Inflammatory osteolysis is regulated by site-specific ISGylation of the scaffold protein NEMO

  1. Naga Suresh Adapala
  2. Gaurav Swarnkar
  3. Manoj Arra
  4. Jie Shen
  5. Gabriel Mbalaviele
  6. Ke Ke
  7. Yousef Abu-Amer  Is a corresponding author
  1. Washington University School of Medicine, United States

Abstract

Inflammatory osteolysis is governed by exacerbated osteoclastogenesis. Ample evidence points to central role of NF-kB in such pathologic responses, yet the precise mechanisms underpinning specificity of these responses remain unclear. We propose that motifs of the scaffold protein IKKg/NEMO partly facilitate such functions. As proof-of-principle, we used site-specific mutagenesis to examine the role of NEMO in mediating RANKL-induced signaling in mouse bone marrow macrophages, known as osteoclast precursors. We identified lysine (K)270 as a target regulating RANKL signaling as K270A substitution results in exuberant osteoclastogenesis in vitro and murine inflammatory osteolysis in vivo. Mechanistically, we discovered that K270A mutation disrupts autophagy, stabilizes NEMO, and elevates inflammatory burden. Specifically, K270A directly or indirectly hinders binding of NEMO to ISG15, a ubiquitin-like protein, which we show targets the modified proteins to autophagy-mediated lysosomal degradation. Taken together, our findings suggest that NEMO serves as a toolkit to fine-tune specific signals in physiologic and pathologic conditions.

Data availability

The following datasets and raw data will be available on Dryad: Proteomics dataset, All Western blot raw data, FACS dataset microCT raw dataset. https://doi.org/10.5061/dryad.tx95x69tn

The following data sets were generated

Article and author information

Author details

  1. Naga Suresh Adapala

    Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gaurav Swarnkar

    Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Manoj Arra

    Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jie Shen

    Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabriel Mbalaviele

    BMD, Department of Medicine, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ke Ke

    Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yousef Abu-Amer

    Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    abuamery@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5890-5086

Funding

National Institutes of Health (AR049192)

  • Yousef Abu-Amer

National Institutes of Health (AR068972)

  • Gabriel Mbalaviele

National Institutes of Health (AR054326)

  • Yousef Abu-Amer

National Institutes of Health (AR072623)

  • Yousef Abu-Amer

National Institutes of Health (AR057235)

  • Yousef Abu-Amer

Shriners Hospital For Children (86200)

  • Yousef Abu-Amer

Shriners Hospital for Children (85160)

  • Yousef Abu-Amer

National Institutes of Health (AR075860)

  • Jie Shen

National Institutes of Health (AR077226)

  • Jie Shen

National Institutes of Health (AR064755)

  • Gabriel Mbalaviele

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the animals were housed at the Washington University School of Medicine barrier facility. All experimental protocols were carried out in accordance with the ethical guidelines approved by the Washington University School of Medicine Institutional Animal Care and Use Committee (approval protocol #20190002).

Copyright

© 2020, Adapala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,342
    views
  • 268
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Naga Suresh Adapala
  2. Gaurav Swarnkar
  3. Manoj Arra
  4. Jie Shen
  5. Gabriel Mbalaviele
  6. Ke Ke
  7. Yousef Abu-Amer
(2020)
Inflammatory osteolysis is regulated by site-specific ISGylation of the scaffold protein NEMO
eLife 9:e56095.
https://doi.org/10.7554/eLife.56095

Share this article

https://doi.org/10.7554/eLife.56095

Further reading

    1. Medicine
    Pinanong Na-Phatthalung, Shumin Sun ... Fudi Wang
    Research Article

    The zinc transporter Slc30a1 plays an essential role in maintaining cellular zinc homeostasis. Despite this, its functional role in macrophages remains largely unknown. Here, we examine the function of Slc30a1 in host defense using mice models infected with an attenuated stain of Salmonella enterica Typhimurium and primary macrophages infected with the attenuated Salmonella. Bulk transcriptome sequencing in primary macrophages identifies Slc30a1 as a candidate in response to Salmonella infection. Whole-mount immunofluorescence and confocal microscopy imaging of primary macrophage and spleen from Salmonella-infected Slc30a1flag-EGFP mice demonstrate Slc30a1 expression is increased in infected macrophages with localization at the plasma membrane and in the cytosol. Lyz2-Cre-driven Slc30a1 conditional knockout mice (Slc30a1fl/fl;Lyz2-Cre) exhibit increased susceptibility to Salmonella infection compared to control littermates. We demonstrate that Slc30a1-deficient macrophages are defective in intracellular killing, which correlated with reduced activation of nuclear factor kappa B and reduction in nitric oxide (NO) production. Notably, the model exhibits intracellular zinc accumulation, demonstrating that Slc30a1 is required for zinc export. We thus conclude that zinc export enables the efficient NO-mediated antibacterial activity of macrophages to control invading Salmonella.

    1. Chromosomes and Gene Expression
    2. Medicine
    Xianghong Xie, Mingyue Gao ... Xiaojun Liu
    Research Article

    LncRNAs are involved in modulating the individual risk and the severity of progression in metabolic dysfunction-associated fatty liver disease (MASLD), but their precise roles remain largely unknown. This study aimed to investigate the role of lncRNA Snhg3 in the development and progression of MASLD, along with the underlying mechanisms. The result showed that Snhg3 was significantly downregulated in the liver of high-fat diet-induced obesity (DIO) mice. Notably, palmitic acid promoted the expression of Snhg3 and overexpression of Snhg3 increased lipid accumulation in primary hepatocytes. Furthermore, hepatocyte-specific Snhg3 deficiency decreased body and liver weight, alleviated hepatic steatosis and promoted hepatic fatty acid metabolism in DIO mice, whereas overexpression induced the opposite effect. Mechanistically, Snhg3 promoted the expression, stability and nuclear localization of SND1 protein via interacting with SND1, thereby inducing K63-linked ubiquitination modification of SND1. Moreover, Snhg3 decreased the H3K27me3 level and induced SND1-mediated chromatin loose remodeling, thus reducing H3K27me3 enrichment at the Pparg promoter and enhancing PPARγ expression. The administration of PPARγ antagonist T0070907 improved Snhg3-aggravated hepatic steatosis. Our study revealed a new signaling pathway, Snhg3/SND1/H3K27me3/PPARγ, responsible for mice MASLD and indicates that lncRNA-mediated epigenetic modification has a crucial role in the pathology of MASLD.