Long-term implicit memory for sequential auditory patterns in humans

  1. Roberta Bianco  Is a corresponding author
  2. Peter M C Harrison
  3. Mingyue Hu
  4. Cora Bolger
  5. Samantha Picken
  6. Marcus T Pearce
  7. Maria Chait
  1. University College London, United Kingdom
  2. Max-Planck-Institut für empirische Ästhetik, Germany
  3. Queen Mary University of London, United Kingdom

Abstract

Memory, on multiple timescales, is critical to our ability to discover the structure of our surroundings, and efficiently interact with the environment. We combined behavioural manipulation and modelling to investigate the dynamics of memory formation for rarely reoccurring acoustic patterns. In a series of experiments, participants detected the emergence of regularly repeating patterns within rapid tone-pip sequences. Unbeknownst to them, a few patterns reoccurred every ~3 minutes. All sequences consisted of the same 20 frequencies and were distinguishable only by the order of tone-pips. Despite this, reoccurring patterns were associated with a rapidly growing detection-time advantage over novel patterns. This effect was implicit, robust to interference, and persisted up to 7 weeks. The results implicate an interplay between short (a few seconds) and long-term (over many minutes) integration in memory formation and demonstrate the remarkable sensitivity of the human auditory system to sporadically reoccurring structure within the acoustic environment.

Data availability

The datasets for this study can be found in the OSF repository: Dataset URL: https://osf.io/dtzs3/DOI 10.17605/OSF.IO/DTZS3

The following data sets were generated

Article and author information

Author details

  1. Roberta Bianco

    UCL Ear Institute, University College London, London, United Kingdom
    For correspondence
    r.bianco@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-8933
  2. Peter M C Harrison

    Computational Auditory Perception Research Group, Max-Planck-Institut für empirische Ästhetik, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9851-9462
  3. Mingyue Hu

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Cora Bolger

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Samantha Picken

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcus T Pearce

    School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Chait

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7808-3593

Funding

Biotechnology and Biological Sciences Research Council (BB/P003745/1)

  • Maria Chait

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The research ethics committee of University College London approved the experiment, and written informed consent was obtained from each participant.[Project ID Number]: 1490/009

Copyright

© 2020, Bianco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,496
    views
  • 432
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roberta Bianco
  2. Peter M C Harrison
  3. Mingyue Hu
  4. Cora Bolger
  5. Samantha Picken
  6. Marcus T Pearce
  7. Maria Chait
(2020)
Long-term implicit memory for sequential auditory patterns in humans
eLife 9:e56073.
https://doi.org/10.7554/eLife.56073

Share this article

https://doi.org/10.7554/eLife.56073

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.