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Abstract The COVID-19 pandemic is a harsh reminder of the fact that, whether in a single human host
or a wave of infection across continents, viral dynamics is often a story about the numbers. In this
article we provide a one-stop, curated graphical source for the key numbers (based mostly on the
peer-reviewed literature) about the SARS-CoV-2 virus that is responsible for the pandemic. The
discussion is framed around two broad themes: i) the biology of the virus itself; ii) the characteristics

of the infection of a single human host.
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Introduction

The COVID-19 pandemic has made brutally clear
the need for further research into many aspects
of viruses. In this article we compile data about
the basic properties of the SARS-CoV-2 virus,
and about how it interacts with the body (Fig-
ure 1). We also discuss a number of questions
about the virus, and perform ‘back-of-the-enve-
lope’ calculations to show the insights that can
be gained from knowing some key numbers and
using quantitative reasoning. It is important to
note that much uncertainty remains, and while
'back-of-the-envelope’ calculations can improve
our intuition through sanity checks, they cannot
replace detailed epidemiological analysis.

Eight questions about SARS-CoV-2

1. How long does it take a single infected
person to yield one million infected
people?

If everybody continued to behave as usual, how
long would it take the pandemic to spread from
one person to a million infected victims? The
basic reproduction number, Ry, suggests each
infection directly generates 2-4 more infections
in the absence of countermeasures like physical
distancing. Once a person is infected, it takes a
period of time known as the ’latent period’
before they are able to transmit the virus. The
current best-estimate of the median latent time
is =3 days followed by =4 days of close to

maximal infectiousness (Li et al., 2020a;
He et al., 2020). The exact durations vary
among people, and some are infectious for
much longer. Using Ro=4, the number of cases
will quadruple every =7 days or double every
=~ 3 days. 1000-fold growth (going from one case
to 10%) requires 10 doublings since 29 < 10% 3
days x 10 doublings = 30 days, or about one
month. So we expect =1000x growth in one
month, a million-fold (10%) in two months, and a
billion fold (10%) in three months. Even though
this calculation is highly simplified, ignoring the
effects of ‘super-spreaders’, herd-immunity and
incomplete testing, it emphasizes the fact that
viruses can spread at a bewildering pace when
no countermeasures are taken. This illustrates
why it is crucial to limit the spread of the virus
by physical distancing measures. For fuller dis-
cussion of the meaning of Ry, the latent and
infectious periods, as well as various caveats, see
the section on 'Definitions and measurement
methods’ below.

2. What is the effect of physical distancing?
A highly simplified quantitative example helps
clarify the need for physical distancing. Suppose
that you are infected and you encounter 50 peo-
ple over the course of a day of working, com-
muting, socializing and running errands. To
make the numbers round, let's further suppose
that you have a 2% chance of transmitting the
virus in each of these encounters, so that you
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Note the difference in notation between the symbol =, which indicates “approximately” and connotes accuracy to within a factor 2,
and the symbol ~, which indicates “order of magnitude” or accuracy to within a factor of 10.

Figure 1. SARS-CoV-2 (COVID-19) by the numbers. Graphic showing what we know about the basic properties of the SARS-CoV-2 virus, such as its size
and genome, and about how it interacts with the body. These topics are discussed further in the text, which also includes sources for all the values
listed. This article will be updated as new data become available, and the latest version is available at: bit.ly/2WOeN&4. A larger version of this figure
(which was created with Biorender) is available as Supplementary file 1.
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are likely to infect one new person each day. If
you are infectious for 4 days, then you will infect
four others on average, which is on the high end
of the Rg values for SARS-CoV-2 in the absence
of physical distancing. If you instead see five
people each day (preferably fewer) because of
physical distancing, then you will infect 0.1 peo-
ple per day, or 0.4 people before you become
less infectious. The desired effect of physical dis-
tancing is to make each current infection pro-
duce <1 infections. An  effective
reproduction number (R.) smaller than one will
ensure the number of infections eventually dwin-
dles. It is critically important to quickly achieve
Re < 1, which is substantially more achievable
than pushing R. to near zero through public
health measures.

new

3. Why was the initial quarantine period
two weeks?

The period of time from infection to symptoms
is termed the incubation period. The median
SARS-CoV-2 incubation period is estimated to
be roughly 5 days (Lauer et al., 2020). Yet there
is much person-to-person variation. Approxi-
mately 99% of those showing symptoms will
show them before day 14, which explains the
two week confinement period. Importantly, this
analysis neglects infected people who never
show symptoms. Since asymptomatic people are
not usually tested, it is still not clear how many
such cases there are or how long asymptomatic
people remain infectious for.

4. How do N95 masks block SARS-CoV-2?

N95 masks are designed to remove more than
95% of all particles that are at least 0.3 microns
(um) in diameter. In fact, measurements of the
particle filtration efficiency of N95 masks show
that they are capable of filtering =99.8% of par-
ticles with a diameter of =0.1 um
(Rengasamy et al., 2017). SARS-CoV-2 is an
enveloped virus =0.1 um in diameter, so N95
masks are capable of filtering most free virions,
but they do more than that. How so? Viruses are
often transmitted through respiratory droplets
produced by coughing and sneezing. Respira-
tory droplets are usually divided into two size
bins, large droplets (>5 um in diameter) that fall
rapidly to the ground and are thus transmitted
only over short distances, and small droplets (<5
um in diameter). Small droplets can evaporate
into 'droplet nuclei’, remain suspended in air for
significant periods of time and could be inhaled.

Some viruses, such as measles, can be
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transmitted by droplet nuclei (Tellier et al.,
2019). Larger droplets are also known to trans-
mit viruses, usually by settling onto surfaces that
are touched and transported by hands onto
mucosal membranes such as the eyes, nose and
mouth (CDC, 2020). The characteristic diameter
of large droplets produced by sneezing is ~100
um (Han et al., 2013), while the diameter of
droplet nuclei produced by coughing is on the
order of ~1 um (Yang et al., 2007). At present,
it is unclear whether surfaces or air are the domi-
nant mode of SARS-CoV-2 transmission, but
N95 masks should provide some protection

against both (Jefferson et al, 2009,
Leung et al., 2020).

5. How similar is SARS-CoV-2 to the
common cold and flu viruses?

SARS-CoV-2 is a beta-coronavirus whose

genome is a single =30 kb strand of RNA. The
flu is caused by an entirely different family of
RNA viruses called influenza viruses. Flu viruses
have smaller genomes (=14 kb) encoded in
eight distinct strands of RNA, and they infect
human cells in a different manner than coronavi-
ruses. The ‘common cold’ is caused by a variety
of viruses, including some coronaviruses and rhi-
noviruses. Cold-causing coronaviruses (e.g.
OC43 and 229E strains) are quite similar to
SARS-CoV-2 in genome length (within 10%) and
gene content, but different from SARS-CoV-2 in
sequence (=50% nucleotide identity) and infec-
tion severity. One interesting facet of coronavi-
ruses is that they have the largest genomes of
any known RNA viruses (=30 kb). These large
genomes led researchers to suspect the pres-
ence of a 'proofreading mechanism’ to reduce
the mutation rate and stabilize the genome.
Indeed, coronaviruses have a proofreading exo-
nuclease called ExoN, which explains their low
mutation rates (~107° per site per cycle) in com-
parison to influenza (=3 x 107 per site per
cycle; Sanjuan et al., 2010). This relatively low
mutation rate will be of interest for future stud-
ies predicting the speed with which coronavi-
ruses can evade our immunization efforts.

6. How much is known about the SARS-
CoV-2 genome and proteome?

SARS-CoV-2 has a single-stranded positive-sense
RNA genome that codes for 10 genes ultimately
producing 26 proteins according to an NCBI
annotation (NC_045512). How is it that 10 genes
code for >20 proteins? One long gene, orflab,
encodes a polyprotein that is cleaved into 16
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Box 1. Glossary

Clinical measures
Incubation period: time between exposure and symptoms.
Seroconversion: time between exposure to virus and detectable antibody response.

Epidemiological inferences

Ro: the average number of cases directly generated by an individual infection.

Latent period: time between exposure and becoming infective.

Infectious period: time for which an individual is infective.

Interval of half-maximum infectiousness: the time interval during which the probability of viral transmission is higher than half
of the peak infectiousness. This interval is similar to the infectious period, but applies also in cases where the probability of
infection is not uniform in time.

Viral species

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2. A B-coronavirus causing the present COVID-19 outbreak.
SARS-CoV-1: B-coronavirus that caused the 2002 SARS outbreak in China.

MERS: a 3-coronavirus that caused the Middle East Respiratory Syndrome outbreak beginning in Jordan in 2012.

MHV: Murine hepatitis virus, a model 3-coronavirus on which much laboratory research has been conducted.

TGEV: Transmissible gastroenteritis virus, a model a-coronavirus that infects pigs.

229E and OC43: two strains of coronavirus (o- and B- respectively) that cause a fraction of common colds.

Viral life-cycle

Eclipse period: time between viral entry and appearance of intracellular virions.

Latent period (cellular level): time between viral entry and appearance of extracellular virions. Not to be confused with the
epidemiological latent period described above.

Burst size: the number of virions produced from infection of a single cell. More appropriately called ‘per-cell viral yield" for
non-lytic viruses like SARS-CoV-2.

Virion: a viral particle.

Polyprotein: a long protein that is proteolytically cleaved into a number of distinct proteins. Distinct from a polypeptide, which
is a linear chain of amino acids making up a protein.

Human biology

Alveolar macrophage: immune cells found in the lung that engulf foreign material like dust and microbes ('professional
phagocytes’).

Pneumocytes: the non-immune cells in the lung.

Kp: apparent binding affinity. In this case, gives the concentration of spike protein needed for half-maximum binding of ACE2
receptor. Kp is measured using surface chemistry approaches for membrane proteins such as ACE2.

ACE2: Angiotensin-converting enzyme 2, the mammalian cell surface receptor that SARS-CoV-2 binds.

TMPRSS2: Transmembrane protease, serine 2, a mammalian membrane-bound serine protease that cleaves the viral spike tri-
mer after it binds ACE2, revealing a fusion peptide that participates in membrane fusion that enables subsequent injection of
viral RNA into the host cytoplasm.

Nasopharynx: the space above the soft palate at the back of the nose that connects the nose to the mouth.

Notation
Note the difference in notation between the symbol =, which indicates ‘approximately’ and connotes accuracy to within a fac-
tor of 2, and the symbol ~, which indicates ‘order of magnitude’ or accuracy to within a factor of 10.
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proteins by proteases that are themselves part
of the polyprotein. In addition to proteases, the
polyprotein encodes an RNA polymerase and
associated factors to copy the genome, a proof-
reading exonuclease, and several other non-
structural proteins. The remaining genes pre-
dominantly code for structural components of
the virus: i) the spike protein which binds the
cognate receptor on a human or animal cell; i) a
nucleoprotein that packages the genome; iii)
two membrane-bound proteins. Though much
current work is centered on understanding the
role of "accessory’ proteins in the viral life cycle,
we estimate that it is currently possible to
ascribe clear biochemical or structural functions
to only about half of SARS-CoV-2 gene
products.

7. What can we learn from the mutation
rate of the virus?

Studying viral evolution, researchers commonly
use two measures describing the rate of geno-
mic change. The first is the evolutionary rate,
which is defined as the average number of sub-
stitutions that become fixed per year in strains
of the virus, given in units of mutations per site
per year. The second is the mutation rate, which
is the number of substitutions per site per repli-
cation cycle. How can we relate these two val-
ues? Consider a single site at the end of a year.
The only measurement of a mutation rate in a B-
suggests that this
accumulate ~107® mutations in each round of
replication. Each replication cycle takes ~10 hr,
and so there are 10° cycles/year. Multiplying the
mutation rate by the number of replications,
assuming neutrality and neglecting the effects of

coronavirus site  will

evolutionary selection, we arrive at 107 muta-
tions per site per year, consistent with the evolu-
rate  inferred from  sequenced
coronavirus genomes. As our estimate is consis-
tent with the measured rate, we infer that the

tionary

virus undergoes near-continuous replication in
the wild, constantly generating new mutations
that accumulate over the course of the year.
Using our knowledge of the mutation rate, we
can also draw inferences about single infections.
For example, since the mutation rate is ~107¢
mutations/site/cycle and an mL of sputum might
contain upwards of 107 viral RNAs, we infer that
every site is mutated more than once in such
samples.
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8. How stable and infectious is the virion

on surfaces?

To understand how SARS-CoV-2 can be trans-
mitted, it is vitally important to characterize the
stability of infectious virions on different types of
surfaces like cardboard, plastics, and various
metals. This is a very active area of current
research. However, there are significant caveats
associated with viral stability measurements. The
measured stability depends on the quantity
measured, for example, one can measure either
infectious virions or viral RNA copies. The num-
ber of infectious virions is typically much lower
than inferred from measurements of the viral
genome (Woelfel et al., 2020). SARS-CoV-2
RNA has been detected on various surfaces sev-
eral weeks after they were last touched
(Moriarty et al., 2020), but infectiousness
appears to degrade more quickly than RNA.
When researchers measured the stability of
infectious virions on surfaces, the numbers
depended greatly on the type of surface and the
medium carrying the virus, with the stability on
plastic being much greater than on copper or
steel, for example. Viral stability is also known to
depend strongly on temperature and humidity
(Chin et al., 2020). Therefore calculating the
probability of human infection from exposure to
contaminated surfaces is a complex task for
which sufficient data is not yet available. As
such, caution and protective measures should be
taken. To gain some intuition for the importance
of surface transmission, we consider an undiag-
nosed infectious person who touches surfaces
tens of times during their infectious period. Prior
to lockdown, these public surfaces will subse-
quently be touched by hundreds of other peo-
ple. From the basic reproduction number
Ro = 2-4 we can infer that not everyone touch-
ing those surfaces will be infected. More
detailed bounds on the risk of infection from
touching surfaces urgently awaits study.

Definitions and measurement
methods

What are the meanings of Ry, ‘latent
period’ and 'infectious period’?

The basic reproduction number, Ro, estimates
the average number of new infections directly
generated by a single infectious person. The 0
subscript connotes that this refers to early
stages of an epidemic, when everyone in the
region is susceptible (that is, there is no immu-
nity) and no countermeasures have been taken.
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As geography and culture affect how many peo-
ple we encounter daily, how much we touch
them and share food with them, estimates of Ry
can vary between locales. Moreover, because Ry
is defined in the absence of countermeasures
and immunity, we are usually only able to assess
the effective R (R.). At the beginning of an epi-
demic, before any countermeasures, R, = Ry.
Several days pass before a newly-infected per-
son becomes infectious themselves. This ‘latent
period’ is typically followed by several days of
infectivity called the ‘infectious period'.

It is important to understand that reported
values for all these parameters are population
averages inferred from epidemiological models
fit to counts of infected, symptomatic, and dying
patients. Because testing is always incomplete
and model fitting is imperfect, and data will vary
between different locations, there is substantial
uncertainty associated with reported values.
Moreover, these median or average best-fit val-
ues do not describe person-to-person variation.
For example, viral RNA was detectable in
patients with moderate symptoms for more than
one week after the onset of symptoms, and
more than two weeks in patients with severe
symptoms (ECDC, 2020). Though detectable
RNA is not the same as active virus, this evi-
dence calls for caution in using uncertain, aver-
age parameters to describe a pandemic. Why
have detailed distributions of these parameters
across people not been published? Direct mea-
surement of latent and infectious periods at the
individual level is extremely challenging, as accu-
rately identifying the precise time of infection is
usually very difficult.

What is the difference between
measurements of viral RNA and infectious
viruses?

Diagnosis and quantification of viruses utilizes
several different methodologies. One common
approach is to quantify the amount of viral RNA
in an environmental (e.g., surface) or clinical (e.
g., sputum) sample via quantitative reverse-tran-
scription polymerase chain reaction (RT-qPCR).
This method measures the number of copies of
viral RNA in a sample. The presence of viral RNA
does not necessarily imply the presence of infec-
tious virions. Virions could be defective (e.g., by
mutation) or might have been deactivated by
environmental conditions. To assess the concen-
tration of infectious viruses, researchers typically
measure the '50% tissue-culture infectious dose’
(TCIDsp). Measuring TCIDsg involves infecting
replicate cultures of susceptible cells with
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dilutions of the virus and noting the dilution at
which half the replicate dishes become infected.
Viral counts reported by TCIDsy tend to be
much lower than RT-gPCR measurements, which
could be one reason why studies relying on RNA
measurements (Moriarty et al., 2020) report
the persistence of viral RNA on surfaces for
much longer times than studies relying on
TCIDsg (van Doremalen et al., 2020). It is
important to keep this caveat in mind when
interpreting data about viral loads, for example
a report measuring viral RNA in patient stool
samples for several days after recovery
(Wu et al., 2020a). Nevertheless, for many
viruses even a small dose of virions can lead to
the cold,
example, ~0.1 TCIDsq are sufficient to infect half
of the people exposed (Couch et al., 1966).

infection.  For common for

What is the difference between the case

fatality rate and the infection fatality rate?
Global statistics on new infections and fatalities
are pouring in from many countries, providing
somewhat different views on the severity and
progression of the pandemic. Assessing the
severity of the pandemic is critical for policy
making and thus much effort has been put into
quantifying key measures of its progression. The
most common measure for the severity of a dis-
ease is the fatality rate. One commonly reported
measure is the case fatality rate (CFR), which is
the proportion of fatalities out of total diag-
nosed cases. The CFR reported in different
countries varies significantly, from 1% to about
15%. Several key factors affect the CFR. First,
demographic parameters and practices associ-
ated with increased or decreased risk differ
greatly across societies. For example, the preva-
lence of smoking, the average age of the popu-
lation, and the capacity of the healthcare
system. Indeed, the majority of people dying
from SARS-CoV-2 have a preexisting condition
such as cardiovascular disease or smoking
(The Novel Coronavirus Pneumonia Emer-
gency Response Epidemiology Team, 2020).
There is also potential for bias in estimating the
CFR. For example, a tendency to identify more
severe cases (selection bias) will tend to overesti-
mate the CFR. On the other hand, there is usu-
ally a delay between the onset of symptoms and
death, which can lead to an underestimate of
the CFR early in the progression of an epidemic.
We report the uncorrected CFR values, and thus
these caveats should be borne in mind. Even
when correcting for these factors, the CFR does
not give a complete picture as many cases with
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mild or no symptoms are not tested. Thus, the
CFR will tend to overestimate the rate of fatali-
ties per infected person, termed the infection
fatality rate (IFR). Estimating the total number of
infected people is usually accomplished by test-
ing a random sample for anti-viral antibodies,
whose presence indicates that the patient was
previously infected. At the time of writing, such
assays are not widely available, and so research-
ers resort to surrogate datasets generated by
testing of foreign citizens returning home from
infected countries (Verity et al., 2020,
Nishiura et al., 2020), large-scale semi-random
testing in countries such as Iceland, near com-
plete testing of passengers on the Diamond
Princess ship (Russell et al., 2020), or epidemio-
logical models estimating the number of undoc-
umented cases (Li et al., 2020a;
Mizumoto et al., 2020). These methods have
their own caveats and uncertainties associated
with them, and it is not entirely clear how repre-
sentative they are but they do provide a first
glimpse of the true severity of the disease.

What is the burst size and the replication
time of the virus?
Two important characteristics of the viral life
cycle are the time it takes them to produce new
infectious progeny, and the number of progeny
each infected cell produces. The yield of new
virions per infected cell is more clearly defined
in lytic viruses, such as those infecting bacteria
(bacteriophages), as viruses replicate within the
cell and subsequently lyse the cell to release a
‘burst’ of progeny. This measure is usually
termed ‘burst size’. SARS-CoV-2 does not
release its progeny by lysing the cell, but rather
by continuous budding (Park et al., 2020b).
Even though there is no ‘burst’, we can still esti-
mate the average number of virions produced
by a single infected cell. Measuring the time to
complete a replication cycle or the burst size in
vivo is very challenging, and thus researchers
usually resort to measuring these values in tis-
sue-culture. There are various ways to estimate
these quantities, but a common and simple one
is using ‘one-step’ growth dynamics. The key
principle of this method is to ensure that only a
single replication cycle occurs. This is typically
achieved by infecting the cells with a large num-
ber of virions, such that every cell gets infected,
thus leaving no opportunity for secondary
infections.

Assuming entry of the virus to the cells is
rapid (we estimate 10 min for SARS-CoV-2), the
time it takes to produce progeny can be
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estimated by quantifying the lag between inocu-
lation and the appearance of new intracellular
virions, also known as the ‘eclipse period’. This
eclipse period does not account for the time it
takes to release new virions from the cell. The
time from cell entry until the appearance of the
first extracellular viruses, known as the ‘latent
period’ (not to be confused with the epidemio-
logical latent period; see glossary in Box 1), esti-
mates the duration of the full replication cycle.
The burst size can be estimated by waiting until
virion production saturates, and then dividing
the total virion yield by the number of cells
infected. While both the time to complete a rep-
lication cycle and the burst size may vary signifi-
cantly in an animal host due to factors including
the type of cell infected or the action of the
immune system, these numbers provide us with
an approximate quantitative view of the viral
life-cycle at the cellular level.

Are people usually diagnosed before or
after they are contagious?

Our personal experience with infectious diseases
leaves us with the intuition that we are conta-
gious when we have symptoms. For the seasonal
flu, for example, most transmissions indeed
occur after a person has developed symptoms
(Ip et al., 2017). For SARS-CoV-2, in contrast, it
is common to be contagious before symptoms.
The SARS-CoV-2 incubation period is about 5
days, while peak infectiousness begins two days
before symptoms reveal themselves. As a result,
a large fraction of infections occur pre-symptom-
atically, that is, without the infectious person
realizing they have the disease (Ferretti et al.,
2020; He et al., 2020). With testing capacity
under strain, diagnosis typically occurs =5 days
after symptom onset, or =10 days after infec-
tion. By that time, most people have already
passed peak infectiousness. In order to effec-
tively slow the growth of the pandemic, it is
important to detect infections as early as possi-
ble and quarantine those who test positive. In
the case of SARS-CoV-2 this means detection
before symptoms because there is strong evi-
dence of significant pre-symptomatic transmis-
sion. Finally, the situation is further complicated
by a large fraction of asymptomatic cases, that is
cases in which the infected person never devel-
ops noticeable symptoms. This fraction is more
than half of children and young adults
(Davies et al., 2020). Leading modeling efforts
assume that asymptomatic infections are any-
where between 10-80% as contagious as symp-
tomatic ones (Ferretti et al., 2020;
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Davies et al., 2020). This wide range reflects a
crucial gap in our understanding of SARS-CoV-2
transmission: great uncertainty about the magni-
tude of asymptomatic transmission.

Sources of the numbers in Figure

1

Note that for about 10 out of 45 parameters,
the literature values are from other coronavi-
ruses. We await corresponding measurements
for SARS-CoV-2.

Size and content

Diameter. (Figure 3 in Zhu et al., 2020): "Elec-
tron micrographs of negative-stained 2019-nCoV
particles were generally spherical with some
pleomorphism. Diameter varied from about 60
to 140 nm."

Volume. Using diameter and assuming the
virus is a sphere.

Mass. Using the volume and a density of ~1 g
per mL.

Number of spike trimers. (Neuman et al.,
2011): "Our model predicts ~90 spikes per
particle."

Length of spike trimers. (Zhu et al., 2020):
"Virus particles had quite distinctive spikes,
about 9 to 12 nm, and gave virions the appear-
ance of a solar corona."

Receptor binding affinity (Ky). Walls et al.,
2020 reports Kq of =1 nM for the binding
domain using biolayer interferometry with k,,, of
=15 x 10° M s7" and kogs of =1.6 x 107* 57
(Table 1). Wrapp et al., 2020 reports Kq of =15
nM for the spike (Figure 3) and =35 nM for the
binding domain (Figure 4) using surface plasmon
resonance with ko, of =1.9 x 10° M™" s and
kot of =2.8 x 107 s7" for the spike, and kon of
=14 x 10° M s7" and kogs of =4.7 x 107 57"
for the binding domain. Lan et al., 2020 reports
Kgq of =5 nM for the binding domain (Extended
Data Figure 4) using surface plasmon resonance
with kon of =1.4 x 10° M™" s7' and k.« of
~6.5 x 102 s7'. Shang et al., 2020 reports Ky
of =40 nM for the binding domain (Extended
Data Figure 6) using surface plasmon resonance
with ko, of =1.8 x 10° M7 s and ke of
~7.8 x 102 s7'. The main disagreement
between the studies seems to be on the kqg.

Membrane (M; 222 aa). (Neuman et al.,
2011): "Using the M spacing data for each virus
(Figure 6C), this would give ~1100 M2 molecules
per average SARS-CoV, MHV and FCoV
particle."

Science Forum | SARS-CoV-2 (COVID-19) by the numbers

Envelope (E; 75 aa). (Godet et al., 1992):
"Based on the estimated molar ratio and assum-
ing that coronavirions bear 100 (J Gen Virol 63:
241-245) to 200 spikes, each composed of 3 s
molecules (Virus Research 20:107-120) it can be
inferred that approximately 15-30 copies of
ORF4 protein are incorporated into TGEV virions
(Purdue strain)."

Nucleoprotein (364 aa). (Neuman et al.,
2011): "Estimated ratios of M to N protein in
purified coronaviruses range from about 3M:1N
(Cavanagh, 1983, Escors et al., 2001) to
1M:1N (Hogue and Brian, 1986; Liu and Inglis,
1991), giving 730-2200 N molecules per virion."

Genome
Type. (ViralZone) +ssRNA "Monopartite, linear
ssRNA(+) genome"

Genome length. The initial isolate of SARS-
CoV-2 from Wuhan, China has a 29903 nt = 30
kb ssRNA genome (NCBI MN908947.3), which is
typical of a coronavirus (Smith and Denison,
2012).

(Wu et al., 2020b): "SARS-CoV-2 genome
has 10 open reading frames (Figure 2A)".
(Wu et al., 2020c): "The 2019-nCoV genome
was annotated to possess 14 ORFs encoding 27
proteins". Coronavirus genomes contain several
‘accessory proteins’ that are not essential for
replication and are not always expressed. The
‘nonstructural proteins’ are expressed as a poly-
protein which is proteolytically cleaved into =10
proteins. As transcription start and protease
cleavage sites are not trivial to identify bioinfor-
matically, there is some uncertainty about the
exact number of transcriptional units and pro-
teins expressed by SARS-CoV-2.

Number of proteins. (Wu et al., 2020b): "By
aligning with the amino acid sequence of SARS
PP1ab and analyzing the characteristics of
restriction cleavage sites recognized by 3CLpro
and PLpro, we speculated 14 specific proteolytic
sites of 3CLpro and PLpro in SARS-CoV-2 PP1ab
(Figure 2B). PLpro cleaves three sites at 181-
182, 818-819, and 2763-2764 at the N-terminus
and 3Clpro cuts at the other 11 sites at the

C-terminus, and forming 15 non-structural
proteins."
Evolution rate. (Koyama et al, 2020):

"Mutation rates estimated for SARS, MERS, and
OC43 show a large range, covering a span of
0.27 to 2.38 substitutions x 10-3/site/ year (see
references 10-16)." Recent unpublished evi-
dence also suggests this rate is of the same
order of magnitude in SARS-CoV-2 ().
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Mutation rate. (Sanjuan et al., 2010):
"Murine hepatitis virus ... Therefore, the cor-
rected estimate of the mutation rate is Us/n/e =
1.9x107¢/0.55 = 3.5 x 107."

Genome similarity. For all species except
pangolin, genomes were downloaded from
NCBI and aligned to the SARS-CoV-2 reference
(MN908947) with EMBQOSS Stretcher (EMBL-EBI
server). Reported values are percent nucleotide
sequence identity. Genomes used: bat coronavi-
rus RaTG13 (MN996532.1; 96% id); SARS-CoV-1
(NC_004718.3; 80% id); MERS (NC_019843.3;
55% id); human cold coronavirus strains OC43
(NC_006213.1; 53% id) and 229E (NC_002645.1;
50% id). For pangolin: '"PangolinCoV is 91.02%
and 90.55% identical to SARS-CoV-2 and Bat-
CoV RaTG13, respectively, at the whole genome
level" (Zhang et al., 2020).

Replication timescales

Virion entry into cell (for SARS-CoV-1).
(Schneider et al., 2012): "Previous experiments
had revealed that virus is internalized within 15
min". (Ng et al., 2003): "Within the first 10 min,
some virus particles were internalized into
vacuoles (arrow) that were just below the plasma
membrane surface (Fig. 2, arrows). [...] The
observation at 15 min postinfection (p.i.), did
not differ much from 10 min p.i. (Fig. 4a)".

Eclipse period. (Schneider et al., 2012):
"SARS-CoV replication cycle from adsorption to
release of infectious progeny takes about 7 to 8
hr (data shown)";  Figure 4 of
Harcourt et al., 2020 shows virions are released
after 12-36 hr but because this is multi-step
growth this represents an upper bound for the
replication cycle.

Burst size. (Hirano et al., 1976): "The aver-
age per-cell yield of active virus was estimated
to be about 6-7 x 10? plaque-forming units."
This data is for MHV, so more research is
needed to verify these values for SARS-CoV-2.

not

Host cells

Type. (Shieh et al., 2005): "Immunohistochemi-
cal and in situ hybridization assays demonstrated
evidence of SARS-associated coronavirus (SARS-
CoV) infection in various respiratory epithelial
cells, predominantly type Il pneumocytes, and in
alveolar macrophages in the lung". (Walls et al.,
2020): "SARS-CoV-2 uses ACE2 to enter target
cells". (Rockx et al., 2020): "In SARS-CoV-2-
infected macaques, virus was excreted from
nose and throat in absence of clinical signs, and
detected in type | and Il pneumocytes in foci of
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diffuse alveolar damage and mucous glands of
the nasal cavity [...] In the upper respiratory
tract, there was focal five or locally extensive
SARS-CoV-2 antigen expression in epithelial cells
of mucous glands in the nasal cavity (septum or
concha) of all four macaques, without any associ-
ated histological lesions (fig. 21)."

Type | and Type Il pneumocyte and alveolar
macrophage cell number. Values taken from
table 4 in Crapo et al., 1982, and table 5 in
Stone et al., 1992.

Epithelial cells in mucous gland cell number
and volume. The value for the surface area of
the nasal cavity is taken from ICRP, 1975; the
value for the mucous gland density is taken from
Tos and Mogensen, 1976; Tos and Morgensen,
1977; the value for the mucous gland volume is
taken from Widdicombe, 2019; and the value
for the mucous cell volume is taken from
Ordonez et al., 2001 and Mercer et al., 1994.
We divide the mucous gland volume by the
mucous cell volume to arrive at the total number
of mucous cells in a mucous gland. We multiply
the surface density of mucous glands by the sur-
face area of the nasal cavity to arrive at the total
number of mucous glands, and then multiply the
total number of mucous glands by the number
of mucous cells per mucous gland.

Type ] pneumocyte
(Fehrenbach et al., 1995): "Morphometry
revealed that although inter-individual variation
due to some oedematous swelling was present,

volume.

the cells were in a normal size range as indicated
by an estimated mean volume of 763 + 64 um®.

Alveolar macrophage volume. (Crapo et al.,
1982): "Alveolar macrophages were found to be
the largest cell in the populations studied, hav-
ing a mean volume of 2,491 um®.

Concentration

Nasopharynx, throat, stool, and sputum. We
took the maximal viral load for each patient in
nasopharyngeal swabs, throat swabs, stool or in
sputum (figure 2 in Wélfel et al., 2020; figure 1
in Kim et al., 2020; Pan et al., 2020).

Antibody response - seroconversion

Seroconversion time (time period until a spe-
cific antibody becomes detectable in the
blood). (Zhao et al., 2020): "The seroconversion
sequentially appeared for Ab, IgM and then IgG,
with a median time of 11, 12 and 14 days,
respectively”. (To et al., 2020): "For 16 patients
with serum samples available 14 days or longer
after symptom onset, rates of seropositivity
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were 94% for anti-NP IgG (n = 15), 88% for anti-
NP IgM (n = 14), 100% for anti-RBD IgG
(n = 16), and 94% for anti-RBD IgM (n = 15)".
Maintenance of antibody response to virus.
(Wu et al., 2007): "Among 176 patients who
had had severe acute respiratory syndrome
(SARS), SARS-specific antibodies were main-
tained for an average of 2 years, and significant
reduction of immunoglobulin G-positive per-
centage and titers occurred in the third year".

Virus environmental stability

Half-life on surfaces. (van Doremalen et al.,
2020): We use half-live values reported in Sup-
plementary Table 1. Chin et al., 2020: We use
short-term half-lives reported in the Appendix.
Pastorino et al., 2020: We use the slopes of
data poitns from the first two hours can calculate
the short-term half-life from them. More studies
are urgently needed to clarify the implications of
virion stability on the probability of infection
from aerosols or surfaces.

RNA stability on surfaces (Moriarty et al.,
2020): "SARS-CoV-2 RNA was identified on a
variety of surfaces in cabins of both symptomatic
and asymptomatic infected passengers up to 17
days after cabins were vacated on the Diamond
Princess but before disinfection procedures had
been conducted (Takuya Yamagishi, National
Institute of Infectious Diseases, personal commu-
nication, 2020).”

‘Characteristic’ infection progression in a
single patient

Basic reproductive number, Ry (Li et al.,
2020a): "Our median estimate of the effective
reproductive number, R, — equivalent to the
basic reproductive number (Rp) at the beginning
of the epidemic — is 2.38 (95% Cl: 2.04-2.77)".
(Park et al., 2020a): "Our estimated R from the
pooled distribution has a median of 2.9 (95% ClI:
2.1-4.5)".

Latent period (from infection to being able
to transmit). (Li et al., 2020a): "In addition, the
median estimates for the latent and infectious
periods are approximately 3.69 and 3.48 days,
respectively”; see also table 1 in this paper.
(He et al., 2020): We use the time it takes infec-
tiousness to reach half its peak, which happens
two days before symptom onset based on
Figure 1C. As symptoms arise after five days
(see 'Incubation period’ below), this implies a
three-day latent period.

Incubation period (from infection to symp-
toms). (Lauer et al., 2020): "The median
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incubation period was estimated to be 5.1 days
(95% ClI, 4.5 to 5.8 days), and 97.5% of those
who develop symptoms will do so within 11.5
days (Cl, 8.2 to 15.6 days) of infection. These
estimates imply that, under conservative
assumptions, 101 out of every 10 000 cases
(99th percentile, 482) will develop symptoms
after 14 days of active monitoring or quaran-
tine". (Li et al., 2020b): "The mean incubation
period was 5.2 days (95% confidence interval
[CI], 4.1 to 7.0), with the 95th percentile of the
distribution at 12.5 days".

Infectious period. (Li et al., 2020a): "the
median estimates for the latent and infectious
periods are approximately 3.69 and 3.48 days,
respectively”; see also table 1 in this paper.
(He et al., 2020): We quantify the interval over
which infectiousness is at least half its maximal
value (the interval of half-maximal infectiousness)
from the infectiousness profile in Figure 1C.

Disease duration. (WHO, 2020): "Using
available preliminary data, the median time from
onset to clinical recovery for mild cases is
approximately 2 weeks and is 3-6 weeks for
patients with severe or critical disease".

Time until diagnosis. (Xu et al., 2020): We
used data on cases with known symptom onset
and case confirmation dates and calculated the
median time delay between these two dates.

Case fatality rate. (ECDC, 2020) - We use
data from all countries with more than 50 death
cases and calculate the uncorrected raw Case
Fatality Rate for each country. The range repre-
sents the lowest and highest rates observed
using ECDC data up to 14 April 2020.

Infection fatality rate. We rely on three inde-
pendent approaches that estimate the IFR. The
first relies on data about people who were
extensively tested as a result of being repatri-
ated. (Verity et al., 2020): "We obtain an over-
all IFR estimate for China of 0.66%
(0.39%,1.33%)". (Ferguson et al., 2020): "The
IFR estimates from Verity et al. have been
adjusted to account for a non-uniform attack
rate giving an overall IFR of 0.9% (95% credible
interval 0.4-1.4%)". (Nishiura et al., 2020): "The
infection fatality risk (IFR) - the actual risk of
death among all infected individuals - is there-
fore 0.3% to 0.6%".

The second approach relies on data gathered
from the Diamond Princess ship, where all pas-
sengers were tested. (Russell et al., 2020): "We
estimated that the all-age cIFR on the Diamond
Princess was 1.3% (95% confidence interval (Cl):
0.38-3.6)".
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The third approach relies on epidemiological
modeling of case time-series from China.
(Mizumoto et al., 2020): "We also found that
most recent crude infection fatality ratio (IFR)
and time-delay adjusted IFR is estimated to be
0.04% (95% Crl: 0.03-0.06%) and 0.12% (95%
Crl: 0.08-0.17%)". Combining these three meth-
ods, and taking into account the reliability of
each report, we estimate a crude range of
~0.3-1.3% for the IFR.
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