An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis

  1. Angelika Jochim
  2. Lea Adolf
  3. Darya Belikova
  4. Nadine Anna Schilling
  5. Inda Setyawati
  6. Denny Chin
  7. Severien Meyers
  8. Peter Verhamme
  9. David E Heinrichs
  10. Dirk J Slotboom
  11. Simon Heilbronner  Is a corresponding author
  1. University of Tübingen, Germany
  2. University of Groningen, Netherlands
  3. University of Western Ontario, Canada
  4. KU Leuven, Belgium

Abstract

Energy-coupling factor type (ECF-transporters) represent trace nutrient acquisition systems. Substrate binding components of ECF-transporters are membrane proteins with extraordinary affinity, allowing them to scavenge trace amounts of ligand. A number of molecules have been described as substrates of ECF-transporters, but an involvement in iron-acquisition is unknown. Host-induced iron limitation during infection represents an effective mechanism to limit bacterial proliferation. We identified the iron-regulated ECF-transporter Lha in the opportunistic bacterial pathogen Staphylococcus lugdunensis and show that the transporter is specific for heme. The recombinant substrate-specific subunit LhaS accepted heme from diverse host-derived hemoproteins. Using isogenic mutants and recombinant expression of Lha, we demonstrate that its function is independent of the canonical heme acquisition system Isd and allows proliferation on human cells as sources of nutrient iron. Our findings reveal a unique strategy of nutritional heme acquisition and provide the first example of an ECF-transporter involved in overcoming host-induced nutritional limitation.

Data availability

The datasets gained during the current study are available at Dryad Digital Repository under the doi:10.5061/dryad.fqz612jqc

The following data sets were generated

Article and author information

Author details

  1. Angelika Jochim

    Department of Infection Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lea Adolf

    Department of Infection Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Darya Belikova

    Department of Infection Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Nadine Anna Schilling

    Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Inda Setyawati

    Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Denny Chin

    Department of Microbiology and Immunology, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Severien Meyers

    Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3481-4793
  8. Peter Verhamme

    Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. David E Heinrichs

    Department of Microbiology and Immunology, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7217-2456
  10. Dirk J Slotboom

    Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5804-9689
  11. Simon Heilbronner

    Department of Infection Biology, University of Tübingen, Tübingen, Germany
    For correspondence
    simon.heilbronner@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6774-2311

Funding

Deutsche Forschungsgemeinschaft (HE8381/3-1)

  • Simon Heilbronner

Deutsche Forschungsgemeinschaft (EXC2124)

  • Simon Heilbronner

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (TOP grant 714.018.003)

  • Dirk J Slotboom

Canadian Institutes of Health Research (PJT-153308)

  • David E Heinrichs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sophie Helaine, Imperial College London, United Kingdom

Ethics

Animal experimentation: Animal experiments were performed in strict accordance with the European Health Law of the Federation of Laboratory Animal Science Associations. The protocol was approved by the Regierungspräsidium Tübingen (IMIT1/17)

Human subjects: Human Erythrocytes were isolated from venous blood of healthy volunteers in accordance with protocols approved by the Institutional Review Board for Human Subjects at the University of Tübingen. Informed written consent was obtained from all volunteers.

Version history

  1. Received: March 27, 2020
  2. Accepted: June 9, 2020
  3. Accepted Manuscript published: June 9, 2020 (version 1)
  4. Accepted Manuscript updated: June 10, 2020 (version 2)
  5. Version of Record published: June 17, 2020 (version 3)

Copyright

© 2020, Jochim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,885
    Page views
  • 225
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angelika Jochim
  2. Lea Adolf
  3. Darya Belikova
  4. Nadine Anna Schilling
  5. Inda Setyawati
  6. Denny Chin
  7. Severien Meyers
  8. Peter Verhamme
  9. David E Heinrichs
  10. Dirk J Slotboom
  11. Simon Heilbronner
(2020)
An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis
eLife 9:e57322.
https://doi.org/10.7554/eLife.57322

Share this article

https://doi.org/10.7554/eLife.57322

Further reading

    1. Microbiology and Infectious Disease
    Chiara Andolina, Wouter Graumans ... Teun Bousema
    Research Article

    It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34–501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171–2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Veronica Teresa Ober, George Boniface Githure ... Michael Boshart
    Research Article

    Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.