2008). The levels

of both proteins were also significantly increased in B. subtilis DreoM and DreoY mutants (Figure 2—

figure supplement 3), indicating that ReoM and ReoY are required for degradation of ClpC sub-

strates in general.

ReoM and ReoY contribute to PG biosynthesis
In order to test whether MurA accumulation affected PG production, we tested the effect of

enhanced MurA levels on resistance of L. monocytogenes against the cephalosporin antibiotic ceftri-

axone. Artificial overproduction of MurA in strain LMJR116, which carries an IPTG-inducible murA

gene in addition to the native copy on the chromosome, lead to a 12-fold increase of ceftriaxone

resistance, while MurA depletion lowered ceftriaxone resistance (Figure 3A). MurA levels are thus

directly correlated with PG production, presumably leading to stimulation or impairment of PG bio-

synthesis during overproduction and depletion, respectively. In good agreement with the overpro-

duction of MurA, ceftriaxone resistance of the DclpC mutant increased to the same degree as when

MurA was overproduced (Figure 3A). Ceftriaxone resistance of DreoM, DreoY and DmurZ mutants

increased two- to three-fold (Figure 3A); this intermediate resistance level is probably explained by

the presence of functional ClpCP in these strains. Nevertheless, these observations are consistent

with a function of ReoM, ReoY and MurZ as regulators of ClpCP-dependent MurA degradation. In

good agreement with this concept of stimulated PG biosynthesis during MurA accumulation, we

observed thicker PG layers at the cell poles of DreoM and DreoY mutants, which also have more

uneven PG layers along their lateral wall, whereas both phenomena were not observed in wild type

cells (Figure 3B; Figure 3—figure supplement 1). Moreover, DreoM, DreoY and DmurZ mutants

showed salt-sensitive growth (Figure 3C), which is a known phenotype of the L. monocytogenes

DclpC mutant (Rouquette et al., 1996). Salt sensitivity of the DreoM mutant was as severe as for the

DclpC mutant, whereas the DreoY and DmurZ mutants showed milder phenotypes (Figure 3C).

Taken together, these results indicate that modulation of MurA levels effectively controls PG biosyn-

thesis and also demonstrate that ReoM, ReoY and MurZ play an important role in its regulation.

Phosphorylation and dephosphorylation of ReoM by PrkA and PrpC in
vitro
PrkA (encoded by lmo1820) and PrpC (lmo1821) are the L. monocytogenes homologues of E. faeca-

lis IreK and IreP, respectively. Consequently, the pairwise interactions and biochemical properties of

ReoM, the PrkA kinase domain (PrkA-KD) and the cognate phosphatase PrpC were investigated. All

isolated proteins electrophoresed as single species in non-denaturing PAGE (lanes 1, 2, Figure 4A;

lanes 1–4, Figure 4B). When ReoM was incubated with PrkA-KD, in the absence of ATP, a slower

migrating species was observed and the individual bands corresponding to ReoM and PrkA-KD dis-

appeared indicating that the slower migrating species was a ReoM:PrkA-KD complex (lane 3,

Figure 4A). When ReoM was incubated with PrkA-KD and Mg/ATP under the same conditions, free

PrkA-KD was observed but no bands equivalent to ReoM and the ReoM:PrkA-KD complex remained;

instead a new species was present, migrating faster in the gel than ReoM (lane 4, Figure 4A), which

is likely to be phosphorylated ReoM (P-ReoM). Intact protein liquid chromatography-mass

Figure 2 continued

MurAA is detected in two isoforms had been observed earlier but the reasons for this are not known (Kock et al., 2004). Average values and standard

deviations were shown (n = 3). Asterisks indicate statistically significant differences compared to wild type (p<0.05, t-test).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Complementation and epistasis experiments.

Figure supplement 2. DivIVA stability in L. monocytogenes DclpC, DreoM and DreoY mutants.

Figure supplement 3. Effect of reoM and reoY deletions on accumulation of other ClpC substrates in B. subtilis.
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Figure 3. MurA accumulation affects peptidoglycan biosynthesis and salt sensitivity. (A) Minimal inhibitory concentrations (MIC) for ceftriaxone of

mutants with altered MurA accumulation. Average values and standard deviations are calculated from three independent experiments and given above

the panel. Asterisks indicate statistically significant differences compared to wild type (p<0.05, t-test). Please note that the iprkA strain showed residual

growth on BHI agar plates not containing IPTG, even though it required IPTG for growth in BHI broth. (B) Transmission electron microscopy of ultrathin

sections of fixed whole cells of L. monocytogenes wildtype, DreoM and DreoY mutants. L. monocytogenes strains EGD-e (wt), LMSW30 (DreoM) and

LMSW32 (DreoY) were grown to mid-logarithmic growth phase in BHI broth at 37˚C and subjected to chemical fixation and subsequent electron

microscopy as described in the experimental procedures section. (C) Salt sensitive growth of mutants with altered MurA accumulation. L.

monocytogenes strains EGD-e (wt), LMJR138 (DclpC), LMSW30 (DreoM), LMSW32 (DreoY) and LMJR104 (DmurZ) were grown in BHI broth containing 5%

NaCl at 37˚C. Average values and standard deviations are calculated from three independent experiments.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. ReoM and ReoY affect thickness of polar peptidoglycan.
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Figure 4. The PrkA/PrpC pair controls the phosphorylation status of ReoM. (A–B) Non-denaturing, native PAGE analysis of the phosphorylation (A) and

dephosphorylation (B) of ReoM in vitro. The components of each lane in the Coomassie-stained gel are annotated above the image and the position

and identity of relevant bands is marked to the side. (C) LC-MS analysis of intact ReoM. The deconvoluted mass spectrum for non-phosphorylated

ReoM (black) is overlaid over the equivalent spectrum for mono-phosphorylated ReoM, P-ReoM (red). (D) LC-MS/MS was used to perform peptide

Figure 4 continued on next page
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spectrometry (LC-MS) analysis of ReoM isolated from PrkA-KD after phosphorylation revealed the

addition of 79.9 Da in comparison to the mass of ReoM (10671.5 Da), which corresponds to the for-

mation of a singly-phosphorylated ReoM product of 10751.4 Da (Figure 4C, Figure 4—figure sup-

plement 1). MS/MS spectra obtained during peptide mass fingerprinting were also consistent with

one phosphorylation event per protein chain; one ReoM peptide, spanning residues Asp5 to Lys22

with mass of 2151.89 Da, was increased by 79.96 Da after incubation with PrkA-KD and Mg/ATP.

Analysis of the y- and b- ions in the MS/MS fragmentation spectrum of this peptide was consistent

only with Thr7 as the sole phosphosite in ReoM (Figure 4D). Finally, mutation of Thr7 to alanine

completely abrogated the phosphorylation of ReoM by PrkA-KD when analysed by LC-MS (Fig-

ure 4—figure supplement 2).

The ability of PrpC, the partner phosphatase to PrkA in L. monocytogenes, to interact with and

remove phosphoryl groups from PrkA-KD and P-ReoM was also tested in vitro. PrkA and purified

P-ReoM were each incubated with PrpC in the absence and presence of MnCl2, since divalent cati-

ons are essential co-factors for the PPM phosphatase family to which PrpC belongs (Kennelly, 2001),

and the products were analysed by non-denaturing PAGE. Unlike the situation with ReoM and PrkA-

KD, no stable protein:protein complexes were formed either in the presence or absence of endoge-

nous MnCl2 (Figure 4B). The incubation of P-ReoM with PrpC and manganese resulted in the almost

complete disappearance of the band corresponding to P-ReoM (lane 6, Figure 4B) in comparison to

the same reaction conducted without the addition of MnCl2 (lane 5, Figure 4B). The new band, cor-

responding to ReoM alone in lane 6, is masked by that for PrpC that migrates similarly to ReoM

(lanes 1 and 4, Figure 4B) under these electrophoresis conditions. The presence of unphosphory-

lated ReoM and the absence of P-ReoM was confirmed by LC-MS (Figure 4—figure supplement 3).

When incubated with PrpC in the presence of manganese ions, the band for PrkA-KD electrophor-

esed more slowly than for PrkA-KD in isolation (lanes 3 and 8, Figure 4B), indicating that PrkA-KD

had been dephosphorylated by PrpC. LC-MS analysis of PrkA-KD that had been incubated with

PrpC/MnCl2 yielded a single major species of 37,413.2 Da, consistent with the predicted mass of the

expressed recombinant construct, and the absence of a peak corresponding to phosphorylated

PrkA-KD, P-PrkA-KD (Figure 4—figure supplement 4). Therefore, PrkA-KD is capable of autophos-

phorylation even when expressed in a heterologous host, consistent with previous observations

made for similar PASTA-eSTKs from other Gram-positive bacteria (Madec et al., 2003;

Kristich et al., 2011). Finally, in the absence of MnCl2 no change in electrophoretic mobility was

observed for P-PrkA-KD (lane 7, Figure 4B).

Phosphorylation of ReoM at threonine seven is essential for viability
PrkA phosphorylates ReoM on Thr7 and PrpC reverses this reaction in vitro; ReoM phosphorylation

at Thr7 in vivo has also been observed by phosphoproteomics (Misra et al., 2011). In the absence

of molecular details on the impact of Thr7 phosphorylation we determined the importance of this

phosphorylation in vivo by engineering a phospho-ablative T7A exchange in an IPTG-inducible allele

of reoM and introduced it into the DreoM mutant background. Deletion, depletion or expression of

wildtype reoM had no effect on growth in strains LMSW30 (DreoM) and LMSW57 (ireoM, i - is used

to denote IPTG-dependent alleles throughout the manuscript) at 37˚C. Likewise, strain LMSW52

(ireoM T7A) grew normally in the absence of IPTG. However, the reoM mutant with the T7A muta-

tion did not grow at all in the presence of IPTG, when expression of the phospho-ablative reoM T7A

allele was induced (Figure 5A), suggesting that phosphorylation of ReoM at Thr7 is essential for the

Figure 4 continued

mapping analysis that revealed that Thr7 is the sole phosphosite of ReoM. The MS/MS fragmentation spectra of the phosphorylated peptide

encompassing Asp5-Lys22 is presented with b-ion fragmentation in blue and y-ion fragmentation shown in red, whilst the precursor ion (m/z 1116.86,

z = 2+) is represented by a blue diamond.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. LC-MS analysis of intact ReoM.

Figure supplement 2. LC-MS analysis of ReoM T7A.

Figure supplement 3. Dephosphorylation of P-ReoM by PrpC.

Figure supplement 4. Dephosphorylation of P-PrkA-KD by PrpC.
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Figure 5. A ReoM T7A exchange affects growth and MurA levels in a ClpC-dependent manner. (A) Lethality of the reoM T7A and reoM T7D mutations

in L. monocytogenes. L. monocytogenes strains EGD-e (wt), LMSW30 (DreoM), LMSW57 (ireoM), LMSW52 (ireoM T7A) and LMSW53 (ireoM T7D) were

grown in BHI broth ±1 mM IPTG at 37˚C. The experiment was repeated three times and average values and standard deviations are shown. (B)

Suppression of reoM T7A lethality by deletion of clpC. L. monocytogenes strains EGD-e (wt), LMJR138 (DclpC), LMSW52 (ireoM T7A) and LMSW72

(ireoM T7A DclpC) were grown in BHI broth ±1 mM IPTG at 37˚C. The experiment was repeated three times and average values and standard

deviations are shown. (C) Western blot showing cellular levels of MurA (top) and ClpC (middle) in the strains included in panels A and B. For this

experiment, strains were grown in BHI broth not containing IPTG at 37˚C. IPTG (1 mM) was added to the cultures at an OD600 of 0.2 and the cells were

collected 2 hr later. Quantification of MurA signals by densitometry is shown below the western blots. Average values and standard deviations

calculated from three independent experiments are shown. Asterisks indicate statistically significant differences (p<0.05, t-test). (D) ReoM T7A

expression sensitises L. monocytogenes against ceftriaxone. Synergism between ceftriaxone and IPTG in the ireoM T7A strain LMSW52 in a disc

Figure 5 continued on next page
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viability of L. monocytogenes. We next engineered a reoM T7D mutant to mimic the effect of Thr7

phosphorylation. However, the resulting strain was as sensitive to IPTG as the reoM T7A mutant

(Figure 5A). Since ReoM influences the proteolytic stability of MurA, we determined the cellular

amount of MurA in strains expressing the T7A/T7D variants of ReoM. For this purpose, strains

LMSW57 (ireoM), LMSW52 (ireoM T7A) and LMSW53 (ireoM T7D) were initially cultivated in plain

BHI broth. At an OD600 of 0.2, IPTG was added to a final concentration of 1 mM and cells were har-

vested 2 hr later. Strain LMSW57 (ireoM) showed DclpC-like MurA accumulation (around seven-fold

in this experiment) when cultured in the absence of IPTG, but MurA was present at wild type levels

in the presence of IPTG (Figure 5C). The strains with the T7A and T7D exchanges also accumulated

MurA to a DclpC-like extent in the absence of IPTG. However, only a minor fraction of the wild type

MurA levels could be detected in cells expressing the reoM T7A (17 ± 2%) or reoM T7D alleles (10 ±

2%, Figure 5C). That the reoM T7D mutant does not have the opposite phenotype as the reoM T7A

mutant indicates that ReoM T7D behaves as a non-phosphorylatable protein and not as a genuine

phospho-mimetic variant. The reasons for this discrepancy are currently not clear, but phospho-

mimetic mutations do not work in all cases (Dephoure et al., 2013), since aspartate (and glutamate)

are unfaithful chemical mimics of phosphothreonine; a similar phenomenon was also observed with

phospho-mimetic replacements of Thr7 in E. faecalis IreB (Hall et al., 2013). Nonetheless, our data

demonstrate that Thr7 in ReoM is of special importance for the proteolytic stability of MurA. In

agreement with these results, IPTG was toxic for the ireoM T7A mutant in a disc diffusion assay and

rendered this strain hypersensitive to ceftriaxone (Figure 5D).

Lethality of the reoM T7A mutations depends on ClpC
That MurA is rapidly degraded in cells expressing reoM T7A implies that phosphorylation/dephos-

phorylation of ReoM at Thr7 controls ClpCP-dependent MurA degradation. MurA is an essential

enzyme in L. monocytogenes (Rismondo et al., 2017), and stimulation of ClpCP-dependent MurA

degradation in the reoM T7A mutant would provide an explanation for the lethality of this mutation.

In order to address this possibility, we deleted clpC in the conditional ireoM T7A background. This

strain grew even in the presence of IPTG, a compelling demonstration that the removal of clpC sup-

pressed the lethality of the reoM T7A mutation (Figure 5B). MurA also accumulated to the same

degree as in the DclpC mutant in this strain (Figure 5C), suggesting that inactivation of the ClpCP-

dependent degradation of MurA overcame the lethal effect of the T7A mutation in reoM and this

suggests that ClpCP acts downstream of ReoM. We next wondered whether deletion of reoY and

murZ would have a similar effect and deleted these genes in the reoM T7A mutant. As can be seen

in Figure 5E, deletion of either gene overcame the lethality of reoM T7A, indicating that ReoY and

MurZ must also act downstream of ReoM.

Crystal structure of ReoM, a homologue of Enterococcus faecalis IreB
Purified ReoM yielded crystals that diffracted to a maximum resolution of 1.6 Å. The NMR structure

of IreB (PDBid 5US5) (Hall et al., 2017) was used to solve the structure of ReoM by molecular

replacement (Figure 6A). The data collection and refinement statistics for the ReoM structure are

summarised in Table 1. ReoM shares the same overall fold as IreB (Hall et al., 2017), each contain-

ing a compact 5-helical bundle (four standard a-helices and one single-turned 310-helix between resi-

dues 52 and 54) with short loops between the secondary structure elements, which are defined

above the sequence alignment in Figure 6B. Other than IreB (Hall et al., 2017), there are no struc-

tural homologues of ReoM with functional significance in the PDB. The helical bundles in both ReoM

and IreB associate into homodimers with a-helices two and four from each protomer forming the

Figure 5 continued

diffusion assay with filter discs containing 50 mg/ml ceftriaxone (CRO, left) and 1 mM IPTG (right). For comparison, wild type levels of growth inhibition

by ceftriaxone are marked with black circles. Zone of growth inhibition by IPTG in the ireoM T7A mutant is marked with a white circle. Please note that

strain LMSW52 shows hetero-resistance against IPTG (two zones of growth inhibition with different resistance levels). Arrows mark the zones of

synergism between ceftriaxone and IPTG. (E) Contribution of ReoY and MurZ to the lethal reoM T7A phenotype. L. monocytogenes strains EGD-e (wt),

LMSW52 (ireoM T7A), LMSW72 (ireoM T7A DclpC), LMSW123 (ireoM T7A DreoY) and LMSW124 (ireoM T7A DmurZ) were grown in BHI broth containing

1 mM IPTG and growth at 37˚C was recorded in a microplate reader. Average values and standard deviations were calculated from an experiment

performed in triplicate.
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Figure 6. Crystal structure of ReoM. (A) The structure of ReoM depicted as a cartoon with each protomer in the

dimer coloured separately (cyan and orange). The secondary structure elements are numbered according to their

position in the amino acid sequence. Thr7 and some of the key amino acids in the dimer interface and the

hydrophobic core are drawn as stick figures. (B) Sequence alignment of ReoM (Lmo) and its homologues from

Figure 6 continued on next page

Wamp et al. eLife 2020;9:e56048. DOI: https://doi.org/10.7554/eLife.56048 12 of 31

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.56048


Figure 6 continued

Bacillus subtilis (Bsu), Streptococcus pneumoniae (Spn), Clostridium difficile (Cdi) and Staphylococcus aureus (Sau)

with the sequence of IreB from Enterococcus faecalis (Efa) underneath. Amino acid sequence numbers pertain to

ReoM and the site of phosphorylation in ReoM (Thr7) and the twin phosphorylations in IreB (minor site: Thr4;

major site: Thr7) are highlighted. Invariant amino acids are shaded black, residues in the ReoM dimer interface

have an asterisk above, and the secondary structure elements are defined by cylinders above the alignment.

Arginine residues mutated in this study are indicated by a hashtag above the alignment. (C) The final 2Fobs-Fcalc
electron density map, contoured at a level of 0.42 e-/Å3, of the N-terminal region in the immediate vicinity of Thr7

in chain A of the ReoM dimer indicates that the protein model could be built with confidence even though this

region contains no secondary structure elements.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. ReoM and P-ReoM have the same oligomeric state.

Figure supplement 2. Lethality of ReoM R57A and R62A substitutions.

Figure supplement 3. A possible conformational change of the flexible ReoM N-terminus induced by

phosphorylation.

Table 1. Summary of the data collection and refinement statistics for ReoM.

Data collection

Beamline Diamond I03

Wavelength (Å) 0.976

Resolution (Å) 74.45–1.60 (1.63–1.60)*

Space group P 21 21 21

a, b, c (Å) 38.79, 58.62, 74.45

a, b, g (˚) 90, 90, 90

Rpim 0.064 (0.533)

CC (1/2) (%) 98.6 (62.0)

<I>/<s(I)> 8.2 (2.2)

Completeness (%) 99.8 (99.8)

Redundancy 4.8 (4.9)

Total observations 111229 (5581)

Unique reflections 23059 (1129)

Refinement

Rwork (%) 15.3

Rfree (%) 21.4

Solvent content (%) 38.0

# atoms

Protein 1399

Ligand/ion 20

Water 94

B-factors (Å2)

Protein 26.4

Ligand/ion 50.5

Water 37.7

R.m.s deviations

Bonds (Å) 0.015

Angles (˚) 1.79

*Where values in parentheses refer to the highest resolution shell.
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majority of the homodimer interface (Figure 6A), and these residues are highlighted in Figure 6B. In

agreement with the IreB structural analysis, 1200 Å2 of surface area is buried in the ReoM dimer

interface, representing 9% of the total solvent accessible surface area. The similarity of the mono-

mers and the dimeric assemblies of ReoM and IreB is underlined by the 1.5 and 1.7 Å r.m.s.d. values,

respectively, on global secondary structure superposition matching 74 Ca atoms from each proto-

mer in the comparison.

Other than the compact helical bundle of ReoM, there is a ~ 16 residue-long N-terminal tail, with

B-factors 25% higher than the rest of the protein, prior to the start of a-helix one at residue Ile17.

The equivalent N-terminal region is also disordered in the NMR structure of IreB (Hall et al., 2017).

Despite the absence of secondary structure, the ReoM model covering this region could be built

with confidence from Asp5 in chain A and Asp2 in chain B (Figure 6C). Consequently, it is possible

to visualise Thr7, the target for phosphorylation by PrkA, in the flexible N-terminal region in both

chains. The side chain of Thr7 in both chains makes no intramolecular interactions and is thus amena-

ble to phosphorylation by PrkA. Despite multiple attempts, however, no crystals of P-ReoM could

be grown. Several possible ReoM responses to phosphorylation exist including a change in oligo-

meric state, as observed quite commonly in response regulators in order to bind more effectively to

promoter regions to effect transcription (Johnson and Lewis, 2001). However, analysis of the oligo-

meric state of P-ReoM by size exclusion chromatography revealed that the protein behaved in solu-

tion the same as to unphosphorylated ReoM (Figure 6—figure supplement 1).

Alternatively, the presence of a sulphate ion (a component of the crystallisation reagent) adjacent

to the sidechain of Thr7 could mimic what P-ReoM might look like (Figure 6C). The sulphate ion is

captured by a positively-charged micro-environment from a symmetry-equivalent molecule. ReoM

could thus react to phosphorylation by a substantial movement of Thr7 to interact with this posi-

tively-charged surface, which comprises arginines with levels of conservation (Arg57 [57% con-

served], Arg62 [99%], Arg66 [76%], Arg70 [98%]) amongst all 2909 ReoM homologues present at

NCBI approaching that of Thr7 (96%). We subsequently made alanine substitutions of each of these

arginines in reoM. Whereas the R66A and R70A mutations were without any effect on growth (data

not shown), expression of ReoM R57A and R62A mutations were as lethal as expression of ReoM

T7A (Figure 6—figure supplement 2). Thus, Arg57 and Arg62 might co-ordinate P-Thr7, stabilising

the conformation and position of the flexible N-terminal region (Figure 6—figure supplement 3),

though confirmation of the molecular consequences of ReoM phosphorylation remain to be

determined.

Control of MurA stability and PG biosynthesis by the PrkA/PrpC
protein kinase/phosphatase pair
To study the contribution of the PrkA/PrpC couple to PG biosynthesis in more detail, we aimed to

construct prkA and prpC deletion mutants, but failed to delete prkA. However, prkA could be

deleted in the presence of an IPTG-inducible ectopic prkA copy and the resulting strain (LMSW84)

required IPTG for growth (Figure 7A), demonstrating the essentiality of this gene. The essentiality of

prkA in our hands is consistent with results by others who have also shown that prkA can only be

inactivated in the presence of a second copy (Pensinger et al., 2014). Repeated attempts to delete

prpC finally yielded a single DprpC clone (LMSW76). Genomic sequencing of this strain, which grew

at a similar rate to wild type (Figure 7A), confirmed the successful deletion of prpC but also identi-

fied a trinucleotide deletion in the prkA gene (designated prkA*), effectively removing the complete

codon of Gly18 that is part of a conserved glycine-rich loop important for ATP binding

(Rakette et al., 2012). Presumably, this mutation reduces the PrkA kinase activity to balance the

absence of PrpC. By contrast, prpC could be deleted readily in the presence of a second IPTG-

dependent copy of prpC and growth of the resulting strain (LMSW83) did not require IPTG, most

likely explained by promoter leakiness in the absence of IPTG (Figure 7A). The viability of the iprpC

mutant shows that the prpC deletion had no polar effects on the expression of the downstream

prkA. That prkA and prpC are both essential suggests that some of their substrates must be phos-

phorylated and unphosphorylated, respectively, to be active. Next, the effect of prkA and prpC

mutations on MurA accumulation was analysed by western blotting. Intermediate MurA accumula-

tion was evident in the DprpC prkA* strain, while full accumulation of MurA was observed in PrpC-

depleted cells. By contrast, no MurA was detected in cells depleted for PrkA (Figure 7B). Therefore,

PrkA and PrpC inversely contribute to the accumulation of MurA, suggesting that phosphorylated
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Figure 7. Effect of prkA and prpC mutations on growth and MurA levels of L. monocytogenes. (A) Contribution of

PrkA and PrpC to L. monocytogenes growth. L. monocytogenes strains EGD-e (wt), LMSW76 (DprpC prkA*),

LMSW83 (iprpC) and LMSW84 (iprkA) were grown in BHI broth ±1 mM IPTG at 37˚C in a microtiter plate reader.

The experiment was repeated three times and average values and standard deviations are shown. (B) Contribution

of PrkA and PrpC to MurA stability. Western blots showing cellular levels of MurA (top) and DivIVA (middle) in the

same set of strains as in panel A and quantification of MurA signals by densitometry (below). Average values and

standard deviations calculated from three independent experiments are shown. Asterisks indicate statistically

significant differences (p<0.05, t-test).
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ReoM favours MurA accumulation, while un-phosphorylated ReoM counteracts this process. In good

agreement, depletion of PrkA strongly increased ceftriaxone susceptibility, while inactivation of

prpC caused increased ceftriaxone resistance (Figure 3A).

Deletion of reoM, reoY or clpC eliminates prkA essentiality
In order to test whether the essentiality of prkA could be explained by stimulated MurA degradation

through ClpCP, we first tested the effect of clpC on the essentiality of prkA. For this purpose, clpC

was removed from the iprkA strain and growth of the resulting strain (LMSW91) was tested. In con-

trast to the parental iprkA strain (LMSW84), which required IPTG for growth, strain LMSW91 was via-

ble without IPTG (Figure 8A) thus confirming that the essentiality of PrkA depends on ClpC. We

next wondered whether ReoM and ReoY were also required for PrkA essentiality and consequently

deleted their genes from the iprkA background to test this. Again, the resulting strains did not

require IPTG for growth in contrast to the parental iprkA strain (Figure 8A). In good agreement with

these findings, deletion of clpC, reoM or reoY all stabilised MurA in PrkA-depleted cells (Figure 8B),

showing that the stimulated degradation of MurA that we observe in cells depleted for PrkA

(Figure 7B) is dependent on any one of these three proteins. These results together permit a model

of genetic interactions to be proposed (Figure 9) that starts with PrkA and its downstream substrate

ReoM. ReoY, MurZ and ClpC in turn are positioned downstream of ReoM (as indicated by the

experiments shown in Figure 5E) to control MurA stability. To further substantiate this concept,

physical interactions between ReoM, ReoY, ClpC, ClpP and MurA were determined in bacterial two

hybrid experiments, which revealed that ReoY interacted with ClpC, ClpP and ReoM. In turn, ReoM

interacted with MurA (Figure 8—figure supplement 1), which suggests that ReoM and ReoY could

bridge the interaction of ClpCP with its substrate MurA.

Discussion
With ReoM we have identified a missing link in a regulatory pathway that enables Firmicute bacteria

to respond to PG biosynthesis fluctuations associated with growth and division. In L. monocyto-

genes, the sensory module of this pathway comprises the membrane integral protein kinase PrkA

and the cognate protein phosphatase PrpC, their newly discovered substrate ReoM and the associ-

ated factors ReoY and MurZ, which together regulate ClpCP activity, the effector protease that acts

on MurA (Figure 9). It has been demonstrated previously that the kinase activity of PrkA homo-

logues was activated by muropeptides (Mir et al., 2011; Shah et al., 2008) or the PG precursor lipid

II (Hardt et al., 2017). Muropeptides were released from the cell wall during normal PG turnover,

and their release was intensified when PG hydrolysis prevailed over PG biosynthesis (Vollmer et al.,

2008b; Irazoki et al., 2019), whereas blocking PG chain elongation by moenomycin treatment

caused the accumulation of lipid-linked PG precursors (Kohlrausch and Höltje, 1991). Thus, both

types of molecules accumulated when PG biosynthesis was inhibited and could represent useful sig-

nals for detecting imbalances in cell wall biosynthesis. Our data are consistent with a model in which

PrkA-phosphorylated ReoM no longer activates ClpCP, which leads to MurA stabilisation and the

activation of PG biosynthesis (Figure 9). In B. subtilis, this effect is supported by stabilisation of

GlmS (Figure 2—figure supplement 3A), another ClpCP substrate but which acts in front of MurA

as the first enzyme of the UDP-GlcNAc-generating GlmSMU pathway.

How ReoM and ReoY exert their effect on ClpCP is currently unknown, but a fascinating possibil-

ity would be a function like to that of an adaptor protein to target protein substrates to ClpCP for

degradation. Several ClpC adaptors for different substrates are known in B. subtilis (Kirstein et al.,

2009; Mulvenna et al., 2019), but an adaptor for BsMurAA is not among them (Kock et al., 2004;

Kirstein et al., 2009). Like ReoM, the ClpC adaptor McsB from B. subtilis is also subject to phos-

phorylation, but - unlike ReoM - it targets its substrate CtsR to the ClpCP machinery only when phos-

phorylated (Kirstein et al., 2007). Either ReoM or ReoY could act as this adaptor, leaving a

subsidiary function for the other respective protein. Alternatively, both proteins could work in tan-

dem, where each of them is equally needed for ClpCP-dependent MurA degradation since the phe-

notypes of reoM and reoY mutants were identical with respect to MurA stability. However,

overexpression or deletion of reoM altered the phenotype of the DgpsB mutant, but that of reoY

was without phenotype (Figure 1—figure supplement 1, Figure 1—figure supplement 2). ReoY,

restricted to the Bacilli, also showed a narrower phylogenetic distribution than ReoM, which is found
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Figure 8. PrkA essentiality depends on reoM, reoY and clpC. (A) Effect of reoM, reoY and clpC deletions on prkA

essentiality. L. monocytogenes strains EGD-e (wt), LMSW84 (iprkA), LMSW89 (iprkA DreoM), LMSW90 (iprkA DreoY)

and LMSW91 (iprkA DclpC) were grown in BHI broth ±1 mM IPTG at 37˚C in a microtiter plate reader. The

experiment was repeated three times and average values and standard deviations are shown. (B) clpC, reoM and

reoY deletions overcome MurA degradation in PrkA-depleted cells. Western blot showing MurA levels in L.

monocytogenes strains EGD-e (wt), LMJR138 (DclpC), LMSW30 (DreoM), LMSW32 (DreoY), LMSW84 (iprkA),

LMSW89 (iprkA DreoM), LMSW90 (iprkA DreoY) and LMSW91 (iprkA DclpC, top). A parallel DivIVA western blot

was used as loading control (middle). Quantification of MurA signals by densitometry (below). Average values and

standard deviations calculated from three independent experiments are shown. Asterisks indicate statistically

significant differences (p<0.05, t-test).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Bacterial two hybrid experiment showing interactions between MurA, ReoM, ReoY, ClpC

and ClpP.
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across different Firmicutes (Figure 6B). Thus, it seems that ReoM might have a more generalised

role, whereas ReoY could play a subordinate function in control of MurA degradation by ClpCP. The

role of the MurA homologue MurZ in this process is entirely unclear, but our genetic data now place

it downstream of ReoM (Figure 8C). Furthermore, arginine phosphorylation targets proteins to

ClpCP for degradation (Trentini et al., 2016). L. monocytogenes MurA contains 17 arginines and

MurAA of B. subtilis has been found in complex with the protein arginine phosphatase YwlE

(Elsholz et al., 2012). The possibility that MurA proteins could also require arginine phosphorylation

to be accepted as a substrate by ClpCP offers additional control possibilities for ReoM/ReoY/MurZ

to modulate MurA levels.

L. monocytogenes prkA is essential, but prkA homologues in other species are dispensable

(Gaidenko et al., 2002; Cuenot et al., 2019; Kristich et al., 2007; Débarbouillé et al., 2009;

Nováková et al., 2005). At least in some of them (such as E. faecalis, S. aureus and S. pneumoniae),

the primary MurA enzyme can be functionally replaced by a second paralogue (Blake et al., 2009;

Vesić and Kristich, 2012; Du et al., 2000), so that proteolytic degradation of the primary enzyme

can be tolerated. By contrast, prkC is dispensable to Clostridioides difficile despite encoding only

one copy of the essential MurA gene (Cuenot et al., 2019; Sapkota et al., 2020); B. subtilis prkC

can also be deleted even though the primary MurA enzyme cannot be replaced by the secondary

one (Kock et al., 2004; Gaidenko et al., 2002). Probably, control of MurA degradation by ClpCP is

somewhat relaxed in these latter two species.

A screen for gpsB suppressors in S. pneumoniae did not yield reoM mutations (and these strains

do not contain reoY, consistent with a subordinate function for this gene), but instead suppressor

mutations were found that affect phpP, which encodes a Ser/Thr protein phosphatase that acts in

concert with StkP, the PASTA-eSTK of this organism (Rued et al., 2017; Lewis, 2017). Absence or

inactivation of PhpP triggered an increase in StkP-dependent protein phosphorylation levels in the

pneumococcus (Rued et al., 2017; Ulrych et al., 2016). It is tempting to speculate that loss of PhpP

activity in this suppressor also triggers P-ReoM formation that, according to our model, would help

to stabilise MurA and thus suppress the DgpsB phenotype. Interestingly, another S. pneumoniae

gpsB suppressor was identified that carries a duplication of a ~ 150 kb genomic fragment

(Rued et al., 2017), a region that includes the open reading frame for MurA. Suppression of the

Figure 9. ReoM links PrkA-dependent muropeptide sensing with peptidoglycan biosynthesis. Model illustrating the role of ReoM as substrate of PrkA

and as regulator of ClpCP. PrkA recognises free muropeptides, which activate PrkA to phosphorylate ReoM. In its unphosphorlyated form, ReoM is an

activator of ClpCP-dependent degradation of MurA, the first enzyme of peptidoglycan biosynthesis, and ReoY and MurZ contribute to this process. By

phosphorylating ReoM, PrkA prevents ClpCP-dependent MurA degradation so that MurA accumulates and peptidoglycan biosynthesis can occur.

Please note that there is a lesser degree of conservation in the fourth PASTA domain of PrkA.
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gpsB phenotype in this instance could also work via MurA accumulation, but this time due to a gene

dosage effect.

It is becoming increasingly evident that control of PG biosynthesis in response to cell wall derived

signals, via PASTA-eSTKs, is a regulatory capacity common to Firmicutes and Actinobacteria. CwlM

is the critical kinase substrate in the actinobacterium M. tuberculosis that, when phosphorylated by

PknB, binds to and activates MurA (Boutte et al., 2016). Homologues of CwlM are not present in L.

monocytogenes or B. subtilis and instead these bacteria adjust their MurA levels by controlling

MurA turnover in response to PrkA-dependent phosphorylation of ReoM. Consequently, both mech-

anisms activate PG biosynthesis in a PrkA-dependent manner either by activation or stabilisation of

MurA. Presumably B. subtilis, and other endospore forming bacteria, re-start PG biosynthesis at the

onset of germination in a similar way. Germination of B. subtilis spores can be triggered by muro-

peptides in a manner that depends upon PrkC (Shah et al., 2008), the PASTA-eSTK of B. subtilis

(Madec et al., 2002). Even though BsPrkC phosphorylates multiple substrates (Ravikumar et al.,

2014), whose individual contribution to germination is not known precisely, phosphorylation of

ReoM (aka YrzL) could be required to restart PG biosynthesis in germinating B. subtilis cells by stabil-

ising MurAA. Moreover, an E. faecalis mutant lacking the PASTA-eSTK IreK was more susceptible to

ceftriaxone but overexpression of EfMurAA overcame this defect (Vesić and Kristich, 2012). This

implies the possibility that unphosphorylated IreB together with the ReoY homologue of this organ-

ism, OG1RF_11272 (Banla et al., 2018), might stimulate MurAA proteolysis in E. faecalis as well.

Taken together it seems that observations made in different Firmicutes are in good agreement with

the PrkA!ReoM/ReoY!ClpC!MurA signaling sequence that we propose. The open questions that

remain on the molecular mechanism of ClpCP control by ReoM and ReoY will be addressed by

future experiments.

Materials and methods

Bacterial strains and growth conditions
Table 2 lists all strains used in this study (also see Supplementary file 1). Strains of L. monocyto-

genes were cultivated in BHI broth or on BHI agar plates. B. subtilis strains were grown in LB broth

at 37˚C. Antibiotics and supplements were added when required at the following concentrations:

erythromycin (5 mg/ml), kanamycin (50 mg/ml), X-Gal (100 mg/ml) and IPTG (as indicated). Escherichia

coli TOP10 was used as host for all cloning procedures (Sambrook et al., 1989). Minimal inhibitory

concentrations against ceftriaxone were determined as described previously (Rismondo et al.,

2015) using E-test strips with a ceftriaxone concentration range of 0.016–256 mg/ml.

General methods, manipulation of DNA and oligonucleotide primers
All key resources used in this study are listed in Supplementary file 1. Standard methods were used

for transformation of E. coli and isolation of plasmid DNA (Sambrook et al., 1989). Transformation

of L. monocytogenes was carried out as described by others (Monk et al., 2008). Restriction and

ligation of DNA was performed according to the manufacturer´s instructions. All primer sequences

are listed in Table 3 (also see Supplementary file 1).

Construction of plasmids for recombinant protein expression
The plasmids for expressing recombinant versions of ReoM, PrkA-KD and PrpC were prepared by

first amplifying the corresponding genes (reoM, lmo1820 and lmo1821) from L. monocytogenes

EGD-e genomic DNA using primer pairs Lmo1503F/Lmo1503R, PrkAF/PrkAR, and PrpCF/PrpCR,

respectively. The PCR products were individually ligated between the NcoI and XhoI sites of

pETM11 (Peränen et al., 1996). All mutagenesis was carried out using the Quikchange protocol and

the correct sequence of each plasmid and mutant constructed was verified by Sanger DNA sequenc-

ing (Eurofins Genomics).

Construction of plasmids for generation of L. monocytogenes strains
Plasmid pJR65 was constructed for the inducible expression of reoM. To this end, the reoM open

reading frame was amplified by PCR using the oligonucleotides JR169/JR170 and cloned into pIMK3

using NcoI/SalI. The T7A and T7D mutations were introduced into reoM of plasmid pJR65 by
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Table 2. Plasmids and strains used in this study.

Name Relevant characteristics Source*/reference

Plasmids

pIMK3 Phelp-lacO lacI neo Monk et al., 2008

pMAD bla erm bgaB Arnaud et al., 2004

pUT18 bla Plac-cya(T18) Karimova et al., 1998

pUT18C bla Plac-cya(T18) Karimova et al., 1998

pKT25 kan Plac-cya(T25) Karimova et al., 1998

p25-N kan Plac-cya(T25) Claessen et al., 2008

pJR127 bla erm bgaB DclpC (lmo0232) Rismondo et al., 2017

pSH246 bla erm bgaB DgpsB (lmo1888) Rismondo et al., 2016

pJR68 bla erm bgaB DmurZ (lmo2552) Rismondo et al., 2017

pJR71 Phelp-lacO-murZ lacI neo Rismondo et al., 2017

pJR65 Phelp-lacO-reoM lacI neo this work

pJR70 Phelp-lacO-reoY lacI neo this work

pJR83 bla erm bgaB DreoY (lmo1921) this work

pJR101 kan Plac-cya(T25)-reoM this work

pJR102 kan Plac-reoM-cya(T25) this work

pJR103 bla Plac-reoM-cya(T18) this work

pJR104 bla Plac-cya(T18)-reoM this work

pJR109 kan Plac-cya(T25)-reoY this work

pJR111 bla Plac-cya(T18)-reoY this work

pJR116 kan Plac-cya(T25)-murA this work

pJR117 kan Plac-murA-cya(T25) this work

pJR118 bla Plac-murA-cya(T18) this work

pJR119 bla Plac-cya(T18)-murA this work

pJR121 bla Plac-reoY-cya(T18) this work

pJR126 bla erm bgaB DreoM (lmo1503) this work

pSW29 Phelp-lacO-reoM T7A lacI neo this work

pSW30 Phelp-lacO-reoM T7D lacI neo this work

pSW36 bla erm bgaB DprkA (lmo1820) this work

pSW37 bla erm bgaB DprpC (lmo1821) this work

pSW38 Phelp-lacO-prkA lacI neo this work

pSW39 Phelp-lacO-prpC lacI neo this work

pSW43 kan Plac-cya(T25)-clpC this work

pSW44 kan Plac-cya(T25)-clpP this work

pSW45 kan Plac- clpC-cya(T25) this work

pSW46 kan Plac-clpP-cya(T25) this work

pSW47 bla Plac-clpC-cya(T18) this work

pSW48 bla Plac-clpP-cya(T18) this work

pSW49 bla Plac-cya(T18)-clpC this work

pSW50 bla Plac-cya(T18)-clpP this work

pSW55 Phelp-lacO-reoM R66A lacI neo this work

pSW56 Phelp-lacO-reoM R70A lacI neo this work

pSW58 Phelp-lacO-reoM R57A lacI neo this work

pSW59 Phelp-lacO-reoM R62A lacI neo this work

Table 2 continued on next page
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Table 2 continued

Name Relevant characteristics Source*/reference

B. subtilis strains

168 wild type, lab collection

BKE00860 DclpC Koo et al., 2017

BKE22180 DgpsB Koo et al., 2017

BKE22580 DypiB (reoY) Koo et al., 2017

BKE27400 DyrzL (reoM) Koo et al., 2017

L. monocytogenes strains

EGD-e wild-type, serovar 1/2a strain Glaser et al., 2001

LMJR19 DgpsB (lmo1888) Rismondo et al., 2016

LMJR104 DmurZ (lmo2552) Rismondo et al., 2017

LMJR116 attB::Phelp-lacO-murA lacI neo Rismondo et al., 2017

LMJR123 DmurA (lmo2526) attB::Phelp-lacO-murA lacI neo Rismondo et al., 2017

LMJR138 DclpC (lmo0232) Rismondo et al., 2017

shg8 DgpsB reoY H87Y this work

shg10 DgpsB reoY TAA74 this work

shg12 DgpsB reoM RBS mutation this work

LMJR96 DgpsB attB::Phelp-lacO-reoM lacI neo pJR65 ! LMJR19

LMJR102 attB::Phelp-lacO-reoM lacI neo pJR65 ! EGD-e

LMJR106 DgpsB attB::Phelp-lacO-reoY lacI neo pJR70 ! LMJR19

LMJR120 DgpsB DreoY pJR83 $ LMJR19

LMJR137 DgpsB DreoM pJR126 $ LMJR19

LMJR171 DclpC DmurZ pJR127 $ LMJR104

LMSW30 DreoM (lmo1503) pJR126 $ EGD-e

LMSW32 DreoY (lmo1921) pJR83 $ EGD-e

LMSW50 DclpC DreoM pJR127 $ LMSW30

LMSW51 DclpC DreoY pJR127 $ LMSW32

LMSW52 DreoM attB::Phelp-lacO-reoM T7A lacI neo pSW29 ! LMSW30

LMSW53 DreoM attB::Phelp-lacO-reoM T7D lacI neo pSW30 ! LMSW30

LMSW57 DreoM attB::Phelp-lacO-reoM lacI neo pJR65 ! LMSW30

LMSW72 DreoM attB::Phelp-lacO-reoM T7A lacI neo DclpC pJR127 $ LMSW52

LMSW76 DprpC prkA* pSW37 $ EGD-e

LMSW80 attB::Phelp-lacO-prkA lacI neo pSW38 ! EGD-e

LMSW81 attB::Phelp-lacO-prpC lacI neo pSW39 ! EGD-e

LMSW83 DprpC attB::Phelp-lacO-prpC lacI neo pSW37 $ LMSW81

LMSW84 DprkA attB::Phelp-lacO-prkA lacI neo pSW36 $ LMSW80

LMSW89 DprkA attB::Phelp-lacO-prkA lacI neo DreoM pJR126 $ LMSW84

LMSW90 DprkA attB::Phelp-lacO-prkA lacI neo DreoY pJR83 $ LMSW84

LMSW91 DprkA attB::Phelp-lacO-prkA lacI neo DclpC pJR127 $ LMSW84

LMSW117 DreoM DreoY pJR126 $ LMSW32

LMSW118 DreoY DmurZ pJR68 $ LMSW32

LMSW119 DreoM DmurZ pJR68 $ LMSW30

LMSW120 DreoM attB::Phelp-lacO-reoM R66A lacI neo pSW55 ! LMSW30

LMSW121 DreoM attB::Phelp-lacO-reoM R70A lacI neo pSW56 ! LMSW30

LMSW123 DreoM attB::Phelp-lacO-reoM T7A lacI neo DreoY pSW29 ! LMSW117

Table 2 continued on next page
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quickchange mutagenesis using the primer pair SW77/SW78 and SW79/SW80, respectively. The

R57A, R62A R66A and R70A, mutations were introduced into pJR65 in the same way, but using

primer pairs SW144/SW145, SW146/SW147, SW136/SW137 and SW138/SW139, respectively.

Plasmid pJR70 was constructed for inducible reoY expression. For this purpose, reoY was ampli-

fied using the primer pair JR163/JR164 and cloned into pIMK3 using NcoI/SalI.

Plasmid pSW38, for IPTG-inducible prkA expression, was constructed by amplification of prkA

using the oligonucleotides SW112/SW113 and the subsequent cloning of the generated fragment

into pIMK3 using BamHI/SalI. Plasmid pSW39, for IPTG-controlled expression of prpC, was con-

structed analogously, but using the oligonucleotides SW110/SW111 as the primers.

For construction of plasmid pJR83, facilitating deletion of reoY, fragments encompassing ~800

bp up- and down-stream of reoY were amplified by PCR with the primer pairs JR197/JR198 and

JR199/JR200. Both fragments were spliced together by splicing by overlapping extension (SOE)

PCR and cloned into pMAD using BamHI/EcoRI.

Plasmid pJR126 was generated for deletion of reoM. Fragments up- and down-stream of reoM

were PCR amplified using the primers JR264/JR265 and JR266/JR267, respectively. Both fragments

were cut with BamHI, fused together by ligation and the desired fragment was amplified from the

ligation mixture by PCR using the primers JR264/JR267 and then cloned into pMAD using BglII/SalI.

Plasmid pSW36 was constructed to delete the prkA gene. Fragments up- and down-stream of

prkA were amplified in separate PCRs using the primer pairs SHW819/SHW821 and SHW820/

SHW822, respectively. Both fragments were fused together by SOE-PCR and inserted into pMAD by

restriction free cloning (van den Ent and Löwe, 2006). Plasmid pSW37, facilitating deletion of prpC,

was constructed in a similar manner. Up- and down-stream fragments of prpC were amplified using

the primer pairs SHW815/SHW817 and SHW816/SHW818 and fused together by SOE-PCR. The

resulting fragment was inserted into pMAD by restriction free cloning.

Derivatives of pIMK3 were introduced into L. monocytogenes strains by electroporation and

clones were selected on BHI agar plates containing kanamycin. Plasmid insertion at the attB site of

the tRNAArg locus was verified by PCR. Plasmid derivatives of pMAD were transformed into the

respective L. monocytogenes recipient strains and genes were deleted as described elsewhere

(Arnaud et al., 2004). All gene deletions were confirmed by PCR.

Construction of bacterial two hybrid plasmids
The reoM (JR255/JR256), reoY (JR253/JR254), clpC (SHW830/831) and clpP (SHW832/833) genes

were amplified using the primer pairs given in brackets and cloned into pUT18, pUT18C, pKT25 and

p25-N plasmids using XbaI/KpnI. The murA gene was amplified using the oligonucleotides JR249/

JR250 for cloning into pKT25 and p25-N using PstI/KpnI or using the JR257/JR250 primer pair for

cloning into pUT18 and pUT18C using the same restriction enzymes.

Bacterial two hybrid experiments
Plasmids carrying genes fused to T18- or the T25-fragments of the Bordetella pertussis adenylate

cyclase were co-transformed into E. coli BTH101 (Karimova et al., 1998) and transformants were

selected on LB agar plates containing ampicillin (100 mg ml�1), kanamycin (50 mg ml�1), X-Gal

(0.004%) and IPTG (0.1 mM). Agar plates were photographed after 48 hr of incubation at 30˚C.

Table 2 continued

Name Relevant characteristics Source*/reference

LMSW124 DreoM attB::Phelp-lacO-reoM T7A lacI neo DmurZ pSW29 ! LMSW119

LMSW125 DreoM attB::Phelp-lacO-reoM R57A lacI neo pSW58 ! LMSW30

LMSW126 DreoM attB::Phelp-lacO-reoM R62A lacI neo pSW59 ! LMSW30

LMSW138 DreoY attB::Phelp-lacO-reoY lacI neo pJR70 ! LMSW32

LMSW139 DmurZ attB::Phelp-lacO-murZ lacI neo pJR71 ! LMJR104

*The arrow (!) stands for a transformation event and the double arrow ($) indicates gene deletions obtained by chromosomal insertion and subsequent

excision of pMAD plasmid derivatives (see experimental procedures for details).
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Table 3. Oligonucleotides used in this study.

Name Sequence (5´!3´)

JR163 GCGCCCATGGCTAAGGCATCCATTTCAATAGACGAGAAG

JR164 GCGCGTCGACTTATTCTTTTTCCGTATCCATTTGCTGTA

JR169 GCGCCCATGGATTCAAAAGATCAAACAATGTTTTACAACTTC

JR170 GCGCGTCGACTCATTTCTCACCAATTTCGTTATTTTTCAG

JR197 GCGCGGATCCCAATTATTTCGAATGGTGCGGTGTC

JR198 TCCTTATTCGTCGACCATCTTTCCTCAGTCCCTTCCTG

JR199 GGAAAGATGGTCGACGAATAAGGAATAAATCCTAGTTAGTAGGG

JR200 CGCGCGAATTCCCAAGACTCAACCTCTTTCACTC

JR249 GCGCCTGCAGAAAAAATTATTGTACGCGGTGGAAAAC

JR250 GCGCGGTACCGCGAATAAAGACGCTAAGTTTGTTACATCG

JR253 GCGCTCTAGAAAAGGCATCCATTTCAATAGACGAG

JR254 GCGCGGTACCTCTTTTTCCGTATCCATTTGCTG

JR255 GCGCTCTAGATTCAAAAGATCAAACAATGTTTTACAAC

JR256 GCGCGGTACCTTCTCACCAATTTCGTTATTTTTCAG

JR257 GCGCCTGCAGGGAAAAAATTATTGTACGCGGTGGAAAAC

JR264 GCGCAGATCTGGCAAATACAGCATTGAACTATGTG

JR265 GCGCGGATCCAATCGAAGCACCTCATTCCTTC

JR266 GCGCGGATCCATGAGAATAATGGGTTTAGATGTCGGC

JR267 GCGCGTCGACGCTAGGAATGTAGCAAGGATTTCTTC

SHW815 GATCTATCGATGCATGCCATGGGCTAAATGACCAAGGAATTACCG

SHW816 CGCGTCGGGCGATATCGGATCCTTTCTTCCGCGTTTTGGTAACG

SHW817 CAATCATCATTTTAAAAGCACCTCACTATTTTTCAG

SHW818 TGCTTTTAAAATGATGATTGGTAAGCGATTAAGC

SHW819 GATCTATCGATGCATGCCATGGAGATAGAGGCAGAATAAGACATC

SHW820 CGCGTCGGGCGATATCGGATCCGGTATTTACAACCACTACGTCG

SHW821 CGTTCTTATTTCATGAAGCATCCCTCCCTTTC

SHW822 TGCTTCATGAAATAAGAACGGAGGAAATGTGCTG

SHW830 GCGCGCTCTAGATGGACGATTTACGCAAAGAGCTCAG

SHW831 GCGCGCGGTACCTTAGCTTTTACTTTTTTAGAGGTTGTTTTC

SHW832 GCGCGCTCTAGAAATTCCAACAGTAATTGAACAAACTAGC

SHW833 GCGCGCGGTACCCCTTTTAAGCCAGATTTATTAATGATAATATC

SW77 GTAAAACATTGCTTGATCTTTTGAATCCATGGGTTTCAC

SW78 GATCAAGCAATGTTTTACAACTTCGGCGATGATTC

SW79 GTAAAACATGTCTTGATCTTTTGAATCCATGGGTTTCAC

SW80 GATCAAGACATGTTTTACAACTTCGGCG ATGATTC

SW110 GCGCGCGGATCCATGCATGCAGAATTTAGAACAGATAG

SW111 GCGCGCGTCGACTCATGAAGCATCCCTCCCTTTC

SW112 GCGCGCGGATCCATGATGATTGGTAAGCGATTAAGCG

SW113 GCGCGCGTCGACTTAATTTGGATAAGGGACTGTACCTTC

SW136 CTAAACGAGCTATCATACTTCTAGCATCCTTGTGAC

SW137 GTATGATAGCTCGTTTAGAACGAGATGAAATTATCGAG

SW138 AATTTCATCTGCTTCTAAACGACGTATCATACTTCTAGC

SW139 GTTTAGAAGCAGATGAAATTATCGAGGAACTTGTCAAAG

SW144 CCTTGTGAGCAGGAATATAAGCAGGATCGCCTG

Table 3 continued on next page
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Genome sequencing
A total of 1 ng of genomic DNA was used for library generation by the Nextera XT DNA Library

Prep Kit according to the manufacturer’s recommendations (Illumina). Sequencing was carried out

on a MiSeq benchtop sequencer and performed in paired-end modes (2 � 300 bp) using a MiSeq

Reagent Kit v3 cartridge (600-cycle kit). Sequencing reads were mapped to the reference genome L.

monocytogenes EGD-e (NC_003210.1) (Glaser et al., 2001) by utilising the Geneious software (Bio-

matters Ltd.). Variants, representing putative suppressor mutations, were identified using the Genei-

ous SNP finder tool. Genome sequences of shg8, shg10, shg12 and LMSW76 were deposited at

ENA under study number PRJEB35110 and sample accession numbers ERS3927571

(SAMEA6127277), ERS3927572 (SAMEA6127278), ERS3927573 (SAMEA6127279), and ERS3967687

(SAMEA6167687) respectively.

Isolation of cellular proteins and western blotting
20 ml cells were harvested by centrifugation, washed with ZAP buffer (10 mM Tris.HCl pH7.5, 200

mM NaCl), resuspended in 1 ml ZAP buffer also containing 1 mM PMSF and disrupted by sonication.

Centrifugation was used to remove cellular debris and the supernatant was used as total cellular pro-

tein extract. Sample aliquots were separated by standard SDS polyacrylamide gel electrophoresis.

Gels were transferred onto positively charged polyvinylidene fluoride membranes by semi-dry trans-

fer. ClpC, DivIVA, GlmS, IlvB and MurA were immune-stained using a polyclonal rabbit antiserum

recognising B. subtilis ClpC (Gerth et al., 2004), DivIVA (Marston et al., 1998), GlmS, IlvB

(Gerth et al., 2008) and MurAA (Kock et al., 2004) as the primary antibody and an anti-rabbit

immunoglobulin G conjugated to horseradish peroxidase as the secondary one. The ECL chemilumi-

nescence detection system (Thermo Scientific) was used for detection of the peroxidase conjugates

on the PVDF membrane in a chemiluminescence imager (Vilber Lourmat). For depletion of PrkA,

PrkA depletion strains were grown overnight in the presence of 1 mM IPTG and then again inocu-

lated in BHI broth containing 1 mM IPTG to an OD600 = 0.05x00A0 and grown for 3 hr at 37˚C. Sub-

sequently, cells were centrifuged, washed and reinoculated in BHI broth without IPTG at the same

OD600 as before centrifugation. Finally, cells were harvested after 3.5 more hours of growth at 37˚C

and cellular proteins were isolated.

Microscopy
Cytoplasmic membranes of exponentially growing bacteria were stained through addition of 1 ml of

nile red solution (100 mg ml�1 in DMSO) to 100 ml of culture. Images were taken with a Nikon Eclipse

Ti microscope coupled to a Nikon DS-MBWc CCD camera and processed using the NIS elements AR

software package (Nikon) or ImageJ. Ultrathin section transmission electron microscopy and scan-

ning electron microscopy were performed essentially as described earlier (Rismondo et al., 2015).

Table 3 continued

Name Sequence (5´!3´)

SW145 TATATTCCTGCTCACAAGGATGCTAGAAGTATGATAC

SW146 GTATCATACTTGCAGCATCCTTGTGACGAGGAATATAAG

SW147 GGATGCTGCAAGTATGATACGTCGTTTAGAACGAG

Lmo1503F GCTATACCATGGATTCAAAAGATCAAACAATGTTTTACAAC

Lmo1503R CGATATCTCGAGTCATTTCTCACCAATTTCGTTATTTTTCAG

PrkAF GCTATACCATGGCAATGATGATTGGTAAGCGATTAAGCG

PrkAR CGATATCTCGAGTCATTTTTTCTTTTTCTTATCTTTTTTCTCCTCAGG

PrpCF GCTATACCATGGCAATGCATGCAGAATTTAGAACAGATAGAG

PrpCR CGATATCTCGAGTCATGAAGCATCCCTCCCTTTC
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Recombinant protein purification
All proteins were expressed in E. coli BL21 (DE3) cells. Cell cultures were grown at 37˚C in LB liquid

media supplemented with 50 mg mL�1 kanamycin to an OD600 of 0.6–0.8 before expression was

induced by the addition of IPTG to a final concentration of 0.4 mM IPTG. The cultures were incu-

bated at 20˚C overnight before the cells from 2 L of cell culture were harvested by centrifugation at

3500 x g for 30 min. The cell pellets were resuspended in 70 mL of buffer A (50 mM Tris.HCl, pH 8,

300 mM NaCl, 10 mM imidazole) with 500 Kunitz units of DNase I and 1 mL Roche complete prote-

ase inhibitor cocktail at 25x working concentration. The cells were lysed by sonication, centrifuged

at 19000 x g for 20 min and the supernatant was filtered using a 0.45 mm filter. The clarified cell

lysate was loaded onto a 5 mL Ni-NTA superflow cartridge (Qiagen), washed with buffer A, and

bound proteins were eluted with 50 mM Tris.HCl, pH 8, 300 mM NaCl, 250 mM imidazole. The His6-

tag of PrkA-KD was cleaved with His-tagged TEV protease (1 mg TEV for 20 mg of protein) at 4˚C

during an overnight dialysis against a buffer of 50 mM Tris.HCl, pH 8, 300 mM NaCl, 10 mM imidaz-

ole, 1 mM DTT; TEV cleavage of ReoM was conducted as above except the dialysis was carried out

at 20˚C. The proteolysis reaction products were then passed over a 5 mL Ni-NTA superflow cartridge

(Qiagen) to remove TEV and uncleaved protein. The proteins that did not bind to the Ni-NTA col-

umn were concentrated and loaded onto either a Superdex 75 XK16/60 (GE Healthcare) (ReoM) or a

Superdex 200 XK16/60 (GE Healthcare) (PrkA-KD and PrpC) equilibrated with 10 mM Na-HEPES, pH

8, 100 mM NaCl for size exclusion chromatography. Fractions from the gel filtration were analysed

for purity by SDS-PAGE, concentrated to 20–40 mg mL�1, and small aliquots were snap-frozen in liq-

uid nitrogen for storage at �80˚C.

X-ray crystallography and ReoM structure determination
For ReoM, 23 mg mL�1 of protein in 10 mM Na-HEPES pH 8, 100 mM NaCl was subjected to crystal-

lisation by sparse matrix screening using a panel of commercial crystallisation screens. 100 and 200

nL drops of protein and 100 nL of screen solution were dispensed into 96 well MRC crystallisation

plates (Molecular Dimensions) by a Mosquito (TTP Labtech) liquid handling robot and the crystallisa-

tion plates were stored at a constant temperature of 20˚C. The crystals that grew and were subse-

quently used for diffraction experiments were formed in 0.1 M phosphate/citrate pH 4.2, 0.2 M

lithium sulfate, 20 % w/v PEG 1000 from the JCSG + screen and were mounted onto rayon loops

directly from the crystallisation drops and cryo-cooled in liquid nitrogen.

Diffraction data were collected on beamline I03 at the Diamond Light Source (DLS) synchrotron.

Diffraction images were integrated in MOSFLM (Battye et al., 2011) and scaled and merged with

AIMLESS (Evans and Murshudov, 2013). The initial model was generated by molecular replacement

in PHASER (McCoy et al., 2007) using the dimeric, 20-conformer ensemble model (PDBid 5US5) of

IreB solved by nuclear magnetic resonance (Hall et al., 2017) as a search model. The final model

was produced by iterative cycles of model building in COOT (Emsley et al., 2010) with refinement

in REFMAC (Murshudov et al., 1997) until convergence. The diffraction data collection and model

refinement statistics are summarised in Table 1.

Protein phosphorylation and dephosphorylation
The effect of phosphorylation and dephosphorylation on ReoM and PrkA-KD proteins was analysed

by 20% non-denaturing PAGE. Phosphorylation reactions consisted of 18.5 mM ReoM, 3.7 mM PrkA-

KD, 5 mM ATP and 5 mM MgCl2, diluted in 10 mM HEPES.HCl pH 8.0 and 100 mM NaCl. Dephos-

phorylation reactions consisted of 37 mM P-ReoM, 3.7 mM PrkA-KD, 18.5 mM PrpC and 1 mM MnCl2,

diluted in 10 mM HEPES.HCl pH 8.0 and 100 mM NaCl. In each case controls were loaded at the

same concentrations. The reactions were incubated at 37˚C for 20 min prior to electrophoresis at

200 V for 2.5 hr on ice.

Isolation of phosphorylated ReoM
Phosphorylation reactions consisted of 37 mM ReoM, 3.7 mM PrkA-KD, 5 mM ATP and 5 mM MgCl2,

diluted in 10 mM HEPES.HCl pH 8.0 and 100 mM NaCl, to a total volume of 5 mL. The protein mix

was loaded onto a PD 10 desalting column to remove excess ATP and protein fractions were loaded

onto a MonoQ 5/50 GL column. Buffer A consisted of 10 mM HEPES.HCl pH 8.0 and 100 mM NaCl
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and buffer B was 10 mM HEPES.HCl pH 8.0 and 1M NaCl. Bound proteins were eluted over 25 mL

with a 15–35% gradient of buffer B.

Liquid chromatography-mass spectrometry
All liquid chromatography-mass spectrometry (LC-MS) analyses were performed using an Agilent

6530 Q-TOF instrument with electrospray ionisation (ESI) in positive ion mode, coupled to an Agilent

1260 Infinity II LC system, utilising mobile phase of 0.1% (v/v) formic acid in LC-MS grade water (A)

and acetonitrile (B). Prior to peptide mapping, 10 mL of purified proteins (~1 mg/ml) were digested

using Smart Digest Soluble Trypsin Kit (Thermo Fisher Scientific) according to the manufacturer’s

guidelines. Tryptic peptides and intact protein samples were extracted using HyperSep Spin Tip SPE

C18 and C8 tips, respectively (ThermoFisher Scientific) before analysis. For phosphosite analysis, 10

mL of digest was injected onto an Acclaim RSLC 120 C18 column (Thermo Fisher Scientific, 2.1 � 100

mm, 2.2 mm, 120 Å) for reversed phase separation at 60˚C and 0.4 ml/min, over a linear gradient of

5–40% B over 25 min, 40–90% B over 8 min followed by equilibration at 5% B for 7 min. ESI source

conditions were nebuliser pressure of 45 psig, drying gas flow of 5 L/min and gas temperature of

325˚C. Sheath gas temperature of 275˚C and gas flow of 12 L/min, capillary voltage of 4000V and

nozzle voltage of 300V were also applied. Mass spectra were acquired using MassHunter Acquisition

software (version B.08.00) over the 100–3000 m/z range, at a rate of 5 spectra/s and 200 ms/spec-

trum, using standard mass range mode (3200 m/z) with extended dynamic range (2 GHz) and collec-

tion of both centroid and profile data. MS/MS fragmentation spectra were acquired over the 100–

3000 m/z range, at a rate of 3 spectra/s and 333.3 ms/spectrum. For intact protein analysis,10 mL of

desalted protein (~1 mg/ml) was injected onto a Zorbax 300 Å Stable Bond C8 column (Agilent

Technologies, 4.6 � 50 mm, 3.5 mM) for reversed phase separation at 60˚C and 0.4 mL/min, over a

linear gradient of 15–75% B over 14 min, 75–100% B over 11 min followed by post-run equilibration

at 15% B for 10 min. ESI source conditions were nebuliser pressure of 45 psig, drying gas flow of 5

L/min and source gas temperature of 325˚C were applied. Sheath gas temperature of 400˚C and gas

flow of 11 L/min, capillary voltage of 3500V and nozzle voltage of 2000V were also used. Mass spec-

tra were acquired using MassHunter Acquisition software (version B.08.00) over a mass range of

100–3000 m/z, at a rate of 1 spectra/s and 1000 ms/spectrum in extended mass range (20000 m/z)

at 1 GHz. Acquired MS and MS/MS spectra were analysed using Agilent MassHunter BioConfirm

software (version B.10.00) for identification of phosphorylated residues and subsequent intact mass

determination with processing of raw data using maximum entropy deconvolution.

Analytical size exclusion chromatography
Purified ReoM and P-ReoM proteins were run individually on a Superdex 200 Increase 10/300 GL col-

umn. 100 ml samples at 1.5 mg/mL were injected onto a column equilibrated in 10 mM HEPES.HCl

pH 8.0 and 100 mM NaCl, with a flow of 0.75 mL/min.
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sis, Investigation, Visualization; Lars Möller, Formal analysis, Investigation, Visualization; Richard J

Lewis, Conceptualization, Supervision, Funding acquisition, Investigation, Visualization, Writing -

original draft, Project administration; Sven Halbedel, Conceptualization, Formal analysis, Supervision,

Funding acquisition, Investigation, Writing - original draft, Project administration

Author ORCIDs

Sven Halbedel https://orcid.org/0000-0002-5575-8973

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.56048.sa1

Author response https://doi.org/10.7554/eLife.56048.sa2

Additional files
Supplementary files
. Supplementary file 1. Key resources table.

. Transparent reporting form

Data availability

Genome sequences of shg8, shg10, shg12 and LMSW76 were deposited at ENA under study num-

ber PRJEB35110 and sample accession numbers ERS3927571 (SAMEA6127277), ERS3927572

(SAMEA6127278), ERS3927573 (SAMEA6127279), and ERS3967687 (SAMEA6167687) respectively.

The co-ordinates and structure factors for the crystal structure of ReoM have been deposited at

PDBe with accession code 6TIF.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Wamp S, Rutter ZJ,
Rismondo J, Jen-
nings CE, Möller L,
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