Long-term implicit memory for sequential auditory patterns in humans

  1. Roberta Bianco  Is a corresponding author
  2. Peter M C Harrison
  3. Mingyue Hu
  4. Cora Bolger
  5. Samantha Picken
  6. Marcus T Pearce
  7. Maria Chait
  1. University College London, United Kingdom
  2. Max-Planck-Institut für empirische Ästhetik, Germany
  3. Queen Mary University of London, United Kingdom

Abstract

Memory, on multiple timescales, is critical to our ability to discover the structure of our surroundings, and efficiently interact with the environment. We combined behavioural manipulation and modelling to investigate the dynamics of memory formation for rarely reoccurring acoustic patterns. In a series of experiments, participants detected the emergence of regularly repeating patterns within rapid tone-pip sequences. Unbeknownst to them, a few patterns reoccurred every ~3 minutes. All sequences consisted of the same 20 frequencies and were distinguishable only by the order of tone-pips. Despite this, reoccurring patterns were associated with a rapidly growing detection-time advantage over novel patterns. This effect was implicit, robust to interference, and persisted up to 7 weeks. The results implicate an interplay between short (a few seconds) and long-term (over many minutes) integration in memory formation and demonstrate the remarkable sensitivity of the human auditory system to sporadically reoccurring structure within the acoustic environment.

Data availability

The datasets for this study can be found in the OSF repository: Dataset URL: https://osf.io/dtzs3/DOI 10.17605/OSF.IO/DTZS3

The following data sets were generated

Article and author information

Author details

  1. Roberta Bianco

    UCL Ear Institute, University College London, London, United Kingdom
    For correspondence
    r.bianco@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-8933
  2. Peter M C Harrison

    Computational Auditory Perception Research Group, Max-Planck-Institut für empirische Ästhetik, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9851-9462
  3. Mingyue Hu

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Cora Bolger

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Samantha Picken

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcus T Pearce

    School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Chait

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7808-3593

Funding

Biotechnology and Biological Sciences Research Council (BB/P003745/1)

  • Maria Chait

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The research ethics committee of University College London approved the experiment, and written informed consent was obtained from each participant.[Project ID Number]: 1490/009

Copyright

© 2020, Bianco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,384
    views
  • 426
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roberta Bianco
  2. Peter M C Harrison
  3. Mingyue Hu
  4. Cora Bolger
  5. Samantha Picken
  6. Marcus T Pearce
  7. Maria Chait
(2020)
Long-term implicit memory for sequential auditory patterns in humans
eLife 9:e56073.
https://doi.org/10.7554/eLife.56073

Share this article

https://doi.org/10.7554/eLife.56073

Further reading

    1. Neuroscience
    Dominic Gonschorek, Matías A Goldin ... Thomas Euler
    Research Article

    Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood. In this study, we used two-photon Ca2+ imaging and multi-electrode array (MEA) recordings to measure light-evoked activity of RGCs in the ganglion cell layer in the ex vivo mouse retina. This approach allowed us to investigate the neuromodulatory effects of NO on a cell type-level. Our findings reveal that NO selectively modulates the suppression of temporal responses in a distinct subset of contrast-suppressed RGC types, increasing their activity without altering the spatial properties of their receptive fields. Given that under photopic conditions, NO release is triggered by quick changes in light levels, we propose that these RGC types signal fast contrast changes to higher visual regions. Remarkably, we found that about one-third of the RGC types, recorded using two-photon Ca2+ imaging, exhibited consistent, cell type-specific adaptational response changes throughout an experiment, independent of NO. By employing a sequential-recording paradigm, we could disentangle those additional adaptational response changes from drug-induced modulations. Taken together, our research highlights the selective neuromodulatory effects of NO on RGCs and emphasizes the need of considering non-pharmacological activity changes, like adaptation, in such study designs.

    1. Medicine
    2. Neuroscience
    Gansheng Tan, Anna L Huguenard ... Eric C Leuthardt
    Research Article

    Background:

    Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function.

    Methods:

    In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement.

    Results:

    We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen’s d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge.

    Conclusions:

    Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment.

    Funding:

    The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB).

    Clinical trial number:

    NCT04557618.