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Abstract PI3K-related kinases (PIKKs) are large Serine/Threonine (Ser/Thr)-protein kinases

central to the regulation of many fundamental cellular processes. PIKK family member SMG1

orchestrates progression of an RNA quality control pathway, termed nonsense-mediated mRNA

decay (NMD), by phosphorylating the NMD factor UPF1. Phosphorylation of UPF1 occurs in its

unstructured N- and C-terminal regions at Serine/Threonine-Glutamine (SQ) motifs. How SMG1 and

other PIKKs specifically recognize SQ motifs has remained unclear. Here, we present a cryo-

electron microscopy (cryo-EM) reconstruction of a human SMG1-8-9 kinase complex bound to a

UPF1 phosphorylation site at an overall resolution of 2.9 Å. This structure provides the first

snapshot of a human PIKK with a substrate-bound active site. Together with biochemical assays, it

rationalizes how SMG1 and perhaps other PIKKs specifically phosphorylate Ser/Thr-containing

motifs with a glutamine residue at position +1 and a hydrophobic residue at position -1, thus

elucidating the molecular basis for phosphorylation site recognition.

Introduction
Family members of phosphatidylinositol 3-kinase-related kinases (PIKKs) activate distinct signaling

pathways that promote cellular survival in different environmental and endogenous stress conditions

(Baretić and Williams, 2014; Imseng et al., 2018; Lempiäinen and Halazonetis, 2009). Specifically,

PIKKs oversee translation machinery in the cytoplasm (mTOR, SMG1), or regulate DNA damage

repair in the nucleus (ATM, ATR and DNA-PK) (Shimobayashi and Hall, 2014; Saxton and Sabatini,

2017; Yamashita, 2013; Yamashita et al., 2001; Blackford and Jackson, 2017; Elı́as-

Villalobos et al., 2019). With the exception of the enzymatically inactive TRAPP/Tra1, which serves

as a scaffold in chromatin modification complexes, all other members of the PIKK family are Ser/Thr-

protein kinases, and are among the largest proteins in the eukaryotic kinome. Recent publications

have revealed the organization of PIKK active sites at better than 4 Å resolution (Gat et al., 2019;

Zhu et al., 2019; Yang et al., 2013; Jansma et al., 2020; Yates et al., 2020), but the key question

of how members of this kinase family recognize their substrates remains unanswered.

Human SMG1 is one of the largest PIKK family members (~410 kDa) and plays a crucial role in

nonsense-mediated mRNA decay (NMD), a conserved pathway that regulates mRNA stability in the

cytoplasm of eukaryotic cells (Kurosaki and Maquat, 2016; Karousis and Mühlemann, 2019). In its

canonical surveillance function, the NMD pathway recognizes and degrades aberrant mRNAs con-

taining premature translation termination codons, thus preventing the accumulation of truncated

protein products. In addition, NMD also regulates the levels of a subset of normal, physiological

transcripts, amounting to 5–10% of the transcriptome. In metazoans, SMG1 forms a stable complex

with two additional proteins, SMG8 and SMG9, and specifically phosphorylates the RNA helicase

UPF1. Phosphorylation of UPF1 is a crucial event in this pathway as it enables the recruitment of

downstream NMD factors SMG5, SMG6 and SMG7, leading to ribonucleolytic cleavage of the RNA.
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SMG1 phosphorylates UPF1 specifically at Ser/Thr - Gln (SQ) motifs present in the unstructured N-

and C-terminal regions that flank the helicase core (Yamashita et al., 2001; Denning et al., 2001).

Specificity for a glutamine residue at the +1 position is shared by other PIKK family members,

namely, ATM, ATR and DNA-PK kinases (Kim et al., 1999; Bannister et al., 1993). However, there

is an additional layer of phosphorylation site specification. Among the 20 possible SQ motifs in

UPF1, studies in vitro and in vivo have shown that only a selected few are effectively phosphorylated,

including Ser1073, Ser1078, Ser1096 and Ser1116 (Yamashita et al., 2001; Ohnishi et al., 2003;

Durand et al., 2016). Interestingly, these UPF1 phosphorylation sites share a Leu-Ser-Gln (LSQ) con-

sensus sequence identical to the LSQ consensus motif identified in substrates of the ATM kinase

(O’Neill et al., 2000; Kim et al., 1999). In this work, we studied the interaction between recombi-

nant human SMG1-SMG8-SMG9 with UPF1 peptides using cryo-EM and mass spectrometry to iden-

tify the molecular basis with which SMG1, and potentially other PIKKs, recognizes specific

phosphorylation sites in its substrate.

Results and discussion

Cryo-EM structure of the human SMG1-8-9 kinase complex bound to a
UPF1 peptide
We used stably transfected HEK293T cells to express and purify a human wild-type SMG1-8-9 com-

plex, as previously reported (Gat et al., 2019). The complex phosphorylated full-length recombinant

UPF1 in a radioactive kinase assay (Figure 1—figure supplement 1A), confirming the enzymatic

activity of purified SMG1 towards its physiological substrate. We selected a frequently phosphory-

lated site within UPF1 (Yamashita et al., 2001), Ser1078, and used a peptide spanning residues

1074–1084 (hereby defined as UPF1-LSQ) for subsequent structural and biochemical analysis (Fig-

ure 1—figure supplement 1B). We confirmed the ability of SMG1-8-9 to specifically phosphorylate

UPF1-LSQ using a mass spectrometry-based phosphorylation assay (Figure 1—figure supplement

1C and D). This assay allowed us to monitor the relative amount of phosphorylation of a specific

peptide over time. As a control, phosphorylation was abolished when Ser1078 was changed to Asp

eLife digest The instructions for producing proteins in the cell are copied from DNA to

molecules known as messenger RNA. If there is an error in the messenger RNA, this causes incorrect

proteins to be produced that could potentially kill the cell. Cells have a special detection system that

spots and removes any messenger RNA molecules that contain errors, which would result in the

protein produced being too short.

For this error-detecting system to work, a protein called UPF1 must be modified by an enzyme

called SMG1. This enzyme only binds to and modifies the UPF1 protein at sites that contain a

specific pattern of amino acids – the building blocks that proteins are made from. However, it

remained unclear how SMG1 recognizes this pattern and interacts with UPF1.

Now, Langer et al. have used a technique known as cryo-electron microscopy to image human

SMG1 bound to a segment of UPF1. These images were then used to generate the three-

dimensional structure of how the two proteins interact. This high-resolution structure showed that

protein building blocks called leucine, serine and glutamine are the recognized pattern of amino

acids. To further understand the role of the amino acids, Langer et al. replaced them one-by-one

with different amino acids to see how each affected the interaction between the two proteins. This

revealed that SMG1 preferred leucine at the beginning of the recognized pattern and glutamine at

the end when binding to UPF1.

SMG1 is member of an important group of enzymes that are involved in various error detecting

systems. This is the first time that a protein from this family has been imaged together with its target

and these findings may also be relevant to other enzymes in this family. Furthermore, the approach

used to determine the structure of SMG1 and the structural information itself could also be used in

drug design to improve the accuracy with which drugs identify their targets.
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(Figure 1—figure supplement 1C and D). Hence, the reconstitutions used in this study recapitulate

specific phosphorylation site selection.

For structure determination, we incubated SMG1-8-9 with UPF1-LSQ and AMPPNP, a non-hydro-

lyzable ATP analogue, and subjected the sample to cryo-EM single particle analysis. The final recon-

struction reached an overall resolution of 2.9 Å (Figure 1—figure supplements 2 and 3), and

allowed us to further complete and refine the published model for SMG1-8-9 (Supplementary file

1; Gat et al., 2019). Briefly, SMG1 consists of an N-terminal solenoid ’arch’ and a compact C-termi-

nal ’head’ region (Figure 1A and B). The C-terminal ’head’ is formed by the tight interaction

between the catalytic module, typical of Ser/Thr-kinases, and the so-called FAT and FATC domains

(Imseng et al., 2018; Baretić and Williams, 2014; Bosotti et al., 2000). The N-terminal ‘arch’ pro-

vides binding sites for both SMG8 and SMG9 (Figure 1A and B). As we had previously reported,

SMG9 contains an unusual G-fold domain that binds ATP rather than GTP or GDP (Gat et al., 2019).

Figure 1. Cryo-EM reconstruction of SMG1-8-9 bound to UPF1-LSQ. (A) Domain organization of SMG1, SMG8, SMG9 and UPF1. White parts are not

resolved in the reconstruction. The sequence and location of UPF1-LSQ is indicated with blue text and dotted lines. (B) Segmented cryo-EM

reconstruction of substrate-bound SMG1-8-9. Two different views are shown; proteins and domains are colored as in A. (C) A zoomed-in view of SMG1

showing the kinase active site with bound AMPPNP and UPF1-LSQ. Reconstructed density for UPF1-LSQ is shown as a blue mesh. (D) Zoom-in showing

ATP bound to SMG9 with reconstructed density displayed as a blue mesh.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. SMG1-8-9 activity and UPF1 SQ motifs.

Figure supplement 2. Cryo-EM analysis of SMG1-8-9 bound to UPF1-LSQ.

Figure supplement 3. Cryo-EM data processing scheme.

Figure supplement 4. SMG9 is a G-fold containing protein binding ATP and exhibits distinct differences to the bona fide GTPase RAS.

Figure supplement 5. Quality of the reconstructed density.
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The local resolution of around 3 Å allowed us to model SMG9-bound ATP in the reconstructed den-

sity, revealing the molecular basis for how the adenosine nucleotide is recognized by this unusual

G-fold domain (Figure 1B and D, Figure 1—figure supplement 4). Briefly, the G4 and G5 motifs

responsible for the recognition of the base have rearranged to preferentially bind an adenine base

rather than a guanine (Figure 1—figure supplement 4).

Importantly, compared to the previously published apo-SMG1-8-9 structure (Gat et al., 2019),

the current reconstruction revealed extra density in the kinase active site accounting for both

AMPPNP and UPF1-LSQ (Figure 1B and C, Figure 1—figure supplement 5A,B and C).

Positioning of UPF1 Ser1078 in the SMG1 active site for phosphoryl
transfer
The active site of SMG1 shows excellent density for residues 1075–1081 of UPF1-LSQ (Figure 1C,

Figure 1—figure supplement 5). The directionality of the bound substrate peptide is consistent

with that of other kinase structures, such as CDK2, and the arrangement of key active site residues is

well conserved (Figure 2—figure supplement 1; Bao et al., 2011). The geometry of the catalytic

Figure 2. Organization of the substrate-bound kinase active site. (A) The structure of the entire complex is shown overlayed with transparent

reconstructed density. The black box indicates the location of the kinase active site. (B) SMG1 active site with important residues shown as sticks.

Activation segment and catalytic loop as indicated; the p-loop was omitted for clarity. UPF1-LSQ is shown in blue with positions of important residues

highlighted. (C) Two-dimensional sketch of the SMG1 active site with key kinase-substrate interactions indicated. (D) Activation segment (pink) and

catalytic loop (magenta) regions of a SMG1 sequence alignment are shown, indicating a high level of conservation across Homo sapiens, Bos taurus,

Mus musculus, Gallus gallus, Xenopus laevis, Danio rerio and Caenorhabditis elegans. Key residues shown in B are highlighted by a black dot and

activation segment and catalytic loop are indicated.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of SMG1 substrate-bound active site to other protein kinases.

Figure supplement 2. Recognition of UPF1-LSQ phospho-acceptor residue Ser1078 by SMG1 catalytic loop residues.
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loop (residues 2332 to 2340) and of the activation segment (residues 2352 to 2375) in the SMG1

kinase domain as well as orientation of important active site residues are very similar to those

observed in mTOR (Figure 2—figure supplement 1B), indicative of an active kinase state

(Yang et al., 2013). Specific recognition of the phosphorylation site is achieved via conserved resi-

dues contributed by the activation segment and the catalytic loop as well as by the FATC domain

(Figure 2). The hydroxyl group of Ser1078, the phospho-acceptor residue in UPF1-LSQ, is positioned

by residues of the catalytic loop, in particular Asp2335 and His2337 (Figure 2B and C, Figure 2—

figure supplement 2A and B). Consistent with the structural observations, mutation of either of the

corresponding residues in SMG1, mTOR and other protein kinases results in catalytically inactive

enzyme (Bao et al., 2011; Madhusudan et al., 2002; Yang et al., 2013; Brown et al., 1995;

Yamashita et al., 2001; Denning et al., 2001). Therefore, the overall architecture of the substrate-

bound SMG1 catalytic module corroborates the structural conservation among PIKK active sites and

reveals that positioning of the substrate phospho-acceptor is achieved by residues that are shared

between a wide range of protein kinases.

Crucial recognition of a glutamine residue at +1 position of the UPF1
consensus motif
A glutamine residue following the phospho-acceptor site is the minimal requirement for UPF1 phos-

phorylation by SMG1 (Figure 3A; Yamashita et al., 2001). To validate the importance of this resi-

due, we performed a mass spectrometry-based phosphorylation assay using a series of peptides

based on UPF1-LSQ. We changed the residue at position +1 in the UPF1-LSQ peptide to test the

effect of different side chain properties on phosphorylation. Only wildtype UPF1-LSQ was efficiently

phosphorylated by SMG1 (Figure 3B and Figure 1—figure supplement 1C). In our structure, the

glutamine at position +1 of UPF1-LSQ reaches into a hydrophobic cage formed by the SMG1 activa-

tion segment and FATC domain (Figure 3C). In particular, UPF1 Gln1079 stacks against Tyr3654 and

Leu2365 and forms hydrogen bonds with the backbone of Val2367 (Figure 3C). The hydrophobic

cage is highly conserved in other PIKKs that recognize SQ motifs (ATM, ATR and DNA-PK) but is dif-

ferent in mTOR (where Glu2369 is found at the equivalent position of SMG1 Leu2365) (Figure 3D).

This difference is also apparent from the superposition of SMG1 with the 2.8 Å resolution structure

of the ATM orthologue Chaetomium thermophilum (Ct) Tel1ATM and with mTOR (Figure 2—figure

supplement 1C and D; Jansma et al., 2020; Yang et al., 2013). While the geometry of the hydro-

phobic cage is highly similar between SMG1 and CtTel1ATM, it deviates in mTOR due to the

described Leu to Glu substitution. Indeed, mTOR has been found to prefer small or non-polar resi-

dues at position +1 of its phosphorylation consensus motif (Hsu et al., 2011). Taken together, these

observations provide a rationale for the difference in phosphorylation site specificity between

SMG1, ATM, ATR, DNA-PK and mTOR. Intriguingly, the structural superposition with CtTel1ATM

shows that its PIKK regulatory domain (PRD) places a Gln residue in the corresponding hydrophobic

cage, effectively occupying the substrate Gln binding site (Figure 2—figure supplement 1C). This

explains the autoinhibitory function of the ATM PRD domain (Jansma et al., 2020; Yates et al.,

2020). The corresponding PRD domain in SMG1 is a ~ 1100 amino-acid long insertion (Figure 1A)

that negatively impacts its kinase activity (Deniaud et al., 2015). However, there is no ordered den-

sity for this region in neither the previous apo-structure (Gat et al., 2019) nor in the current sub-

strate-bound structure (Figure 1A and B).

Preferred recognition of a leucine residue at �1 position of the UPF1
consensus motif
Previous results have indicated that SQ motifs preceded by a hydrophobic residue in position �1

are preferentially phosphorylated by SMG1 (Yamashita et al., 2001). In our model, the Leu residue

at position �1 in the substrate forms a C-H���p-interaction with SMG1 Phe2215 and is further stabi-

lized by hydrophobic interactions with SMG1 Pro2249 and Gly3656. The binding pocket is also

restricted by the catalytic loop residues His2337 and Asp2339 (Figure 4A). To biochemically charac-

terize the importance of position �1, we assayed a peptide library based on UPF1-LSQ, in which we

varied the residue in position �1 to represent all those found in the 20 different SQ motifs of human

UPF1. Following phosphorylation of the peptides over time, we could observe that SQ motifs carry-

ing a hydrophobic residue in position �1 were more efficiently phosphorylated. Notably, a Leu
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elicited the highest phosphorylation rate (Figure 4B). An end-point measurement experiment using

single peptides confirmed these observations (Figure 4—figure supplement 1). We conclude that a

Leu at position �1 is optimal for the interaction with SMG1 at the structural level. This is reflected at

the biochemical level, whereby decreasing hydrophobicity of the residue at the �1 position nega-

tively affects phosphorylation efficiency.

Interestingly, further analysis of the final time points in the time course phosphorylation experi-

ment showed that the SQ motifs that carry rather hydrophobic residues at the �1 position (and are

therefore more efficiently phosphorylated) reside exclusively in the UPF1 C-terminus (Figure 4C, Fig-

ure 4—figure supplement 2). To validate our hypothesis on the importance of position �1

Figure 3. Recognition of position +1 glutamine of UPF1-LSQ. (A) Sequence logo derived from an alignment of all SQ motifs present in human UPF1

with the respective residue positions indicated. The heights of single letters correspond to the observed frequency at that position and the overall

height of a stack of letters indicates the level of conservation (Figure 1—figure supplement 1B and Figure 4—figure supplement 2; Crooks et al.,

2004). (B) Mass spectrometry-based phosphorylation assay comprising UPF1-LSQ and the indicated position +1 variations. The peptide sequence is

indicated in the upper left with the varied position marked as ‘X’. Error bars representing standard deviations calculated from independent

experimental triplicates are shown. (C) Zoom-in of the SMG1 active site showing the recognition of UPF1 position +1 glutamine by SMG1 residues

located in the activation segment and FATC domain. Residues of interest are shown as sticks. Colors as in Figure 2. (D) Alignment of PIKK sequences

from Homo sapiens and Xenopus laevis with the activation segment and FATC domain sequences shown and colored according to conservation. PIKKs

are grouped by phosphorylation site specificity and residues highlighted in subfigure C are indicated by a black dot.
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Figure 4. SMG1 preferentially selects for substrates with hydrophobic residues in position -1. (A) Recognition of position -1 residue of UPF1-LSQ by

SMG1. Important residues are shown as sticks and colored as in Figure 2. (B) Mass spectrometry-based phosphorylation assay with UPF1-LSQ and

derivatives varied in position -1. The peptide sequence is indicated in the upper left with the varying position marked as “X”. Error bars representing

standard deviations calculated from independent experimental triplicates are shown and curves are colored according to hydrophobicity of the position

-1 residue (Eisenberg et al., 1984). The most hydrophobic peptides are in blue while non-hydrophobics are in red. (C) Final time points of experiment

shown in B. Peptides grouped and colored according to the location of the respective position -1 residue in UPF1 N- or C-terminus. Individual data

points are shown as circles and error bars representing standard deviations are indicated. (D) Mass spectrometry-based phosphorylation assay with

UPF1 N-terminus phosphorylation site 28 and the indicated position -1 variation. The peptide sequence is shown in the upper left with the varied

position marked as “X”. Error bars represent standard deviations resulting from independent experimental triplicates. A tyrosine residue was added to

the C-terminal end of the wildtype sequence to increase absorbance at l = 280 nm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. In vitro phosphorylation of UPF1-LSQ and derivatives.

Figure supplement 2. Alignment of UPF1 N- and C-terminal sequences from Homo sapiens, Bos taurus, Canis lupus, Mus musculus, Gallus gallus,

Xenopus tropicalis, Danio rerio and Caenorhabditis elegans.
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hydrophobicity, we turned to a known phosphorylation site in the N-terminus, Thr28. We tested

whether SMG1-8-9 phosphorylation activity toward this motif could be enhanced by changing the

residue at position �1 from the naturally occurring Asp to a Leu. Indeed, mutating the residue

upstream of this SQ motif (Asp27Leu) resulted in a gain-of-function effect in the phosphorylation

assay (Figure 4D). These findings are in agreement with data for ATM and ATR (Kim et al., 1999),

although the residues involved in the recognition of UPF1 Leu1077 have diverged, suggesting that

the details of �1 recognition will differ in other PIKKs. Finally, we do not observe extensive interac-

tions between SMG1 and the peptide residues preceding or following the LSQ motif in our struc-

ture. Consistently, we did not detect a marked effect on phosphorylation in a time course

experiment where we changed the residue at position +2 of UPF1-LSQ (Figure 4—figure supple-

ment 1B).

Conclusions
In this manuscript, we report the first structure of a substrate-bound PIKK active site, thereby reveal-

ing the basis for phosphorylation site selection by SMG1 and other PIKK family members. The results

elucidate the mechanism of phospho-acceptor recognition, and explain the specificity for Ser-con-

taining substrates with a glutamine downstream residue at position +1 and an upstream hydropho-

bic residue at position �1 (particularly Leu). These findings can be extrapolated to other PIKK

members, such as ATM and ATR, and suggest a specific mechanism for PRD function by acting as a

pseudosubstrate. Our results provide molecular insights into a key step of the NMD pathway.

Whether phosphorylation of full-length UPF1 by SMG1 involves additional elements of recognition

and/or additional levels of regulation will be a subject for future studies.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Homo sapiens)

SMG1 Shigeo Ohno lab Uniprot Q96Q15

Gene
(Homo sapiens)

SMG8 Shigeo Ohno lab Uniprot Q8ND04

Gene
(Homo sapiens)

SMG9 Shigeo Ohno lab Uniprot Q9H0W8

Cell line
(Homo sapiens)

HEK293T ATCC

Strain, strain
background
(Escherichia coli)

BL21 Star (DE3) pRARE EMBL Heidelberg
Core Facility

Electrocompetent cells

Peptide,
recombinant
protein

UPF1- LSQ (peptide 1078)
and derivatives, UPF1-
peptide 28 and derivatives

in-house as described
in the Materials and
methods section

Chemical
compound, drug

AMPPNP Sigma-Aldrich

Chemical
compound, drug

ATP Sigma-Aldrich

Software,
algorithm

RELION DOI: 10.7554/eLife.42166 RELION 3.0

Software,
algorithm

Cryosparc DOI: 10.1038/nmeth.4169 Cryosparc2

Software,
algorithm

CtfFind DOI: 10.1016/j.jsb.2015.08.008 CtfFind4.1.9

Software,
algorithm

Cryosparc DOI: 10.1038/nmeth.4169 Cryosparc2

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

UCSF Chimera UCSF, https://www.cgl.ucsf.edu/chimera/

Software,
algorithm

UCSF ChimeraX UCSF, https://www.rbvi.ucsf.edu/chimerax/

Software,
algorithm

COOT http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

Software,
algorithm

PHENIX https://www.phenix-online.org/ PHENIX 1.17

Software,
algorithm

PyMOL PyMOL Molecular Graphics
System, Schrodinger LLC

PyMOL 2.3.2 https://www.pymol.org/

Protein expression and purification
The SMG1-SMG8-SMG9 complex was expressed and purified as previously described (Gat et al.,

2019). Briefly, a pool of HEK293T cells (obtained from ATCC) stably expressing full length SMG1 (N-

terminally fused to a TwinStrep-tag and a 3C protease cleavage site), SMG8 and SMG9 was estab-

lished using the piggybac method by initially transfecting the cells using polyethylenimine

(Yusa et al., 2011; Li et al., 2013). The source cells were authenticated by genotyping (Eurofins)

and tested negative for mycoplasma contamination (LookOut Mycoplasma PCR Detection Kit,

Sigma-Aldrich). For SMG1-SMG8-SMG9 expression, cultures were adjusted to a density of 1 � 106

cells per mL in FreeStyle 293 Expression Medium (Gibco, Thermo Fisher Scientific). The cells were

induced by addition of doxycycline and were harvested 48 hr after induction. After lysis by douncing

the cells in 1xPBS, 1 mM MgCl2 and 1 mM DTT supplemented with DNase I, Benzonase and EDTA-

free cOmplete Protease Inhibitor Cocktail (Roche) the cleared lysate was applied to a StrepTrap HP

column (Sigma-Aldrich) and the complex affinity purified using the N-terminal TwinStrep-tag on

SMG1. After washing with 50 column volumes of 1xPBS, 1 mM MgCl2 and 1 mM DTT the complex

was eluted using wash buffer supplemented with 2.5 mM desthiobiotin. SMG1-8-9 was further puri-

fied by size-exclusion chromatography using a Superose 6 Increase 10/300 GL column (Sigma-

Aldrich) equilibrated with 1xPBS, 1 mM MgCl2 and 1 mM DTT (Aekta purifier FPLC system, GE

Healthcare). Purified SMG1-8-9 was concentrated up to 6 mM and stored in gel filtration buffer. To

obtain full-length unphosphorylated human UPF1, the protein was expressed in Escherichia coli

BL21 STAR (DE3) pRARE fused to a C-terminal 6xHis-tag cleavable with Tobacco etch virus (TEV)

protease, as described before (Chakrabarti et al., 2011; Chakrabarti et al., 2014). Bacteria were

grown at 37˚C in TB medium shaking at 180 rpm and induced using IPTG at an OD of 2 for overnight

expression at 18˚C. Harvested bacteria (6000 rpm, 10 min) were lysed by sonication in lysis buffer (50

mM Tris-Cl pH 7.5, 500 mM NaCl, 10 mM Imidazole, 1 mM b-mercaptoethanol, 10% (v/v) glycerol, 2

mM MgCl2 and 0.2% (v/v) NP-40) supplemented with DNase I and EDTA-free cOmplete Protease

Inhibitor Cocktail (Roche). The lysate was cleared by centrifugation (25.000 rpm, 30 min), filtered

and combined with TALON resin (Takara) equilibrated with lysis buffer for gravity-flow affinity purifi-

cation. After washing with 70 column volumes of lysis buffer, the protein was eluted with lysis buffer

supplemented with 300 mM imidazole pH 7.5 and the eluate was combined with His-tagged TEV

protease and dialyzed overnight against 20 mM HEPES pH 7.5, 85 mM KCl, 1 mM MgCl2, 10% (v/v)

glycerol and 2 mM DTT. The dialyzed sample was passed over another TALON column by gravity-

flow, in order to separate cleaved protein from the cleaved-off His-tag, the His-tagged TEV protease

and uncleaved UPF1 protein. The flow-through of this column contained cleaved UPF1 and was

loaded on a HiTrap Heparin HP column (GE Healthcare). Following binding and washing with Hepa-

rin buffer A (as for dialysis), UPF1 was eluted by a gradient increasing salt concentration from 85 mM

to 500 mM over 50 column volumes (Aekta prime FPLC system, GE Healthcare). The peak corre-

sponding to full-length UPF1 was pooled and concentrated before a final sizing step using a Super-

dex 200 Increase 10/300 GL column (Sigma-Aldrich) equilibrated with Heparin buffer A (Aekta

purifier FPLC system, GE Healthcare). Purified full-length UPF1 was pooled and concentrated up to

30 mM using an Amicon Ultra Centrifugal Filter (50 kDa MWCO, Merck). All described protein
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purification steps were carried out at 4˚C and all purified proteins were flash frozen in size-exclusion

buffer using liquid nitrogen and stored at �80˚C until further usage.

Cryo-EM sample preparation and data collection
A sample of 0.5 mM (final concentration) purified SMG1-SMG8-SMG9 was mixed with 0.5 mM of

UPF1-LSQ, 1 mM AMPPNP, 2 mM MgCl2, 2 mM DTT and 0.04% (v/v) n-octyl-beta-D-glucoside in

1xPBS and incubated for 30 min on ice. The UPF1-LSQ peptide (sequence: QPELSQDSYLG) was syn-

thesized in-house as described for the mass spectrometry-based phosphorylation assay. A 4 mL sam-

ple was applied to a glow-discharged Quantifoil R1.2/1.3, Cu 200 mesh grid and incubated for 30 s

at 4˚C and approximately 100% humidity. Grids were subsequently plunge frozen directly after blot-

ting using a liquid ethane/propane (37% ethane, temperature range when plunging: �170˚C to

�180˚C) mixture and a ThermoFisher FEI Vitrobot IV set to a blot time of 3.5 s and a blot force of 4.

Cryo-EM data were collected using a ThermoFisher FEI Titan Krios microscope operated at 300 kV

equipped with a post-column GIF (energy width 20 eV) and a Gatan K3 camera operated in counting

mode, the SerialEM software suite, and a beam-tilt based multi-shot acquisition scheme. Movies

were recorded at a nominal magnification of 81.000x corresponding to a pixel size of 1.094 Å at the

specimen level. The sample was imaged with a total exposure of 68.75 e-/Å2 evenly spread over 5.5

s and 79 frames. The target defocus during data collection ranged between �0.8 and �2.9 mm.

Cryo-EM data processing
Data processing was carried out using RELION 3.0 (Zivanov et al., 2018) unless stated otherwise.

Beam-induced sample motions were corrected and dose-weighting was carried out using the

RELION implementation of MotionCor2 (Zheng et al., 2017). Particles were picked using Gauto-

match (https://www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/) and CTF estimation was done using

the RELION wrapper for CtfFind4.1 (Rohou and Grigorieff, 2015). After extraction (box size: 320

pix, 1.094 Å/pix) and downsampling (box size: 80 pix, 4.376 Å/pix), 4,368,586 particles were submit-

ted to two rounds of reference-free 2D classification. A subset of the cleaned candidate particles

was used to generate an initial model using CryoSPARC v2 (Punjani et al., 2017). 1,524,355 selected

particles were 3D classified before re-extracting 886,714 particles with original sampling followed by

two additional rounds of 3D classification resulting in 481,754 final particles. All classification steps

were carried out with the total amount of particles being distributed over multiple batches. After 3D

auto-refinement, sharpening (b-factor = �119.5) and Ctf refinement in RELION 3.0, the final refined

map (3D auto-refinement) was again submitted to RELIONs’ post-processing routine for automatic

B-factor weighting and high-resolution noise substitution (b-factor = �102.6). The final reconstruc-

tion (EMD-11063) reached an overall resolution of 2.9 Å with local resolution ranging from 2.8 Å to

4.5 Å as estimated by RELION 3.0.

Model building and refinement
The reconstructed density was interpreted using COOT (version 1.0) and our previously published

model of SMG1-8-9 (PDB: 6SYT) (Emsley et al., 2010). Model building was iteratively interrupted by

real-space refinements using PHENIX (version 1.17) (Adams et al., 2010; Liebschner et al., 2019).

Statistics assessing the quality of the final model (PDB ID 6Z3R) were generated using Molprobity

(Chen et al., 2010; Supplementary file 1). FSC curves were calculated using PHENIX and the 3D

FSC online application (Tan et al., 2017). Images of the calculated density and the built model were

prepared using UCSF Chimera (Pettersen et al., 2004), UCSF ChimeraX (Goddard et al., 2018) and

PyMOL (version 2.3.2).

Radioactive in vitro kinase assay
In vitro kinase assays were essentially carried out as before (Gat et al., 2019). 1 mM of full-length

UPF1 was mixed with 50 nM SMG1-8-9, 10mM MgCl2 and 2mM DTT in 1xPBS. The reaction was

started by adding 0.5mM ATP and 0.06 mM of g-32P-labeled ATP. The reaction was incubated at 30˚

C and samples were taken at different time points to follow phosphorylation over time. The samples

were immediately quenched by adding SDS-containing sample buffer and initially analyzed by SDS

gel electrophoresis followed by Coomassie-staining. Phosphoproteins were subsequently detected

using autoradiography and a Typhoon FLA7000 imager (GE Healthcare).
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Mass spectrometry-based in vitro kinase assay
All peptides were synthesized in-house using solid-phase peptide synthesis and the quality of the

product was assessed by electrospray ionization mass spectrometry (ESI MS). For the purpose of this

study, peptides were dissolved in 1xPBS supplemented with 500 mM HEPES pH 7.4. Two types of

experiments were carried out. Firstly, several peptides (typically comprising a library) and a control

were mixed, and their individual phosphorylation ratios were determined at several time points (0,

10, 20, 40 and 80 min). Secondly, one end-point measurement experiment was carried out. In this

setup, a single peptide was mixed with a control and the relative phosphorylation ratio was deter-

mined at a single, final time point (80 min). This type of experiment was used to assess whether

effects on phosphorylation ratios observed in time course assays are caused by competition between

several peptides for SMG1 binding. In both cases, 0.5 mM of kinase complex was combined with 0.1

mM of each peptide, 0.5 mM ATP, 20 mM MgCl2 and 2 mM DTT in 1xPBS. The reaction was started

by addition of kinase and incubated at 30˚C. Samples were taken at desired time points and immedi-

ately quenched after collection by adding EDTA to a final concentration of 50 mM on ice.

In order to remove kinase complex and transfer the peptides into a compatible buffer, we made

use of home-made StageTips (Rappsilber et al., 2007). Poly(styrenedivinylbenzene)copolymer (SDB-

XC) was washed with methanol by centrifugation before being washed again with buffer B (0.1% (v/

v) formic acid, 80% (v/v) acetonitrile). Buffer A (0.1% (v/v) formic acid) was used for equilibration of

the SDB-XC material. Following sorbent equilibration, the sample was applied and the tips were

washed using buffer A. Finally, the sample was eluted using buffer B. Using an Agilent 1290 HPLC,

typically about 5 mL of the sample in 70% (v/v) acetonitrile and 0.05% (v/v) trifluoroacetic acid were

flow-injected (250 mL/min) into a Bruker maXis II ETD mass spectrometer for ESI MS time-of-flight

analysis. Peptides were ionized at a capillary voltage of 4500 V and an end plate offset of 500 V. Full

scan MS spectra (200–1600 m/z) were acquired at a spectra rate of 1 Hz and a collision energy of 10

eV. All experiments were carried out as independent experimental triplicates. Raw data files were

processed using Bruker Compass DataAnalysis software. The m/z spectra were deconvoluted by

maximum entropy with an instrument resolving power of 10,000. The 12C peaks corresponding to

individual peptides were identified in the resulting neutral spectra and integrated, both for masses

accounting for unphosphorylated and phosphorylated peptides. To calculate a relative phosphoryla-

tion ratio, the area for phosphorylated peptide was divided by the sum of phosphorylated and

unphosphorylated peptide. All time points were normalized to time point 0. Means of independent

experimental triplicates and error bars indicating standard deviations were visualized using Prism

(GraphPad).
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