Long-term implicit memory for sequential auditory patterns in humans

  1. Roberta Bianco  Is a corresponding author
  2. Peter M C Harrison
  3. Mingyue Hu
  4. Cora Bolger
  5. Samantha Picken
  6. Marcus T Pearce
  7. Maria Chait
  1. University College London, United Kingdom
  2. Max-Planck-Institut für empirische Ästhetik, Germany
  3. Queen Mary University of London, United Kingdom

Abstract

Memory, on multiple timescales, is critical to our ability to discover the structure of our surroundings, and efficiently interact with the environment. We combined behavioural manipulation and modelling to investigate the dynamics of memory formation for rarely reoccurring acoustic patterns. In a series of experiments, participants detected the emergence of regularly repeating patterns within rapid tone-pip sequences. Unbeknownst to them, a few patterns reoccurred every ~3 minutes. All sequences consisted of the same 20 frequencies and were distinguishable only by the order of tone-pips. Despite this, reoccurring patterns were associated with a rapidly growing detection-time advantage over novel patterns. This effect was implicit, robust to interference, and persisted up to 7 weeks. The results implicate an interplay between short (a few seconds) and long-term (over many minutes) integration in memory formation and demonstrate the remarkable sensitivity of the human auditory system to sporadically reoccurring structure within the acoustic environment.

Data availability

The datasets for this study can be found in the OSF repository: Dataset URL: https://osf.io/dtzs3/DOI 10.17605/OSF.IO/DTZS3

The following data sets were generated

Article and author information

Author details

  1. Roberta Bianco

    UCL Ear Institute, University College London, London, United Kingdom
    For correspondence
    r.bianco@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-8933
  2. Peter M C Harrison

    Computational Auditory Perception Research Group, Max-Planck-Institut für empirische Ästhetik, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9851-9462
  3. Mingyue Hu

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Cora Bolger

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Samantha Picken

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcus T Pearce

    School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Chait

    UCL Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7808-3593

Funding

Biotechnology and Biological Sciences Research Council (BB/P003745/1)

  • Maria Chait

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonas Obleser, University of Lübeck, Germany

Ethics

Human subjects: The research ethics committee of University College London approved the experiment, and written informed consent was obtained from each participant.[Project ID Number]: 1490/009

Version history

  1. Received: February 16, 2020
  2. Accepted: May 18, 2020
  3. Accepted Manuscript published: May 18, 2020 (version 1)
  4. Version of Record published: July 6, 2020 (version 2)

Copyright

© 2020, Bianco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,209
    views
  • 406
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roberta Bianco
  2. Peter M C Harrison
  3. Mingyue Hu
  4. Cora Bolger
  5. Samantha Picken
  6. Marcus T Pearce
  7. Maria Chait
(2020)
Long-term implicit memory for sequential auditory patterns in humans
eLife 9:e56073.
https://doi.org/10.7554/eLife.56073

Share this article

https://doi.org/10.7554/eLife.56073

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.