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Abstract The transport of charged molecules across biological membranes faces the dual

problem of accommodating charges in a highly hydrophobic environment while maintaining

selective substrate translocation. This has been the subject of a particular controversy for the

exchange of ammonium across cellular membranes, an essential process in all domains of life.

Ammonium transport is mediated by the ubiquitous Amt/Mep/Rh transporters that includes the

human Rhesus factors. Here, using a combination of electrophysiology, yeast functional

complementation and extended molecular dynamics simulations, we reveal a unique two-lane

pathway for electrogenic NH4
+ transport in two archetypal members of the family, the transporters

AmtB from Escherichia coli and Rh50 from Nitrosomonas europaea. The pathway underpins a

mechanism by which charged H+ and neutral NH3 are carried separately across the membrane after

NH4
+ deprotonation. This mechanism defines a new principle of achieving transport selectivity

against competing ions in a biological transport process.

Introduction
The transport of ammonium across cell membranes is a fundamental biological process in all

domains of life. Ammonium exchange is mediated by the ubiquitous ammonium transporter/methyl-

ammonium-ammonium permease/Rhesus (Amt/Mep/Rh) protein family. The major role of bacterial,

fungal, and plant Amt/Mep proteins is to scavenge ammonium for biosynthetic assimilation, whereas

mammals are thought to produce Rh proteins in erythrocytes, kidney, and liver cells for detoxifica-

tion purposes and to maintain pH homeostasis (Biver et al., 2008; Huang and Ye, 2010). In humans,

Rh mutations are linked to pathologies that include inherited hemolytic anemia, stomatocytosis, and

early-onset depressive disorder (Huang and Ye, 2010). Despite this key general and biomedical

importance, so far, no consensus on the pathway and mechanism of biological ammonium transport

has been reached.

High-resolution structures available for several Amt, Mep and Rh proteins show a strongly hydro-

phobic pore leading towards the cytoplasm (Andrade et al., 2005; Gruswitz et al., 2010;

Khademi et al., 2004; Lupo et al., 2007; van den Berg et al., 2016). This observation led to the

conclusion that the species translocated through Amt/Mep/Rh proteins is neutral NH3. However, this

view has been experimentally challenged, first for some plant Amt proteins (Ludewig et al., 2002;

Mayer et al., 2006; McDonald and Ward, 2016; Neuhäuser et al., 2014), followed by further in-

vitro studies revealing that the activity of bacterial Amt proteins is electrogenic (Mirandela et al.,
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2019; Wacker et al., 2014). Taken together, these findings renewed a long-standing debate on the

mechanism by which a charged molecule is translocated through a hydrophobic pore and how selec-

tivity for NH4
+ over competing ions is achieved.

Here, we reveal the pathways, mechanism, and key determinants of selectivity of electrogenic

ammonium transport in Amt and Rh proteins, unifying the diverse observations that led to these

seemingly incompatible suggestions. The transport mechanism is underpinned by the separate trans-

fer of H+ and NH3 on a unique two-lane pathway following NH4
+ sequestration and deprotonation.

This mechanism ensures that ammonium – which occurs mainly in protonated form in the aqueous

phase – is efficiently translocated across the membrane, while maintaining strict selectivity against

K+, a monovalent cation of similar size. This previously unobserved principle is likely to form a new

paradigm for the electrogenic members of the Amt/Mep/Rh family. Similar mechanisms may be uti-

lized by other membrane transporters to facilitate the selective translocation of pH-sensitive

molecules.

Results and discussion

AmtB and NeRh50 activity is electrogenic
Motivated by our finding that the activity of Escherichia coli AmtB is electrogenic (Mirandela et al.,

2019), we first investigated the transport mechanism of the Rh50 protein from Nitrosomonas euro-

paea (NeRh50). Rh and Amt proteins are distant homologs, and thus a functional distinction between

both subfamilies has been proposed (Huang and Ye, 2010). The architecture of NeRh50 is highly

representative of Rh proteins (Gruswitz et al., 2010; Lupo et al., 2007) which have been repeatedly

reported to serve as electroneutral NH3 or CO2 gas channels (Cherif-Zahar et al., 2007; Hub et al.,

2010a; Li et al., 2007; Lupo et al., 2007; Weidinger et al., 2007). The activity of purified NeRh50

reconstituted into liposomes was quantified using Solid-Supported Membrane Electrophysiology

(SSME) (Bazzone et al., 2017) experiments, where we recorded a NH4
+-selective current (Figure 1)

with a decay rate that is strongly dependent on the lipid-to-protein ratio (LPR; Table 1, Figure 1—

figure supplement 1). Expressed in a Saccharomyces cerevisiae triple-mepD strain, deprived of its

three endogenous Mep ammonium transporters, NeRh50 complemented the growth defect on mini-

mal medium containing ammonium as sole nitrogen source (Figure 1). The electrogenic transport

activity observed for NeRh50 and AmtB may suggest a common transport mechanism amongst the

distant Amt and Rh proteins, but more experiments are needed to conclusively confirm this. Also,

the NH4
+ selectivity of both transporters further highlighted the question of how these proteins

achieve selective charge translocation through their hydrophobic pore.

Two interconnected water wires form an H+ translocation pathway in
AmtB
We next made use of the most substantive body of structural information available for the archetypal

ammonium transporter AmtB from E. coli and its variants to decipher the molecular mechanism of

electrogenic NH4
+ transport (Dias Mirandela et al., 2018). Computational (Wang et al., 2012) and

experimental studies (Ariz et al., 2018) have suggested that deprotonation of NH4
+ is likely to be a

major step in ammonium transport. We therefore aimed to identify dynamic polar networks across

AmtB that could form a transfer pathway through the protein for the translocation of H+, coming

from NH4
+ deprotonation. AmtB forms homotrimers in the cytoplasmic membrane, in which each

monomer exhibits a potential periplasmic NH4
+ binding region (S1) near residue D160, followed by a

strongly hydrophobic pore leading towards the cytoplasm (Figure 2A; Khademi et al., 2004). Two

highly conserved histidine residues, H168 and H318, protrude into the lumen, forming the family’s

characteristic ‘twin-His’ motif (Javelle et al., 2006). The only variation in the twin-His motif in mem-

bers of the Amt/Mep/Rh family is in numerous fungal Mep transporters where the first His, corre-

sponding to H168, is replaced by a Glu (Javelle et al., 2006). The general conservation pattern in

the AmtB pore, as analysed with ConSurf (Ashkenazy et al., 2016), is shown in Figure 2—figure

supplement 1.

To locate potential polar transfer routes, we performed atomistic molecular dynamics (MD) simu-

lations of AmtB in mixed lipid bilayers. The simulations initially showed hydration of part of the puta-

tive hydrophobic NH3 pathway from the twin-His motif to the cytoplasm (cytoplasmic water wire –

Williamson, Tamburrino, Bizior, Boeckstaens, et al. eLife 2020;9:e57183. DOI: https://doi.org/10.7554/eLife.57183 2 of 22

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.57183


CWW; Figure 2A), confirming previous observations (Lamoureux et al., 2007). Notably, a new

observation we made over longer simulation timescales is the presence of a previously unidentified

second water-filled channel (periplasmic water wire - PWW). The PWW spans from residue D160

near the S1 region to the central twin-His motif (Figure 2A) and is formed both in simulations with-

out and with applied membrane voltage Vm (Figure 2A - Figure 2—figure supplement 2; Vm in E.

coli ~ �140 mV [Felle et al., 1980]).

As the protonation pattern of the twin-His motif has been found to play a role in the hydration of

the protein (Ishikita and Knapp, 2007), two different tautomeric states of the twin-His motif were

systematically probed in the simulations. The tautomeric state in which H168 is protonated on its N
d

and H318 is protonated on its N
e

atom is referred to as ’DE’, while ’ED’ terms the twin-His

Figure 1. Characterization of the activity of NeRh50. Transient current measured using SSME after a 200 mM pulse

(ammonium or potassium). Insert: Yeast complementation by NeRh50 (strain 31019b, mep1D mep2D mep3D ura3)

on minimal medium supplemented with 3 mM ammonium as sole nitrogen source.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Characterization of the activity of NeRh50.

Figure supplement 1. Characterization of the activity of NeRh50.
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Table 1. Decay time constants (s�1) of transient currents triggered after an ammonium or potassium

pulse of 200 mM in proteoliposomes containing AmtB at various LPR*.

NH4
+ K+

Variant LPR 10 LPR 5 LPR 10 LPR 5

AmtB-WT 13.4 ± 1.5 18.7 ± 1.0 NC NC

D160A 21.6 ± 1.2 24.3 ± 1.5 NC NC

D160E 17.03 ± 2.84 19.53 ± 1.8 NC NC

H168A H318A 29.5 ± 2.1 29.8 ± 2.6 NC NC

S219A H168A H318A NC NC NC NC

H168A 28.3 ± 1.5 38.0 ± 1.0 2.7 ± 0.5 5.2 ± 1.0

H318A 22.56 ± 2.63 28.25 ± 3.1 10.07 ± 1.7 15.64 ± 2.1

NeRh50 24.0 ± 1.7 39.0 ± 3.6 NC NC

*NC: No transient current recorded.

The online version of this article includes the following source data for Table 1:

Source data 1. Decay time constants (s�1) of transient currents triggered after an ammonium or potassium pulse

of 200 mM measured by SSME.

Figure 2. Formation and functionality of the periplasmic (PWW) and cytoplasmic (CWW) water wires in AmtB. (A) Extended atomistic simulations show

a hydration pattern across the protein, in which cytoplasmic and periplasmic water wires, connected via H168, form a continuous pathway for proton

transfer from the S1 NH4
+ sequestration region to the cytoplasm. (B) Transient currents measured following a 200 mM ammonium pulse on sensors

prepared with solutions containing either H2O (black) or D2O (red). D2O sensors were rinsed with H2O solutions and subsequently exposed to another

200 mM ammonium pulse (blue).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Functionality of the periplasmic (PWW) and cytoplasmic (CWW) water wires in AmtB.

Figure supplement 1. Evolutionary conservation of the proton and hydrophobic pathways for H+ and NH3 translocation in AmtB.

Figure supplement 2. Evolution and occupancy of the Periplasmic Water Wire (PWW).

Figure supplement 3. Evolution and occupancy of the Cytoplasmic Water Wire (CWW).

Figure supplement 4. The DE and ED twin-His motif configurations.
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configuration where H168 is protonated on N
e

and H318 is protonated on N
d

(Figure 2A- Figure 2—

figure supplement 2, 3, 4). Formation of the CWW is observed to occur within a few nanoseconds

at the beginning of each simulation. In the DE tautomeric state, the cytoplasmic pocket of each sub-

unit almost continuously remains occupied by 3–4 water molecules for the rest of the simulation

(Figure 2A - Figure 2—figure supplement 2, 3, 4; data for 0 mV membrane voltage). In the ED

state, greater fluctuations in the number of water molecules in the chain are seen, and the average

occupancy is decreased. Using a cut-off value of three water molecules per subunit, a complete

water chain is present during 79% of the simulations in the DE state, and only during 12% of the sim-

ulated time in the ED state. The PWW is generally more transiently occupied than the cytoplasmic

channel; however, we record up to 23% occupancy with at least three water molecules when the his-

tidine sidechains are in the ED tautomeric state (Figure 2A - Figure 2—figure supplement 2, 3, 4).

Both water wires are connected via the twin-His motif, which bridges the aqueous chains, while

preventing the formation of a continuous water channel in the simulations. Although neither the

CWW nor the PWW are sufficiently wide to allow the transfer of solvated NH4
+, water molecules and

histidine side chains could serve as efficient pathways to facilitate proton transfer in proteins

(Acharya et al., 2010). As shown in Figure 2—figure supplement 1, the key residues that line both

water wires in AmtB are highly conserved in the family.

The interconnected water wires are functionally essential to AmtB
activity
To experimentally test if the water wires are essential for proton conduction during the AmtB trans-

port cycle, we made use of the reduced deuteron mobility of heavy water D2O. Because deuterons

have twice the mass of a proton and the bond strength is increased, the deuteron mobility is

reduced by 30% for each D2O molecule compared to normal water (Wiechert and Beitz, 2017).

Since the polar network of water we identified involves more than three water molecules

(Figure 2A), AmtB should be nearly inactive if tested in the presence of D2O. Indeed, we found that

in an SSME-based assay where all buffers used to prepare the proteoliposomes and SSM sensors

were made using D2O, AmtB activity was completely abolished compared to buffer containing water

(Figure 2B). After rinsing the sensor prepared in D2O with water, AmtB re-gained 100% of its activity

measured by SSME, showing that the presence of D2O did not affect the protein itself or the integ-

rity of the proteoliposomes (Figure 2B). Further calculations suggested that H+ transfer between the

water molecules is possible both within the PWW and CWW and could occur with high rates (the

highest energy barrier is ~18 kJ/mol in the cytoplasmic wire near the twin-His motif; Table 2). Taken

together, the experimental and computational data suggest that proton transfer between water

molecules, most likely the PWW and CWW detected in the simulations, may underpin the electro-

genic activity of AmtB.

AmtB activity is not driven by the proton motive force
In the absence of ammonium, a proton pulse did not trigger a discernible current and additionally,

in the presence of ammonium, an inward-orientated pH gradient did not increase AmtB activity (Fig-

ure 3). These findings suggest that there is no H+-dependent symport activity of AmtB, showing

instead that AmtB is not able to translocate a proton in the absence of NH4
+, and indicating that the

current induced by AmtB activity is generated by specific deprotonation of the substrate and subse-

quent H+ translocation. Furthermore, they show that AmtB cannot act as an uncoupler, which raises

the question of proton selectivity and the coupling between NH3 and H+ transfer (Boogerd et al.,

2011; Maeda et al., 2019). Our current data suggest that the PWW is transiently occupied and that

its occupancy is strongly dependent on the particular state and conformation of D160, since even a

D to E conservative change abolished presence of the PWW (Figure 4A). Any disruption of the

PWW will, in turn, impede the capability of AmtB to transfer H+. The functionally relevant conforma-

tion and protonation state of D160 that stabilize the PWW is likely to be coupled to the presence of

a charged substrate binding near S1, thereby linking substrate binding and deprotonation to H+

transfer.
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The residue D160 is essential to stabilize the PWW
As the PWW is formed near the sidechain of D160, an invariant residue in the Amt/Mep/Rh super-

family (Marini et al., 2006; Thomas et al., 2000), we further investigated the role of this residue in

ensuring PWW and CWW stability by simulating the AmtB D160A and D160E mutants. Both mutants

were stable on the time scale of our simulations and we did not detect major rearrangements in the

protein. Moreover, all the elution profiles of the purified WT and variants proteins obtained by ana-

lytical size exclusion chromatography, before and after solubilization of the proteoliposomes in 2%

DDM, were identical, showing a single monodisperse peak eluting between 10.4–10.6 ml (Figure 4—

figure supplement 1). Taken together, these results suggest that major structural re-arrangements

in the mutants are unlikely to occur. The simulations revealed no difference in the formation of the

CWW in the D160A and D160E variants compared to the WT, however the formation of the PWW is

almost completely abolished in the presence of these mutations (Figure 4A).

We then expressed wild-type AmtB as well as the D160A and D160E mutants in S. cerevisiae tri-

ple-mepD. Using ammonium as the sole nitrogen source, we found that cells expressing the mutants

failed to grow, showing that AmtBD160A or AmtBD160E are unable to replace the function of the

endogenous Mep transporters (Figure 4B).

The activity of the purified variants reconstituted into liposomes was next quantified using SSME.

Electrogenic transport activity, triggered by a 200 mM ammonium pulse, led to a transient current

with a maximum amplitude of 3.38 nA in AmtB, while AmtBD160A and AmtBD160E displayed reduced

maximum currents of 0.63 nA and 1.42 nA respectively (Figure 4B, Figure 4—figure supplement

2). Importantly, the lifetime of currents in both variants was unaffected by changes in liposomal LPR,

and therefore the small transient current accounts for the binding of a NH4
+ to the proteins and not a

full translocation cycle (Table 1, Figure 4—figure supplement 2; Bazzone et al., 2017). Addition-

ally, it was impossible to determine with confidence a catalytic constant (Km) for both variants since

no clear saturation was reached, even after an ammonium pulse of 200 mM (Figure 4C). These

results thus demonstrate that AmtBD160A and AmtBD160E are transport-deficient. Our data show that

residue D160 plays a central role in the transport mechanism as opposed to having a strictly struc-

tural role as previously suggested (Khademi et al., 2004). Moreover, the fact that the conservative

D to E variation at position 160 impairs ammonium transport via AmtB indicates that D160 does not

only show electrostatic interaction with NH4
+ at the S1 site but is also involved in the translocation

mechanism by stabilizing the PWW.

Table 2. Free energies for proton translocation through the cytoplasmic and periplasmic water wires

and neighboring water molecules (bulk)*.

Z (Å) Free energy (kJ/mol)

(bulk) Peripl. water wire wat1 14.7 0.0

wat2 12.7 8.7

wat3 10.7 15.0

wat4 8.3 14.4

wat5 6.1 7.5

D160 wat6 5.4 11.0

wat7 3.2 14.4

wat8 0.6 18.5

H168

cytopl. water wire wat9 �0.4 17.3

wat10 �0.8 14.4

wat11 �3.2 12.1

H318 wat12 �5.1 13.8

*The vertical coordinate z was calculated relative to the position of the sidechain of H168. Positions of the sidechains

of D160, H168 and H318 with respect to the periplasmic and cytoplasmic water wires are indicated in the left

column.
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AmtB switches from transporter to channel-like activity in the absence
of the ‘twin-His’ motif
The CWW and PWW are connected via the twin-His motif, which bridges the aqueous chains, while

preventing the formation of a continuous water channel in the simulations (Figure 2A). We therefore

next probed if the twin-His motif enables proton transfer between the two water wires by recording

the activities of twin-His variants. Expressed in S. cerevisiae triple-mepD, AmtBH168A/H318A did not

support cell growth on low ammonium (Figure 5A). In-vitro SSME measurements with this variant

displayed LPR-independent current decay rates (Figure 5A, Figure 5—figure supplement 1,

Table 1), showing that the residual current is caused by the association of NH4
+ to AmtB without fur-

ther transport. No current was recorded for the triple mutant AmtBS219A/H168A/H318A, in which bind-

ing at the periplasmic face was further altered, confirming that the residual current reflects NH4
+

interaction near S1 (Figure 5—figure supplement 1). The double-His mutant AmtBH168A/H318A is

Figure 3. Effect of a proton gradient on AmtB activity. The transient currents were measured using SSME following an ammonium pulse of 200 mM at

pH 7 (left) or under an inwardly directed pH gradient in the presence (center) or absence (right) of ammonium. eight sensors from two independent

protein purification batches were measured, with three measurements recorded for each sensor. Single representative traces were chosen to visualize

the results. Each sensor was measured in the order pH (in/out) 7/7, 8/5, 8/5 (this time without NH4
+), and finally 7/7 again to be sure that the signals do

not significantly decrease with time. The data are normalized against the measurements done at pH7 in/out for each sensor.

The online version of this article includes the following source data for figure 3:

Source data 1. Effect of a proton gradient on AmtB activity.
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thus able to interact with NH4
+ but cannot transport the substrate across the membrane. This sup-

ports our previous structural analysis showing that the CWW in the pore of the double-His mutant

AmtBH168A/H318A is absent (Javelle et al., 2006).

By contrast, the two single histidine-to-alanine substitutions in the twin-His motif unexpectedly

produced an LPR-dependent current in our SSME recordings (Figure 5A, Figure 5—figure supple-

ment 1, Table 1). Furthermore, triple-mepD yeast cells expressing these variants were able to grow

in the presence of low ammonium concentrations (Figure 5A). Our previous crystal structure

(Javelle et al., 2006) and our MD simulations (Figure 5—figure supplement 2) show increased

hydration in the area around A168, which could potentially form a pathway for direct translocation

of NH4
+ without a deprotonation step. To test this hypothesis, we measured the activity of

AmtBH168A and AmtBH318A in D2O conditions, as described above. Crucially, the activity of both var-

iants measured in the presence or absence of D2O was similar (Figure 5B), in contrast to native

AmtB where no activity was recorded in D2O (Figure 2B), showing that proton transfer between

water molecules is not a key mechanistic feature in the activity of the mutants. Additionally, the

translocation of NH4
+ is not saturable in the tested concentration range [12.5–200 mM] for AmtBH168A

and AmtBH318A (Figure 5C). Summarizing, these results suggest that AmtB switches from

Figure 4. Effect of D160 substitutions. (A) The Periplasmic Water Wire (PWW) in the D160A and D160E variants. We observe no significant occupancy

of the PWW above the threshold of at least three water molecules in the D160A and D160E AmtB variants, irrespective of the tautomeric protonation

states of H168 and H318 (DE or ED, see Materials and method section). (B) Upper panel: maximum amplitude of the transient current measured using

SSME following a 200 mM ammonium pulse. Eight sensors from two independent protein purification batches were measured, with three

measurements recorded for each sensor (means ± SD). Lower panel: yeast complementation test (strain 31019b, mep1D mep2D mep3D ura3) using 7

mM Glutamate (Glu) or 1 mM ammonium as a sole nitrogen source. The growth tests have been repeated twice. (C) Kinetics analysis of the transport of

ammonium. The maximum amplitudes recorded after a 200 mM ammonium pulse have been normalized to 1.0 for comparison. N.M.: Non Measurable.

eight sensors from two independent protein purification batches were measured, with three measurements recorded for each sensor (means ± SD).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Effect of D160 substitutions on AmtB activity measured by SSME.

Figure supplement 1. Size Exclusion Chromatography analysis of AmtB.

Figure supplement 2. Characterization of the activity and specificity of AmtB variants.
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Figure 5. The AmtBH168A and AmtBH318A lose their specificity toward ammonium. (A) Upper panels: maximum amplitude of the transient current

measure using SSME after a 200 mM ammonium pulse. Eight sensors from two independent protein purification batches were measured, with three

measurements recorded for each sensor (means ± SD). Lower panels: yeast complementation test (strain 31019b, mep1D mep2D mep3D ura3) using 7

mM Glutamate (Glu) or 1 mM ammonium as a sole nitrogen source. The growth tests have been repeated twice. (B) Transient currents measured using

SSME following a 200 mM ammonium pulse on sensors prepared with solutions containing either H2O (black) or D2O (red). The maximum amplitudes

recorded after a 200 mM ammonium pulse on sensor prepared in H2O have been normalized to 1.0 for comparison. eight sensors from two

independent protein purification batches were measured, with three measurements recorded for each sensor (means ± SD). (C) Kinetics analysis of the

transport of NH4
+ (or K+ in AmtBH168A (black), AmtBH318A (red) and WT-AmtB (bleu, only for NH4

+, as no signal was measurable with K+). The maximum

amplitudes recorded after a 200 mM NH4
+ or K+ pulse have been normalized to 1.0 for comparison. Eight sensors from two independent protein

purification batches were measured, with three measurements recorded for each sensor (means ± SD). (D) Upper panels: maximum amplitude of the

transient current measured using SSME after a 200 mM potassium pulse. N.M. Non Measurable. Eight sensors from two independent protein

purification batches were measured, with three measurements recorded for each sensor (means ± SD). Lower panels: yeast complementation test (strain

#228, mep1D mep2D mep3D trk1D trk2D leu2 ura3) using media supplemented with 20 mM or 3 mM KCl. The growth test has been repeated twice.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Effect of H168 and/or H318 substitution on AmtB activity and selectivity measured by SSME.

Figure supplement 1. Characterization of the activity and specificity of AmtB variants.

Figure supplement 2. MD simulation of AmtBH168A showing formation of a continuous water wire traversing the central pore region.

Williamson, Tamburrino, Bizior, Boeckstaens, et al. eLife 2020;9:e57183. DOI: https://doi.org/10.7554/eLife.57183 9 of 22

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.57183


transporter- to channel-like activity in the absence of the twin-His motif, directly translocating

hydrated NH4
+ through the pore. In the wild-types of Amt/Mep/Rh protein family members, the twin-

His motif is highly conserved, which shows that transporter, as opposed to channel activity, is mecha-

nistically crucial for the function of these proteins. The only variation seen in naturally occurring

sequences is a replacement of the first His by Glu in some fungal Mep proteins (Javelle et al., 2006;

Thomas et al., 2000). Channel activity is so far only observed for the alanine mutants, not the wild-

type. We hypothesized that transport activity might thus be key to ensure ion selectivity of AmtB,

since NH4
+ and K+ are cations of similar size and hydration energy (Aydin et al., 2020).

The twin-His motif interconnects the two water wires to ensure the
selectivity of AmtB
Since NH4

+ was directly translocated in the absence of the twin-his motif and earlier studies impli-

cated a role of the motif in AmtB selectivity (Ganz et al., 2020; Hall and Yan, 2013), we repeated

our SSME experiments on the AmtBH168A and AmtBH318A variants using the competing K+ ion as

substrate. A 200 mM K+ pulse triggered currents in both variants, whose decay rates strongly

depended on the LPR (Figure 5D, Table 1, Figure 5—figure supplement 1). Furthermore, the sin-

gle His variants, but not native AmtB, complemented the growth defect of a yeast strain lacking its

three endogenous ammonium (Mep) and potassium (Trk) transporters when a limited concentration

Figure 6. Hydrophobic pathway and energetics for NH3 translocation in AmtB. We probed an optimal pathway for NH3 transfer during our PMF

calculations (left, purple dash trajectory) in the presence of both the PWW and CWW. The software HOLE (49) was used to determine the most likely

transfer route. The pathway from the periplasm to the cytoplasm traverses the hydrophobic gate region (F107 and F215), crosses the cavity next to the

twin-His motif (H168 and H318) occupied by the CWW, and continues across a second hydrophobic region (I28, V314, F31, Y32) before entering the

cytoplasm.
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of K+was present (Figure 5D). The K+ translocation activity is not saturable in the substrate range

[12.5–200 mM] (Figure 5C). These results demonstrate that both variants, AmtBH168A and

AmtBH318A, translocate K+ ions across the membrane. The substitutions within the twin-His motif

thus abolished selectivity for NH4
+.

The presence of both histidine residues is therefore critical in ammonium transport, since perme-

ability of ammonium transporters for K+ would compromise ionic homeostasis and disrupt the mem-

brane potential of E. coli cells, which crucially depends on maintaining K+ concentration gradients

across the membrane. Moreover, since AmtB is expressed in E. coli under nitrogen starvation condi-

tions (low NH4
+/K+ ratio), loss of selectivity for NH4

+ would impede ammonium uptake. Our results

thus demonstrate that the twin-His motif, which is highly conserved amongst members of the family,

is an essential functional element in the transport mechanism, preventing the transport of competing

cations, whilst providing a pathway for proton transfer by bridging the periplasmic and the cyto-

plasmic water wires.

NH3 permeation through the hydrophobic pore
Umbrella sampling free-energy calculations were performed to establish the rate limiting step of

NH4
+ transport. Our calculations show that NH3 translocation experiences only a moderate energy

barrier (~10 kJ/mol) at the periplasmic hydrophobic constriction region (F107 and F215) (Figure 6).

Figure 7. Mechanism of electrogenic NH4
+ translocation in AmtB. Following sequestration of NH4

+ at the periplasmic face, NH4
+ is deprotonated and H+

and NH3 follow two separated pathways to the cytoplasm (orange arrows depict the pathway for H+ transfer, dark blue arrows for NH3), facilitated by

the presence of two internal water wires. NH3 reprotonation likely occurs near the cytoplasmic exit (Figure 6). The hydrated regions within the protein

as observed in simulations are highlighted by wireframe representation, crucial residues involved in the transport mechanism are shown as sticks.
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The starting points of the sampling windows were determined from the centers of HOLE calculations

(Smart et al., 1996), optimizing the pathway of NH3 translocation across the pore. A possible influ-

ence from this selection regarding the pathway was further reduced by allowing the molecule to

move freely perpendicular to the pore axis within a radius of 5 Å in addition to extensive sampling;

however, residual bias from window selection cannot be completely excluded. From the free energy

profile of NH3 translocation, we identified a shallow binding site below the twin-His motif (~5 kJ/

mol). This is followed by a second hydrophobic region (I28, V314, F31 and Y32) that forms a small

energy barrier between this binding site and the cytoplasmic exit. The increased residence time of

NH3 within this energy minimum suggests that reprotonation to NH4
+, caused by the cytoplasmic pH,

occurs in this region (Figure 6). Since both energy barriers for H+ transfer along the water chains

and NH3 permeation are relatively small, we concluded that either initial deprotonation or proton

transfer across the twin-His motif could be rate-limiting for overall NH4
+ transport.

Conclusion
A new model for the mechanism of electrogenic ammonium transport therefore emerges from our

findings (Figure 7). After deprotonation of NH4
+ at the periplasmic side, a previously undiscovered

polar conduction route enables H+ transfer into the cytoplasm. A parallel pathway, lined by hydro-

phobic groups within the protein core, facilitates the simultaneous transfer of uncharged NH3, driven

by concentration differences. On the cytoplasmic face, the pH of the cell interior leads to recombina-

tion to NH4
+, most likely near a second hydrophobic gate (Figure 6). The twin-His motif, which

bridges the water chains constitutes the major selectivity gate for NH4
+ transport preventing K+ flow.

We propose that this mechanism is conserved amongst the electrogenic members of the Amt/Mep/

Rh family. Importantly, two RhAG polymorphisms associated to the overhydrated stomatocytosis

human syndrome have also acquired the ability to transport K+. Thus, deciphering the transport

mechanism of two archetypal members of the family such as AmtB and NeRh50 could bring new

insights to the understanding of substrate specificity determinants in Rh proteins in the context of

human diseases (Bruce et al., 2009).

Our findings define a new mechanism, by which ionizable molecules that are usually charged in

solution are selectively and efficiently transported across a highly hydrophobic environment like the

AmtB/Rh pore. Alongside size-exclusion and ion desolvation (Kopec et al., 2018), it adds a new

principle by which selectivity against competing ions can be achieved. Other biological transport sys-

tems, like the formate/nitrite transporters, may share similar mechanisms involving deprotonation-

reprotonation cycles (Wiechert and Beitz, 2017).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Escherichia coli)

AmtB Zheng et al., 2004 Uniprot: C3TLL2

Gene
(Nitrosomonas europea)

Rh50 Lupo et al., 2007 Uniprot Q82 � 47

Strain, strain
background
(Escherichia coli)

C43 (DE3) Miroux and
Walker, 1996

Chemically
competent cells

Strain, strain
background
(Escherichia coli)

GT1000 Javelle et al., 2004 Chemically
competent cells

Recombinant
DNA reagent

pET22b (+) Novagen Cat# - 69744

Recombinant
DNA reagent

pDR195 Rentsch et al.,
1995

Addgene - 36028 High copy yeast
expression vector

Recombinant
DNA reagent

pAD7 Cherif-Zahar et al.,
2007

pESV2-RH50(His)6

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

p426MET25 Mumberg et al.,
1994

Recombinant
DNA reagent

PZheng Zheng et al., 2004 pET22b-AmtB(His)6

Recombinant
DNA reagent

pGDM2 This study pET22b-AmtB
(His)6

H168AH318A

Recombinant
DNA reagent

pGDM4 This study pET22b-AmtB(His)6
D160A

Recombinant
DNA reagent

pGDM5 This study pET22b-AmtB(His)6
D160E

Recombinant
DNA reagent

pGDM6 This study pET22b-AmtB
(His)6

S219AH168AH318A

Recombinant
DNA reagent

pGW2 This study pET22b-AmtB(His)6
H168A

Recombinant
DNA reagent

pGDM9 This study pDR195-AmtB(His)6
D160A

Recombinant
DNA reagent

pGDM10 This study pDR195-AmtB(His)6
D160E

Recombinant
DNA reagent

pGDM12 This study pDR195-AmtB
(His)6

H168AH318A

Recombinant
DNA reagent

pGDM13 This study pDR195-AmtB
(His)6

S219AH168AH318A

Recombinant
DNA reagent

pGW7 This study pDR195-AmtB(His)6
H168A

Sequence-
based reagent

AmtBS219A F IDT PCR Primer
(Mutagenesis)

GGTGGCACCGTGGTGGATAT
TAACGCCGCAATC

Sequence-
based reagent

AmtBD160A F IDT PCR Primer
(Mutagenesis)

CTCACGGTGCGCTGGCCTTCG
CGGGTGGCACC

Sequence-
based reagent

AmtBD160E F IDT PCR Primer
(Mutagenesis)

CTCACGGTGCGCTGGAGTTCG
CGGGTGGCACC

Sequence-
based reagent

AmtBH168A F IDT PCR Primer
(Mutagenesis)

GGTGGCACCGTGGTGGCCATT
AACGCCGCAATC

Sequence-
based reagent

AmtBH318A F IDT PCR Primer
(Mutagenesis)

TGTCTTCGGTGTGGCCGGCGT
TTGTGGCATT

Sequence-
based reagent

AmtB XhoI IDT PCR primer AGTCCTCGAGATGAAGATAGC
GACGATAAAA

Sequence-
based reagent

AmtB BamHI IDT PCR primer AGTCGGATCCTCACGCGTTAT
AGGCATTCTC

Sequence-
based reagent

P5’NeRh IDT PCR primer GCCACTAGTATGAGTAAACAC
CTATGTTTC

Sequence-
based reagent

P3’NeRh IDT PCR primer GCCGAATTCCTATCCTTCTGA
CTTGGCAC

Peptide,
recombinant
protein

AmtB(His)6 This study purified from E. coli
C43 (DE3) cells

Peptide,
recombinant
protein

AmtB(His)6
D160A This study purified from E. coli

C43 (DE3) cells

Peptide,
recombinant
protein

AmtB(His)6
D160E This study purified from E. coli

C43 (DE3) cells

Peptide,
recombinant
protein

AmtB(His)6
H168AH318A This study purified from E. coli

C43 (DE3) cells

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Peptide,
recombinant
protein

AmtB
(His)6

S219AH168AH318A
This study purified from E. coli

C43 (DE3) cells

Peptide,
recombinant
protein

AmtB(His)6
H168A This study purified from E. coli

C43 (DE3) cells

Peptide,
recombinant
protein

AmtB(His)6
H318A This study purified from E. coli C43 (DE3) cells

Peptide,
recombinant
protein

NeRh50(His)6 This study purified from E. coli
C43 GT1000 cells

Peptide,
recombinant
protein

XhoI Promega Cat# - R6161

Peptide,
recombinant
protein

BamHI Promega Cat# - R6021

Commercial
assay or kit

Quikchange XL
site-directed
mutagensis kit

Agilent
Technologies

Cat# 200516

Chemical
compound, drug

n-dodecyl-b-D-
maltopyranoside (DDM)

Avanti Cat#- 850520

Chemical
compound, drug

lauryldecylamine
oxide (LDAO)

Avanti Cat#- 850545

Chemical
compound, drug

E. coli Polar Lipids Avanti Cat#�100600

Chemical
compound, drug

Phosphotidylcholine
(POPC)

Avanti Cat#�850457

Software,
algorithm

Graphpad Prism
software

GraphPad Prism
(https://www.
graphpad.com)

Version 6.01

Software,
algorithm

Origin Pro
Software

Origin Labs
(https://www.
originlab.com)

Origin 2017
Version 94E

Software,
algorithm

SURFE2R Control
Software

Nanion
(https://www.
nanion.de/en/)

V1.5.3.2

Mutagenesis
AmtB mutants were generated using the Quikchange XL site-directed mutagenesis kit (Agilent Tech-

nologies), according to the manufacturer’s instructions. The primers used for mutagenesis are listed

in Key resources table. The template was the amtB gene cloned into the plasmid pET22b(+), as pre-

viously described (Zheng et al., 2004; Key resources table).

AmtB and NeRh50 expression in yeast and complementation test
The different variants of amtB were amplified using amtB cloned into pET22b(+) (Key resources

table) as a template with the primers AmtB XhoI and AmtB BamHI (Key resources table) and then

sub-cloned into the plasmids pDR195 (Key resources table). The NeRh50 gene was amplified from

N. europaea genomic DNA (kind gift from Daniel J. Arp and Norman G. Hommes, Department of

Botany and Plant Pathology, Oregon State University, Corvallis, USA) using the primers P5’NeRh

and P3’NeRh (Key resources table), and was then cloned into the SpeI and EcoRI restriction sites of

the high-copy vector p426Met25 (Key resources table), allowing controlled-expression of NeRh50 by

the yeast methionine repressible MET25 promoter.
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Saccharomyces cerevisiae strains used in this study are the 31019b strain (mep1D mep2D mep3D

ura3) and the #228 strain (mep1D mep2D mep3D trk1D trk2D leu2 ura3) (Hoopen et al., 2010;

Marini et al., 1997). The plasmids used in this study are listed in Key resources table. Cell transfor-

mation was performed as described previously (Gietz et al., 1992). For growth tests on limiting

ammonium concentrations, yeast cells were grown in minimal buffered (pH 6.1) medium and for

growth tests on limiting potassium concentrations, a minimal buffered (pH 6.1) medium deprived of

potassium salts was used (Jacobs et al., 1980). 3% glucose was used as the carbon source and,

0.1% glutamate, 0.1% glutamine or (NH4)2SO4 at the specified concentrations were used as the

nitrogen sources.

All growth experiments were repeated at least twice.

Protein purification
AmtB(His6) cloned into the pET22b(+) vector (Key resources table) was overexpressed and purified

as described previously (Zheng et al., 2004). The plasmid pAD7 (Key resources table) was used to

overexpress NeRh50 in the E. coli strain GT1000 (Javelle et al., 2004). GT1000 was transformed

with pAD7 and grown in M9 medium (Elbing and Brent, 2002), in which ammonium was replaced

by 200 mg/ml glutamine as sole nitrogen source. NeRh50 was purified as described by Lupo et al.,

2007 with minor modifications, namely: the membrane was solubilized using 2% lauryldecylamine

oxide (LDAO) instead of 5% n-octyl-b-D-glucopyranoside (OG), and 0.09% LDAO was used in place

of 0.5% b-OG in the final size exclusion chromatography buffer (50 mL Tris pH 7.8, 100 mL NaCl,

0.09% LDAO).

AmtB and NeRh50 insertion into proteoliposomes
AmtB and NeRh50 were inserted into liposomes containing E. coli polar lipids/phosphatidylcholine

(POPC) 2/1(wt/wt) as previously described (Mirandela et al., 2019). For each AmtB variant, proteoli-

posomes were prepared at lipid-to-protein ratios (LPRs) of 5, 10, and 50 (wt/wt). The size distribution

of proteoliposomes was measured by dynamic light scattering (DLS) using a Zetasizer Nano ZS (Mal-

vern Instruments, Malvern, UK). This analysis showed that the proteoliposomes had an average diam-

eter of 110 nm (Figure 8). Proteoliposomes were divided into 100 mL aliquots and stored at �80˚C.

To ensure that all AmtB variants were correctly inserted into the proteoliposomes, the proteolipo-

somes were solubilized in 2% DDM and the proteins analyzed by size exclusion chromatography

using a superdex 200 (10 � 300) enhanced column. The elution profile of all variants and the wild-

type were identical, showing a single monodisperse peak eluting between 10.4–10.6 ml (Figure 4—

figure supplement 1). This demonstrated that all proteins were correctly folded, as trimers, in the

proteoliposomes.

Solid supported membrane electrophysiology
To form the solid-supported membrane, 3 mm gold-plated sensors were prepared according to the

manufacturer’s instructions (Nanion Technologies, Munich, Germany), as described previously

(Bazzone et al., 2017). Proteoliposomes/empty liposomes were defrosted and sonicated in a sonica-

tion bath at 35 W for 1 min, diluted 10 times in non-activating (NA) solution (Supplementary file 1),

and then 10 ml were added at the surface of the SSM on the sensor. After centrifugation, the sensors

were stored at 4˚C for a maximum of 48 hr before electrophysiological measurements. For the D2O

experiments, all the solutions were prepared using D2O instead of water.

All measurements were made at room temperature (21˚C) using a SURFE2R N1 apparatus (Nanion

Technologies, Munich, Germany) with default parameters (Bazzone et al., 2017). Prior to any meas-

urements, the quality of the sensors was determined by measuring their capacitance (15–30 nF) and

conductance (<5 nS).

For functional measurements at a fixed pH, a single solution exchange protocol was used with each

phase lasting 1 s (Bazzone et al., 2017). First, non-active (NA) solution was injected onto the sensor,

followed by activating (A) solution containing the substrate at the desired concentration and finally NA

solution (Supplementary file 1).

For the measurements under inwardly orientated pH gradient, a double solution exchange protocol

was used (Bazzone et al., 2017), in which an additional resting solution phase of 15 min in NA solution

at pH 8 was added to the end. The incubation phase adjusts the inner pH of the proteoliposomes to
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pH 8 and establishes a pH gradient at the beginning of each measurement by pulsing the activation

solution at pH 5.

Each sensor was measured in the order pH (in/out) 7/7, 8/5 (with NH4
+), 8/5 (without NH4

+), and

finally again 7/7 to ensure that the signals do not significantly decrease with time. The data are normal-

ized against the measurements conducted at pH7 in/out for each sensor. All measurements were

recorded on 8 sensors from two independent protein purification batches, with 3 measurements

recorded for each sensor.

The kinetic parameters were calculated using Graphpad Prism 6 (GraphPad Software, San Diego,

California, USA) and fitted according to the Michaelis-Menten equation (Key resources table). Lifetime

analysis of the current (decay time of the transient current) was performed to differentiate small pre-

steady state currents, which arise due to the binding of a charged species to membrane proteins, from

currents reflecting full transport cycles, which show faster decay rates under raised liposomal LPR

(Bazzone et al., 2017). The decay time of the transient current (Table 1) was calculated by fitting the

raw transient current data between the apex of the peak and the baseline (after transport) with a non-

linear regression using OriginPro 2017 (OriginLab, Northampton, Massachusetts, USA). The regres-

sion was done using a one-phase exponential decay function with time constant parameter:

y¼ y0 ¼ A1e
�x=t1

The fit was obtained using the Levenberg-Marquardt iteration algorithm, where x and y represent

coordinates on the respective axis, y0 represents the offset at a given point, A represents the ampli-

tude, and t is the time constant.

Figure 8. Size distribution of the proteoliposomes containing wild-type and variants of AmtB. Dynamic light scattering was used to determine the

number-weighted distribution of liposome sizes in the detection reagent. The distribution was monodisperse, with a mean diameter of 110 nm.
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Molecular Dynamics simulations
The AmtB trimer (PDB code: 1U7G) (Khademi et al., 2004) was processed using the CHARMM-GUI

web server (Lee et al., 2016). Any mutations inserted during the crystallization process were

reverted to the wild-type form. The N-termini and C-termini of the subunits were capped with acetyl

and N-methyl amide moieties, respectively. The protein was then inserted into a membrane patch of

xy-dimensions 13 � 13 nm. Unless otherwise specified, a membrane composition of palmitoyl oleoyl

phosphatidyl ethanolamine and palmitoyl oleoyl phosphatidyl glycine (POPE/POPG) at a 3:1 ratio

was used in order to approximate the composition of a bacterial cytoplasmic membrane. We

employed the CHARMM36 forcefield for the protein and counter ions (Best et al., 2012). The water

molecules were modeled with the TIP3P model (Jorgensen et al., 1983). Water bonds and distances

were constrained by the Settle method (Miyamoto and Kollman, 1992), and all other bonds by the

LINCS method (Hess et al., 1997). In simulations without ammonium, K+ and Cl- ions were added to

neutralize the system and obtain a bulk ionic concentration of 250 mM. In simulations with ammo-

nium, K+ was replaced by NH4
+. The parameters for NH4

+ and NH3 (umbrella sampling simulations)

were adapted from Nygaard et al., 2006.

After a steepest descent energy minimization, the system was equilibrated by six consecutive

equilibration steps using position restraints on heavy atoms of 1000 kJ/mol.nm2. The first three

equilibration steps were conducted in an NVT ensemble, applying a Berendsen thermostat

(Berendsen et al., 1984) to keep the temperature at 310K. The subsequent steps were conducted

under an NPT ensemble, using a Berendsen barostat (Berendsen et al., 1984) to keep the pressure

at 1 bar. Production molecular dynamics simulations were carried out using a v-rescale thermostat

(Bussi et al., 2007) with a time constant of 0.2 ps, and a Berendsen barostat with semi-isotropic cou-

pling. A timestep of 2 fs was used throughout the simulations.

In a subset of simulations, we aimed to test the effect of membrane voltage on the internal hydra-

tion of AmtB using CompEL. For the CompEL simulations (Kutzner et al., 2016), the system was

duplicated along the z-axis, perpendicular to the membrane surface. To focus on the physiologically

relevant voltage gradient in E. coli, that is a negative potential on the inside of the cell of magnitude

�140 to �170 mV (Cohen and Venkatachalam, 2014), an antiparallel orientation of the two trimers

in the double bilayers was used (Felle et al., 1980). The final double system consisted of a rectangu-

lar box of 13 � 13�20 nm. For the CompEL simulations, 1000 positively charged (either NH4
+ or K+)

and 1000 negatively charged ions (Cl-) were added to the system, then the system was neutralized,

and the desired ion imbalance established.

The Umbrella Sampling (US) Potential-of-Mean-Force (PMF) calculations (Torrie and Valleau,

1977) were set up as described previously by Hub et al., 2010b. A snapshot was taken from the

simulation of the single bilayer system with the twin-His motif in the DE protonation state and both

the CWW and PWW occupied. The pore coordinates were obtained using the software HOLE

(Smart et al., 1996), removing the solvent and mutating F215 to alanine during the HOLE run only.

Starting coordinates for each umbrella window were generated by placing NH3 in the central x-y

coordinate of the pore defined by HOLE at positions every 0.5 Å in the z coordinate. Solvent mole-

cules within 2 Å of the ammonia’s N atom were removed. Minimization and equilibration were then

re-performed as described above. Unless otherwise stated, position restraints were used for all

water oxygen atoms in the CWW with a 200 kJ/mol.nm2 force constant; while the TIP3 molecules

within the lower water wire were not restrained. For the US the N atom of ammonia was position-

restrained with a force constant of 1000 kJ/mol.nm2 on the z axis and a 400 kJ/mol.nm2 cylindrical

flat-bottomed potential with a radius of 5 Å in the x-y plane, as described earlier by Hub et al.,

2010a. For some US window simulations, the ammonia z-axis restraints were increased and the time

step reduced in the equilibration to relax steric clashes between sidechains and ammonia. After

equilibration, US simulations were run for 10ns, using the parameters described above (Lee et al.,

2016) and removing the initial two ns for further equilibration. The PMF profiles were generated

with the GROMACS implementation of the weighted histogram analysis method (WHAM) with the

periodic implementation (Hub et al., 2010a). Further US simulations were performed to as needed

to improve sampling in regions of the profile that were not sufficiently sampled. The Bayesian boot-

strap method was performed with 200 runs to calculate the standard deviation of the PMF.
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Free energy calculations for proton translocation
The free energies for proton translocation were evaluated by protonating the water molecules at dif-

ferent sites along the periplasmic and cytoplasmic water wires. Electrostatic effects in proteins are

often treated more effectively using semi-macroscopic models which can overcome the convergence

problems of more rigorous microscopic models. Here we used the semi-macroscopic protein dipole/

Langevin dipole approach of Warshel and coworkers in the linear response approximation version

(PDLD/S-LRA) (Kato et al., 2006; Sham et al., 2000). Positions of the water molecules in the PWW

and CWW were obtained from the corresponding MD snapshots (Figure 1). All PDLD/S-LRA pKa cal-

culations were performed using the automated procedure in the MOLARIS simulations package

(Lee et al., 1993) in combination with the ENZYMIX force field. The simulation included the use of

the surface-constrained all atom solvent model (SCAAS) (Warshel and King, 1985) and the local

reaction field (LRF) long-range treatment of electrostatics. At each site, 20 configurations for the

charged and uncharged state were generated. The obtained pKa values were then converted to free

energies for proton translocation.
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Gaëtan Dias Mirandela https://orcid.org/0000-0001-5871-6288

Andrei Pisliakov https://orcid.org/0000-0003-1536-0589

Callum M Ives http://orcid.org/0000-0003-0511-1220

Arnaud Javelle https://orcid.org/0000-0002-3611-5737

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.57183.sa1

Author response https://doi.org/10.7554/eLife.57183.sa2

Additional files
Supplementary files
. Supplementary file 1. Supplementary Table 1.

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Source data files have been provided for Figures 1-5 and Table 2. Simulation code is available on

GitHub at https://github.com/UZgroup/A-two-lane-mechanism-for-selective-biological-ammonium-

transport/ (copy archived at https://github.com/elifesciences-publications/A-two-lane-mechanism-

for-selective-biological-ammonium-transport) and the trajectory files are available on Figshare

(https://doi.org/10.6084/m9.figshare.12826316).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Tamburrino G,
Zachariae U

2020 Molecular dynamics simulation
trajectories, AmtB in twin-His HSD-
HSE and HSE-HSD states

https://figshare.com/arti-
cles/dataset/Molecular_
dynamics_simulation_tra-
jectories_AmtB_in_twin-
His_HSD-HSE_and_HSE-
HSD_states/12826316

figshare, 10.6084/m9.
figshare.12826316

References
Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V, Samish I, Lamb RA, Pinto LH, DeGrado
WF, Klein ML. 2010. Structure and mechanism of proton transport through the transmembrane tetrameric M2
protein bundle of the influenza A virus. PNAS 107:15075–15080. DOI: https://doi.org/10.1073/pnas.
1007071107, PMID: 20689043

Andrade SL, Dickmanns A, Ficner R, Einsle O. 2005. Crystal structure of the archaeal ammonium transporter
Amt-1 from Archaeoglobus fulgidus. PNAS 102:14994–14999. DOI: https://doi.org/10.1073/pnas.0506254102,
PMID: 16214888

Ariz I, Boeckstaens M, Gouveia C, Martins AP, Sanz-Luque E, Fernández E, Soveral G, von Wirén N, Marini AM,
Aparicio-Tejo PM, Cruz C. 2018. Nitrogen isotope signature evidences ammonium deprotonation as a common
transport mechanism for the AMT-Mep-Rh protein superfamily. Science Advances 4:eaar3599. DOI: https://doi.
org/10.1126/sciadv.aar3599, PMID: 30214933

Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. 2016. ConSurf 2016: an improved
methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research
44:W344–W350. DOI: https://doi.org/10.1093/nar/gkw408, PMID: 27166375

Aydin F, Zhan C, Ritt C, Epsztein R, Elimelech M, Schwegler E, Pham TA. 2020. Similarities and differences
between potassium and ammonium ions in liquid water: a first-principles study. Physical Chemistry Chemical
Physics 22:2540–2548. DOI: https://doi.org/10.1039/C9CP06163K, PMID: 31942893

Bazzone A, Barthmes M, Fendler K. 2017. SSM-Based electrophysiology for transporter research. Methods in
Enzymology 594:31–83. DOI: https://doi.org/10.1016/bs.mie.2017.05.008, PMID: 28779843

Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. 1984. Molecular dynamics with coupling to
an external bath. The Journal of Chemical Physics 81:3684–3690. DOI: https://doi.org/10.1063/1.448118

Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD. 2012. Optimization of the additive CHARMM
all-atom protein force field targeting improved sampling of the backbone j, y and side-chain c(1) and c(2)
dihedral angles. Journal of Chemical Theory and Computation 8:3257–3273. DOI: https://doi.org/10.1021/
ct300400x, PMID: 23341755

Williamson, Tamburrino, Bizior, Boeckstaens, et al. eLife 2020;9:e57183. DOI: https://doi.org/10.7554/eLife.57183 19 of 22

Research article Biochemistry and Chemical Biology

https://orcid.org/0000-0001-5871-6288
https://orcid.org/0000-0003-1536-0589
http://orcid.org/0000-0003-0511-1220
https://orcid.org/0000-0002-3611-5737
https://doi.org/10.7554/eLife.57183.sa1
https://doi.org/10.7554/eLife.57183.sa2
https://github.com/UZgroup/A-two-lane-mechanism-for-selective-biological-ammonium-transport/
https://github.com/UZgroup/A-two-lane-mechanism-for-selective-biological-ammonium-transport/
https://github.com/elifesciences-publications/A-two-lane-mechanism-for-selective-biological-ammonium-transport
https://github.com/elifesciences-publications/A-two-lane-mechanism-for-selective-biological-ammonium-transport
https://doi.org/10.6084/m9.figshare.12826316
https://figshare.com/articles/dataset/Molecular_dynamics_simulation_trajectories_AmtB_in_twin-His_HSD-HSE_and_HSE-HSD_states/12826316
https://figshare.com/articles/dataset/Molecular_dynamics_simulation_trajectories_AmtB_in_twin-His_HSD-HSE_and_HSE-HSD_states/12826316
https://figshare.com/articles/dataset/Molecular_dynamics_simulation_trajectories_AmtB_in_twin-His_HSD-HSE_and_HSE-HSD_states/12826316
https://figshare.com/articles/dataset/Molecular_dynamics_simulation_trajectories_AmtB_in_twin-His_HSD-HSE_and_HSE-HSD_states/12826316
https://figshare.com/articles/dataset/Molecular_dynamics_simulation_trajectories_AmtB_in_twin-His_HSD-HSE_and_HSE-HSD_states/12826316
https://figshare.com/articles/dataset/Molecular_dynamics_simulation_trajectories_AmtB_in_twin-His_HSD-HSE_and_HSE-HSD_states/12826316
https://doi.org/10.1073/pnas.1007071107
https://doi.org/10.1073/pnas.1007071107
http://www.ncbi.nlm.nih.gov/pubmed/20689043
https://doi.org/10.1073/pnas.0506254102
http://www.ncbi.nlm.nih.gov/pubmed/16214888
https://doi.org/10.1126/sciadv.aar3599
https://doi.org/10.1126/sciadv.aar3599
http://www.ncbi.nlm.nih.gov/pubmed/30214933
https://doi.org/10.1093/nar/gkw408
http://www.ncbi.nlm.nih.gov/pubmed/27166375
https://doi.org/10.1039/C9CP06163K
http://www.ncbi.nlm.nih.gov/pubmed/31942893
https://doi.org/10.1016/bs.mie.2017.05.008
http://www.ncbi.nlm.nih.gov/pubmed/28779843
https://doi.org/10.1063/1.448118
https://doi.org/10.1021/ct300400x
https://doi.org/10.1021/ct300400x
http://www.ncbi.nlm.nih.gov/pubmed/23341755
https://doi.org/10.7554/eLife.57183


Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer C, Wagner CA,
Devuyst O, Marini AM. 2008. A role for rhesus factor rhcg in renal ammonium excretion and male fertility.
Nature 456:339–343. DOI: https://doi.org/10.1038/nature07518

Boogerd FC, Ma H, Bruggeman FJ, van Heeswijk WC, Garcı́a-Contreras R, Molenaar D, Krab K, Westerhoff HV.
2011. AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of
transport by GlnK is mandatory to limit futile cycling of NH4(+)/NH3. FEBS Letters 585:23–28. DOI: https://doi.
org/10.1016/j.febslet.2010.11.055, PMID: 21134373

Bruce LJ, Guizouarn H, Burton NM, Gabillat N, Poole J, Flatt JF, Brady RL, Borgese F, Delaunay J, Stewart GW.
2009. The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid
substitutions in the Rh-associated glycoprotein. Blood 113:1350–1357. DOI: https://doi.org/10.1182/blood-
2008-07-171140, PMID: 18931342

Bussi G, Donadio D, Parrinello M. 2007. Canonical sampling through velocity rescaling. The Journal of Chemical
Physics 126:014101. DOI: https://doi.org/10.1063/1.2408420, PMID: 17212484

Cherif-Zahar B, Durand A, Schmidt I, Hamdaoui N, Matic I, Merrick M, Matassi G. 2007. Evolution and functional
characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. Journal of
Bacteriology 189:9090–9100. DOI: https://doi.org/10.1128/JB.01089-07, PMID: 17921289

Cohen AE, Venkatachalam V. 2014. Bringing bioelectricity to light. Annual Review of Biophysics 43:211–232.
DOI: https://doi.org/10.1146/annurev-biophys-051013-022717, PMID: 24773017
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