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Abstract Genome-wide association studies identified the BIN1 locus as a leading modulator of

genetic risk in Alzheimer’s disease (AD). One limitation in understanding BIN1’s contribution to AD

is its unknown function in the brain. AD-associated BIN1 variants are generally noncoding and likely

change expression. Here, we determined the effects of increasing expression of the major neuronal

isoform of human BIN1 in cultured rat hippocampal neurons. Higher BIN1 induced network

hyperexcitability on multielectrode arrays, increased frequency of synaptic transmission, and

elevated calcium transients, indicating that increasing BIN1 drives greater neuronal activity. In

exploring the mechanism of these effects on neuronal physiology, we found that BIN1 interacted

with L-type voltage-gated calcium channels (LVGCCs) and that BIN1–LVGCC interactions were

modulated by Tau in rat hippocampal neurons and mouse brain. Finally, Tau reduction prevented

BIN1-induced network hyperexcitability. These data shed light on BIN1’s neuronal function and

suggest that it may contribute to Tau-dependent hyperexcitability in AD.

Introduction
Genetic discoveries have provided critical insights into potential mechanisms of Alzheimer’s disease

(AD), the most common neurodegenerative disease. Mutations in APP, PSEN1, or PSEN2 cause

early-onset, autosomal dominantly inherited AD, but are quite rare. Several more common genetic

variants that increase AD risk to differing degrees have been identified. Among these, variants near

BIN1 have particularly high population attributable risk, because the risk allele is highly prevalent

(~40% allele frequency for the index SNP, rs6733839) and has a relatively large effect size (odds

ratio: 1.20; 95% confidence interval: 1.17–1.23) (Kunkle et al., 2019).

BIN1 was first linked to AD in early genome-wide associated studies (GWAS) (Harold et al.,

2009; Seshadri et al., 2010) and remains second only to APOE in genome-wide significance in the

recent meta-analysis of 94,437 individuals by the International Genomics of Alzheimer’s Disease Proj-

ect (Kunkle et al., 2019). This association has been replicated in datasets with subjects from diverse

genetic backgrounds (Carrasquillo et al., 2011; Hollingworth et al., 2011; Hu et al., 2011;

Lambert et al., 2011; Lee et al., 2011; Logue, 2011; Naj et al., 2011; Wijsman et al., 2011;

Kamboh et al., 2012; Chapuis et al., 2013; Lambert et al., 2013; Liu et al., 2013; Miyashita et al.,

2013; Reitz et al., 2013; Li et al., 2015; Dong et al., 2016; Rezazadeh et al., 2016; Wang et al.,

2016). Further, unbiased epigenetic analyses have provided independent evidence linking BIN1 to
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AD pathogenesis in several epigenome-wide association studies examining DNA methylation pat-

terns in brain tissue from AD patients, in which BIN1 again emerged as a top hit (De Jager et al.,

2014; Chibnik et al., 2015; Yu et al., 2015). This association was also observed in tissue from pre-

clinical AD patients, indicating that changes in BIN1 methylation occur early in disease (De Jager

et al., 2014; Chibnik et al., 2015). Also, associations between BIN1 methylation and AD are inde-

pendent of genetic variants identified in GWAS, providing an orthogonal line of evidence for BIN1’s

involvement in AD. Importantly, BIN1 variants have been linked to earlier age of onset (Naj et al.,

2014). In addition to GWAS reports examining polymorphisms associated with AD diagnosis by clini-

cal criteria, other studies have examined genetic risk factors for AD neuropathology. BIN1 was signif-

icantly associated with both amyloid plaque and neurofibrillary tangle pathologies, strengthening

the association with AD (Beecham et al., 2014). While these unbiased screens have convincingly

implicated BIN1 in AD pathogenesis, the mechanisms underlying the association are not yet known,

and many important questions about how BIN1 contributes to AD remain.

One of the main limitations is an incomplete understanding of BIN1’s normal function in the brain.

Its structure suggests that a key role may involve protein trafficking at the membrane, since all BIN1

isoforms contain an N-terminal BAR (BIN1/Amphiphysin/RVS167) domain that mediates membrane

binding and curvature, plus a C-terminal SH3 domain that mediates protein–protein interactions,

including with Tau (Chapuis et al., 2013; Sottejeau et al., 2015). The larger, neuron-specific iso-

forms also contain a clathrin-AP2 binding (CLAP) domain likely involved in endocytosis (De Rossi

et al., 2016).

The BIN1 variants associated with AD do not alter the coding sequence of BIN1 but are rather

concentrated in a presumed regulatory region upstream of the promoter. Although BIN1 is ubiqui-

tously expressed throughout the body, levels are highest in the brain and muscle (Butler et al.,

1997), and its most critical role is in the heart, as homozygous deletion of murine Bin1 causes early

lethality due to severe ventricular cardiomyopathy (Muller et al., 2003). Canonically, BIN1 plays a

role in protein trafficking and endocytosis, specifically trafficking L-type voltage gated calcium chan-

nels (LVGCCs) in cardiac myocytes to the membrane to strengthen calcium signaling (Hong et al.,

2010). However, the function BIN1 plays in neurons remains much less clear.

In this study, we addressed BIN1’s role in neurons by expressing the predominant neuronal BIN1

isoform (isoform 1) in primary hippocampal neuron cultures. Our studies revealed a role for BIN1 in

regulating neuronal activity and a potential molecular mechanism involving its interactions with cal-

cium channel subunits.

Results

Higher BIN1 induces network hyperexcitability
To begin studying the effects of altered BIN1 levels in neurons, we first used AAV to express the

predominant neuronal isoform of human BIN in primary rat hippocampal neuronal cultures. We veri-

fied expression of BIN1 using an mKate2 fluorophore fused to the C-terminus. A construct encoding

mKate2 alone was used as a control. We determined that BIN1 expression increased ~8–9-fold by

immunocytochemistry and remained stable up to 3.5 weeks post transduction (Figure 1A–C). Higher

BIN1 did not change neuronal morphology (Figure 1B), the total number of neurons per well

(Figure 1D–E), nor the resting membrane potential (RMP) or input resistance (Rin) of cultured neu-

rons (Table 1), indicating no significant toxic or trophic effect of overexpressing BIN1 under these

conditions.

We then recorded action potentials and burst firing in these neurons on multielectrode arrays

(MEAs) after 10 days (Figure 1F–G). Local field potential (LFP) traces representing neuronal action

potential and burst firing were recorded for 20 min then analyzed (Figure 1H–I). We found that

higher BIN1 levels were associated with increased frequency of action potentials (2.3-fold,

Figure 1J) and action potential bursts (2.1-fold, Figure 1K). There was no change in the total num-

ber of active neurons on MEAs (Figure 1L).
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Figure 1. BIN1 increases action potential and burst frequency in primary hippocampal neurons cultured on

microelectrode arrays (MEAs). (A) ICC experimental timeline: neurons were plated on day in vitro (DIV) 0, virally

transduced on DIV 2, and immunostained at DIV 15, DIV 22, or DIV 27. (B) Representative images of primary

hippocampal cultures: untransduced (left), AAV-mKate2 (center), or AAV-BIN1-mKate2 (right), showing Tau and

BIN1 immunostaining at DIV 15 (top), DIV 22 (middle), or DIV 27 (bottom). Scale bar = 20 mm. (C) AAV-BIN1-

mKate2 increased BIN1 levels ~ 8–9-fold in BIN1 group compared to BIN1 levels in untransduced or mKate2

groups (n = 2–6 fields of view per coverslip, 60x magnification, two-way ANOVA, BIN-DIV interaction p=0.1123,

main effect of AAV-BIN1-mKate2 ****p<0.0001, main effect of DIV p=0.6373, Tukey’s multiple comparisons test:

DIV 15:UnTD vs. DIV 15:AAV-BIN1-mKate2, ****p<0.0001, DIV 22:UnTD vs. DIV 22:AAV-BIN1-mKate2,

****p<0.0001, DIV 27:UnTD vs. DIV 27:AAV-BIN1-mKate2, ****p<0.0001. (D) Representative images of primary

hippocampal cultures at DIV 12: untransduced (left), AAV-mKate2 (center), or AAV-BIN1-mKate2 (right), showing

NeuN immunostaining (top), mKate2 fluorescence (middle), or merge of both (bottom). Scale bar = 25 mm. (E) The

total number of neurons per well did not change between untransduced, mKate2, or BIN1 groups (n = 6–7

coverslips, 10 � 10 fields of view per coverslip, 20x magnification, from two different primary neuron harvests, one-

way ANOVA, p=0.5157). (F) MEA experimental timeline: neurons were plated on day in vitro (DIV) 0, virally

Figure 1 continued on next page
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Higher BIN1 increases frequency of spontaneous excitatory and
inhibitory synaptic transmission
Since higher BIN1 levels increased action potential and burst frequencies in the MEA recordings, we

hypothesized that this would be associated with an increased frequency of spontaneous excitatory

postsynaptic currents (sEPSCs). To test this, we used whole-cell voltage-clamp recordings from

BIN1-transduced neurons at DIV 19–21 (Figure 2A), pharmacologically isolating sEPSCs using picro-

toxin to block inhibitory GABAAR currents. (Figure 2B). Consistent with the increased action poten-

tial frequency observed in MEA recordings (Figure 1E), higher BIN1 levels were associated with

dramatically increased sEPSC frequency (interevent interval decreased >50%) (Figure 2C). sEPSC

amplitudes differed by <10% (Figure 2D).

To investigate if this effect of higher BIN1 levels was selective for excitatory transmission, we next

examined whether higher BIN1 expression had similar effects on spontaneous inhibitory postsynaptic

currents (sIPSCs). We determined the proportion of GABAergic interneurons in our primary hippo-

campal cultures and found that 10% of the neurons were GAD67 positive (Figure 2E), consistent

with prior work (Benson et al., 1994). To determine the effect of higher BIN1 levels on inhibitory

synaptic transmission from these neurons, we recorded pharmacologically isolated GABAAR-medi-

ated sIPSCs using DNQX, APV, and nifedipine to block AMPARs, NMDARs, and L-type voltage-

gated calcium channels (LVGCCs), respectively (Figure 2F). Similar to the effect on sEPSC frequency,

higher BIN1 increased sIPSC frequency (decrease in interevent interval, Figure 2G). There was a

coincident decrease in sIPSC amplitude (Figure 2H).

Overall, these findings suggest that higher BIN1 levels increase the frequency of both sEPSCs

and sIPSCs in primary hippocampal cultures, agreeing with the increased action potential firing

observed using MEAs (Figure 1E–F).

Higher BIN1 in mature neurons increases calcium influx
Using AAVs requires transduction soon after plating (DIV 2) because of the time required for trans-

gene expression, so some effects could be due to increasing BIN1 levels during early neuronal devel-

opment. To dissociate the effect of higher BIN1 on network hyperexcitability from neuronal

development, we transiently transfected primary hippocampal cultures at DIV 14, when neurons are

more fully developed (Figure 3A). We co-transfected BIN1 constructs with the genetically encoded

calcium indicator, GCaMP6f, which allows for single neuron calcium imaging in primary hippocampal

cultures. We used two BIN1 constructs, both based on human isoform one tagged with the mKate2

Figure 1 continued

transduced on DIV 2, and recorded on DIV 12. (G) Primary neuronal hippocampal cultures grown on an MEA plate.

Scale bar = 50 mm. (H) Representative local field potential (LFP) traces. (I) Representative raster plots of firing

activity from five different neurons per group. (J) BIN1 increased action potential frequency (n = 27–36 neurons per

group from three different primary neuron harvests, normalized to the controls from each harvest, median

frequency in controls = 388 mHz; unpaired Mann-Whitney U test; p=0.0233). (K) BIN1 increased burst firing

frequency (n = 27–36 neurons per group from three different primary neuron harvests, normalized to the controls

from each harvest, median frequency in controls = 11.7 mHz; unpaired Mann-Whitney U test; p=0.0020). (L) The

total number of active neurons per well did not differ between mKate2 and BIN1 expressing groups (n = 9 MEA

plates for each group from three different primary neuron harvests, unpaired Student’s t test; p=0.346). All data

are expressed as mean ± SEM, *p<0.05, **p<0.01, and ****p<0.0001. All data are expressed as mean ± SEM.

Table 1. Resting membrane potential (RMP) and input resistance (Rin) in patched hippocampal

neurons did not differ across untransduced, AAV-mKate2, and AAV-BIN1-mKate2 groups.

RMP, mV Rin, MW N, Cells

Untransduced –60.43 ± 5.36 843.04 ± 55.11 4

AAV-mKate2 –59.90 ± 3.70 834.83 ± 41.09 6

AAV-BIN1-mKate2 –62.40 ± 2.24 790.18 ± 15.74 7

One-way ANOVA, p 0.85 0.36
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Figure 2. BIN1 increases both excitatory and inhibitory synaptic transmission. (A) Synaptic transmission recordings experimental timeline: neurons were

plated on DIV 0, virally transduced on DIV 2, electrophysiologically recorded on DIV 19–21. (B) Representative traces of sEPSCs recorded from neurons

transduced with mKate2 or BIN1. (C) BIN1 decreased mean sEPSC interevent interval (Kolmogorov-Smirnov test on cumulative distribution,

****p<0.0001, KS D score: 0.1657; unpaired two-tailed Student’s t-test on mean IEI, ****p<0.0001). (D) BIN1 slightly decreased mean sEPSC amplitude

unpaired (Kolmogorov-Smirnov test on cumulative distribution, ****p<0.0001, KS D score: 0.1803; unpaired two-tailed Student’s t-test on mean

amplitude, ***p=0.0004) (n = 12–21 neurons per group from three different primary neuron harvests). (E) Representative images and quantification of

NeuN and GAD67+ neurons in primary hippocampal cultures at DIV 12 (n = 255 GAD67+ neurons, n = 2342 NeuN+ neurons, from 10 randomly taken

images per coverslip, 10 coverslips from two different primary neuron harvests.) Scale bar = 100 mm. (F) Representative traces of sIPSCs recorded from

Figure 2 continued on next page
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fluorophore. In addition to the full-length BIN1 construct used in Figures 1–2, we also used a con-

struct engineered to remove the BAR domain (DBAR), which is predicted to abolish BIN1 membrane

localization, and thus likely its activity. As before, mKate2 alone was used as a control construct.

Interestingly, the pattern of mKate2 distribution within the neurons was strikingly different across

groups, as mKate2 and BIN1-DBAR exhibited diffuse localization throughout the soma, neurites, and

nucleus, while wild-type BIN1 had a punctate distribution throughout the cytosol but was excluded

from the nucleus (Figure 3B). These observations agree with BAR-domain dependent membrane

localization of BIN1 found in other cell types (Hong et al., 2010; Picas et al., 2014).

We monitored basal calcium activity of individual transfected neurons by imaging GCaMP fluores-

cence using laser scanning microscopy. We measured the change in somatic GCaMP fluorescence

intensity relative to the quiescent period between transients (defined as F0) and classified neurons as

either active (�1 calcium transient) or inactive (no calcium transients) (Figure 3C).

Figure 2 continued

neurons transduced with mKate2 or BIN1. (G) BIN1 decreased mean sIPSC interevent interval (Kolmogorov-Smirnov test on cumulative distribution,

****p<0.0001, KS D score: 0.06862; unpaired two-tailed Student’s t-test on mean IEI, **p=0.0035) (H) BIN1 decreased mean sIPSC amplitude

(Kolmogorov-Smirnov test on cumulative distribution, ****p<0.0001, KS D score: 0.1297; unpaired two-tailed Student’s t-test on mean amplitude,

****p<0.0001) (n = 11–16 neurons per group from three different primary neuron harvests). All data are expressed as mean ± SEM.
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Figure 3. Higher BIN1 levels in mature neurons increase calcium influx in primary hippocampal neuronal cultures. (A) Calcium imaging experimental

timeline: neurons were plated on DIV 0, co-transfected on DIV 14 with GCaMP6f calcium indicator and either BIN1-mKate2, BIN1-DBAR-mKate2, or

mKate2 control construct, and recorded on DIV 21. n = 14–20 neurons per condition. (B) mKate2 fluorescence in primary transfected primary

hippocampal neurons. BIN1-mKate2 fluorescence was punctate in transfected neurons. mKate2 and BIN-BAR-mKate2 fluorescence was diffuse and

filled the neuron. (C) GCaMP fluorescence intensity, F, relative to the quiescent period between transients, F0. Neurons were classified as either active

(with a range of activity levels indicated by the top and middle traces) or inactive (no calcium transients during the 8 min recording, bottom trace). (D)

BIN1, but not BIN1-DBAR, increased the proportion of active neurons (Binomial test, **p=0.0071). (E) BIN1, but not BIN1-DBAR, increased neuronal

calcium influx measured as area under the curve (AUC; one-way ANOVA, p=0.0134; Dunnett’s posthoc, *p=0.0122). (F) BIN1, but not BIN1-DBAR,

increased the number of calcium transients (one-way ANOVA, p=0.0144; Dunnett’s posthoc, mKate2 vs BIN1-mKate2 adjusted *p=0.0437). All data are

expressed as mean ± SEM.
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About a third of neurons were inactive under control conditions (Figure 3D), consistent with prior

studies (Kuijlaars et al., 2016; Lerdkrai et al., 2018). However, neurons expressing the full-length

human BIN1 construct were almost never inactive (Figure 3D). As expected, the BIN1-DBAR con-

struct was similar to controls (Figure 3D), indicating the importance of BIN1 membrane localization

for the effect. Increasing BIN1 levels roughly doubled calcium influx as measured by both area under

the curve (Figure 3E) and the number of calcium transients (Figure 3F).

BIN1 interacts with LVGCCs in neurons
We were interested to find that the ability of BIN1 to increase neuronal activity was dependent on

the presence of the BAR domain, which is critical for its membrane localization. One of BIN1’s known

functions outside of the brain is localizing LVGCCs to the membrane of cardiomyocyte T-tubules

(Hong et al., 2010; Hong et al., 2014). Therefore, we asked if BIN1 interacts with LVGCCs in neu-

rons and if increased interaction between BIN1 and LVGCCs could be a potential mechanism by

which BIN1 increases neuronal activity.

To begin addressing this question, we first examined BIN1 interactions with LVGCC beta-1 subu-

nits (LVGCC-b1), which reside on the inner face of the membrane and target LVGCCs to the mem-

brane (Buraei and Yang, 2010). To determine whether BIN1 and LVGCC-b1 interact directly, we

used proximity ligation assay (PLA), which allows quantification and visualization of protein-protein

interactions in situ, producing a fluorescent punctum whenever the two antibody epitopes are within

40 nm (i.e., directly interacting or nearby in a complex). We detected endogenous BIN1–LVGCC-b1

interaction in neuronal soma and neurites of untransduced neurons (Figure 4A). If a BIN1-mediated

effect on LVGCC’s underlies the observed effects on neuronal activity, then AAV-BIN1 constructs

should increase the interaction (Figure 4B). Transduction with BIN1-mKate2 substantially increased

BIN1–LVGCC-b1 interaction, while transduction with the mKate2 control vector did not change

endogenous interaction levels (Figure 4C,D).

BIN1-LVGCC interaction is Tau-dependent
Multiple studies have demonstrated that BIN1 directly interacts with Tau, both in vitro and in vivo

(Chapuis et al., 2013; Lasorsa et al., 2018; Sartori et al., 2019). This interaction between BIN1 and

Tau is mediated by the SH3 domain of BIN1 and PxxP motifs in Tau’s central proline-rich region.

Interestingly, LVGCC-b1 also harbors an SH3 domain that could also interact with Tau. Thus, we

hypothesized that the BIN1 interaction with LVGCC-b1 might be at least in part scaffolded by Tau

(Figure 5A).

We first used a live-cell bioluminescence resonance energy transfer (BRET) assay (Cochran et al.,

2014) to determine if Tau interacts with the SH3 domains of both BIN1 and LVGCC-b1. We trans-

fected CHO cells with Tau-mKate2 (acceptor) and either the BIN1 SH3 domain or LVGCC-b1 SH3

domain tagged with click beetle green (donor) (Figure 5B). Both Tau–BIN1 and Tau–LVGCC-b1

demonstrated BRET, indicating that Tau interacts with each of these SH3 domains (Figure 5C).

We then tested the hypothesis that Tau affects the BIN1–LVGCCb1 interaction, using the BIN1–

LVGCC-b1 PLA assay with and without pretreatment with Tau antisense oligonucleotide (ASO)

(Figure 5D). We recently demonstrated that this ASO reduces Tau protein by about 50% under

these conditions (Rush et al., 2020). Tau reduction decreased BIN1–LVGCC-b1 interaction in pri-

mary hippocampal neurons, compared to neurons treated with a scrambled control ASO

(Figure 5E), indicating that in cultured neurons the BIN1–LVGCC-b1 interaction is partially Tau-

dependent.

Next, we determined if the BIN1–LVGCC-b1 interaction is also Tau-dependent in vivo. Using cor-

tical brain lysates from wild-type and Tau knockout (Tau KO) mice, we immunoprecipitated LVGCC-b

1 and blotted for BIN1. BIN1 co-immunoprecipitated with LVGCC-b1 from these brain lysates, and

the BIN1–LVGCC-b1 complex was reduced in Tau KO brains, without any difference in LVGCC-b1

immunoprecipitation (Figure 5F). Taken together, these data indicate that the BIN1–LVGCC interac-

tion is partially Tau-dependent both in vitro and in vivo.
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Tau reduction prevents network hyperexcitability induced by higher
BIN1
Tau reduction is protective in many models of AD and it reduces network hyperexcitability in many

disease models, including AD and epilepsy models (Chin et al., 2007; Roberson et al., 2007;

Holth et al., 2011; Roberson et al., 2011; DeVos et al., 2013; Gheyara et al., 2014; Liu et al.,

2017). Thus, since Tau reduction decreases BIN1–LVGCC-b1 interaction in primary hippocampal

neurons and brain homogenates, we asked whether Tau reduction attenuates network hyperexcit-

ability induced by increased BIN1.
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Figure 5. Tau-dependent BIN1–LVGCC interaction. (A) Model of Tau-dependent BIN1–LVGCC interaction. BIN1’s

BAR domain localizes BIN1 to the plasma membrane, and PxxP motifs in Tau’s central proline-rich domain interact

with the SH3 domains of BIN1 and LVGCC- b1. (B) Tau interacts with both BIN1 and LVGCC-b1 SH3 domains

detected by bioluminescence resonance energy transfer (BRET) (n = 28–164 wells, one-way ANOVA,

Figure 5 continued on next page
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To do this, we utilized a 48-well MEA system to permit recordings from many neurons with in-

plate controls for each experiment. We grew neurons on the MEA, transduced them with AAV-BIN1

or AAV-mKate2 control, applied Tau ASO or a scrambled ASO control, then recorded neuronal

activity (Figure 6A). As in our initial experiments, these manipulations did not affect the number of

active neurons (Figure 6B), and higher BIN1 levels increased neuronal firing in this system as well

(Figure 6C–D). Tau reduction completely blocked the BIN1-induced increases in action potential fre-

quency (Figure 6E–F) and bursting (Figure 6G–H). These results demonstrate that BIN1-induced

network hyperexcitability is Tau-dependent and add to the body of work demonstrating beneficial

effects of Tau reduction on limiting network hyperexcitability and AD-related dysfunction.

Discussion
Genetic data indicate that BIN1 can play an important role in AD pathogenesis, but a major limita-

tion is the relatively poor understanding of BIN1’s function in the central nervous system. We found

that expressing the predominant human BIN1 isoform in primary hippocampal cultures led to a Tau-

dependent increase in neuronal activity leading to network hyperexcitability. Higher BIN1 levels

increased the frequency of both spikes and bursts recorded with multielectrode arrays (Figure 1).

Using patch-clamp recordings of neurons overexpressing BIN1, we observed increased frequency of

both excitatory and inhibitory synaptic transmission (Figure 2). Similarly, elevating BIN1 levels also

increased calcium spikes in neurons co-transfected with the calcium indicator GCaMP6f (Figure 3).

To understand the potential mechanism of increased calcium influx, we explored potential interac-

tions with LVGCCs, which contribute to BIN1 effects on cardiac excitability. BIN1 interacted with

LVGCCs in neurons in a Tau-dependent manner, assessed by both proximity ligation assay in cul-

tured neurons and co-immunoprecipitation from brain (Figures 4–5). Finally, using a high-content

multielectrode array system, we showed that Tau reduction prevented network hyperexcitability

induced by BIN1 (Figure 6). Together, these data show Tau-dependent regulation of neuronal activ-

ity by the Alzheimer’s disease risk gene BIN1 and generate new insights about the mechanistic role

BIN1 may play in AD.

Increasing evidence supports the idea that changes in neuronal excitability may contribute to AD

pathogenesis. Functional imaging studies reveal hyperactivation of many brain regions in AD

patients (Dickerson et al., 2005; Hämäläinen et al., 2007). This is an early event in AD pathogene-

sis, seen in asymptomatic individuals at genetic risk for AD (Bookheimer et al., 2000; Reiman et al.,

2012). In addition, childhood epilepsy can drive subsequent amyloid accumulation (Joutsa et al.,

2017). Furthermore, seizures are more frequent in AD patients than in age-matched controls

(Amatniek et al., 2006; Palop and Mucke, 2009; Scarmeas et al., 2009), and in the early stages of

disease, even patients without overt seizures often have epileptiform activity on neurophysiological

recordings (Vossel et al., 2013; Vossel et al., 2016). Even more importantly, late-onset unprovoked

seizures in older veterans are associated with a 2-fold risk of developing dementia, likely a first sign

of neurodegenerative disease (Keret et al., 2020). Hyperexcitability is also seen in mouse models of

AD, many of which have seizures (often nonconvulsive) and epileptiform spikes (Palop et al., 2007;

Minkeviciene et al., 2009), excitation-inhibition imbalance in synaptic recordings (Roberson et al.,

2011), and increased intrinsic neuronal excitability (Brown et al., 2011).

Figure 5 continued

****p<0.0001). (C) Experimental timeline of BIN1–LVGCC-b1 PLA: neurons were plated on DIV 0, transduced with

AAV-BIN1-mKate2 or AAV-mKate2 on DIV 2, treated with Tau or scrambled ASO on DIV 7, and stained on DIV 14.

(D) AAV-BIN1-mKate2 increased BIN1-LVGCC-b1 interaction, while Tau reduction with Tau ASO decreased BIN1–

LVGCC-b1 interactions (n = 4–6 coverslips per group representing an average of 4–5 fields of view (FOV) per

coverslip from three different neuronal harvests; Two-way ANOVA, main effect of Tau ASO **p=0.0018, main

effect of AAV-BIN1-mKate2 ****p<0.0001). (E) We immunoprecipitated LVGCC-b1 followed by western blotting for

LVGCC-b1, Tau, and BIN1 from cortical homogenates of wild-type and Tau KO mice. The amount of LVGCC-b1

immunoprecipitated did not differ between wild-type and Tau KO brains (n = 5–6 mice, 3.56 ± 0.04 months old,

unpaired Student’s t test; p=0.5105). However, the amount of BIN1 co-immunoprecipitated with LVGCC-b1 was

decreased in Tau KO brains compared to wild-type litter mate controls (n = 5–6 mice, unpaired Student’s t test;

*p=0.0157). All data are expressed as mean ± SEM.
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Figure 6. Tau reduction prevents network hyperexcitability induced by BIN1. (A) MEA experimental timeline: neurons were plated on DIV 0, virally

transduced on DIV 2, treated with Tau or scrambled ASO on DIV 5, and electrophysiologically recorded on DIV 12. (B) The number of active neurons

was not different between groups (n = 6–8 coverslips per group from three different neuronal harvests; two-way ANOVA, main effect of Tau ASO

p=0.9140, main effect of AAV-BIN1-mKate2 p=0.9026, interaction p=0.1101). (C) Representative LFP traces of MEA recordings. (D) Representative raster

Figure 6 continued on next page
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Existing data are consistent with a potential role for BIN1 in controlling neuronal excitability. As a

membrane scaffolding protein, BIN1 promotes T-tubule formation in skeletal muscles

(Tjondrokoesoemo et al., 2011). In cardiomyocytes, Bin1 traffics LVGCCs to T-tubules, allowing for

proper T-tubule formation and excitation-contraction coupling (Hong et al., 2010; Hong et al.,

2014). Genetic loss of Bin1 in cardiomyocytes decreases surface localization of LVGCCs to T-tubules

and decreases LVGCC calcium transients (Hong et al., 2010). In addition, acute knockdown of Bin1

in primary cortical neurons reduced calcium spikes in response to NMDA (McAvoy et al., 2019).

Similarly, a chronic genetic deletion of Bin1 in mice decreased mEPSCs frequency, suggesting an

effect of Bin1 on synaptic transmission (De Rossi et al., 2020). Complementary to these studies on

effects of decreased Bin1 expression in mice, we found that increased human BIN1 expression

increases synaptic transmission, neuronal activity, and calcium transients, and that BIN1 interacts

with LVGCCs in neurons. Moreover, we found that higher BIN1 increases not only excitatory, but

also inhibitory synaptic transmission. Human genetics also support a link between BIN1 and network

hyperexcitability, as the risk allele of the rs744373 variant upstream of BIN1, which is linked to AD, is

also associated with impaired memory in temporal lobe epilepsy patients (Bungenberg et al.,

2016).

Further studies will be needed to elucidate the precise mechanisms by which BIN1 regulates neu-

ronal firing, but our studies suggest an effect on surface trafficking of LVGCCs. While biophysical

and pharmacological properties of LVGCCs are tightly controlled by the principal a1 subunit, the

cytosolic auxiliary b subunit plays an essential role in trafficking of LVGCCs to the plasma membrane

(Buraei and Yang, 2010). Our study revealed BIN1 interaction with these LVGCC b subunits in neu-

rons (Figures 4–5), likely contributing to LVGCC neuronal surface localization. LVGCCs modulate

neuronal firing (Liu et al., 2014) and control both basal and bursting neuronal activity through

somatic and dendritic Ca2+ transients (Morton et al., 2013; Liu et al., 2014). LVGCCs are also

linked to neurodegeneration by carrying toxic amounts of Ca2+ through an increase of LVGCC activ-

ity, density, or exposure to b-amyloid peptides (Cataldi, 2013).

Our findings suggest that the effects of BIN1 on neuronal excitability likely involve Tau. A variety

of evidence has linked BIN1 to Tau in studies of AD. In AD patients, the BIN1 risk variant, rs744373,

is associated with increased Tau-PET levels, as well as reduced functional connectivity and impaired

memory (Zhang et al., 2015; Franzmeier et al., 2019). The fact that BIN1 localizes in a complex

with Tau (Figures 4–5; Chapuis et al., 2013; Zhou et al., 2014; Sottejeau et al., 2015;

Bretteville et al., 2017; Malki et al., 2017; Lasorsa et al., 2018) supports the hypothesis that

BIN1–Tau interaction regulates neuronal excitability, as there is now abundant data that a key func-

tion of Tau is regulating neuronal excitability, particularly susceptibility to hyperexcitability. This

includes the fact that Tau+/– and Tau–/– mice are resistant to epileptiform activity and seizures

induced by excitotoxic agents (Roberson et al., 2007; Ittner et al., 2010; Roberson et al., 2011).

Tau knockdown using ASOs also has excitoprotective effects against hyperexcitability in mice

(DeVos et al., 2013), complemented by our finding of excitoprotective effects against BIN1-induced

hyperexcitability (Figure 6).

The precise effects of AD-associated BIN1 variants remains to be fully understood, but their

effects are likely to be mediated through changes in expression levels since they do not affect the

coding sequence. For example, the risk allele of the AD-associated rs744373 variant drives increased

expression of BIN1 (Bungenberg et al., 2016). While another early report suggested increased BIN1

in AD (Chapuis et al., 2013), subsequent reports suggest that variants may reduce BIN1 expression

Figure 6 continued

plots of MEA recordings. (E) Tau reduction prevented BIN1-induced network hyperexcitability as measured by mean action potential frequency

(n = 159–230 neurons from 6 to 8 wells per group from three different neuronal harvests; two-way ANOVA, BIN-Tau interaction **p=0.0073, main effect

of Tau ASO p=0.0761, main effect of AAV-BIN1-mKate2 *p=0.0130, Sidak’s multiple comparisons test: UnTd:Scr ASO vs. BIN1-mKate2:Scr ASO

***p=0.0010). (F) Cumulative distribution of the mean action potential frequency (Kolmogorov-Smirnov test on cumulative distribution, UnTD-Scr ASO

vs. BIN1-mKate2-Scr ASO **p=0.0028). (G) Tau reduction prevented BIN1-induced network hyperexcitability as measured by mean burst frequency

(n = 159–230 neurons from 6 to 8 wells per group from three different neuronal harvests; two-way ANOVA, BIN-Tau interaction ***p=0.0005, main effect

of Tau ASO **p=0.0066, main effect of AAV-BIN1-mKate2 p=0.2286, Sidak’s multiple comparisons test: UnTd:Scr ASO vs. BIN1-mKate2:Scr ASO

*p=0.0227). (H) Cumulative distribution of the burst frequency (Kolmogorov-Smirnov test on cumulative distribution, UnTD-Scr ASO vs. BIN1-mKate2-

Scr ASO, p=0.1107). All data are expressed as mean ± SEM.
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(Glennon et al., 2013; Holler et al., 2014), and the effects may also differ between the neuronal

and ubiquitous isoforms (De Rossi et al., 2016). Ongoing studies will provide additional evidence

about the directionality of BIN1 variant effects on expression, but our findings are consistent with

either increases or decreases in BIN1 contributing to network hyperexcitability in AD, since we found

that higher BIN1 was associated with higher activity as a general effect in both excitatory and inhibi-

tory neurons. That is, either increased BIN1 in excitatory neurons with corresponding increased excit-

atory activity, or reduced BIN1 in inhibitory neurons with corresponding reduced inhibition, could

lead to network hyperexcitability. Further study will be required to better understand both the

effects of AD-associated BIN1 variants and the relative balance between excitatory and inhibitory

neuron effects of BIN1. In addition, BIN1 expression changes in oligodendrocytes or microglia also

warrant study for their potential roles in AD (De Rossi et al., 2016; Nott et al., 2019).

Our findings highlight the potential importance of Tau interactions with SH3 domain–containing

proteins. We recently demonstrated that inhibiting Tau-SH3 interactions can reduce Ab toxicity

(Rush et al., 2020), and it is notable that BIN1 joins a growing list of SH3 domain–containing pro-

teins that interact with Tau and are implicated in AD. Tau may act as a scaffolding protein through

BIN1 interactions mediating membrane localization (Figure 5A), promoting network hyperexcitabil-

ity through its SH3-domain containing binding partners. This could be a critical role for Tau and

explain how mislocalization of Tau in AD contributes to the increased network excitability seen in

AD pathogenesis. This would be consistent with the finding that reducing endogenous Tau prevents

network hyperexcitability and Ab-induced dysfunction in AD models.

In summary, we have shown that BIN1 promotes neuronal firing in a Tau-dependent manner.

These data contribute new insights into the neuronal functions of BIN1, with implications for our

understanding of AD.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Homo sapiens)

BIN1 NCBI Gene ID 274

Antibody Anti-NeuN
Rabbit
polyclonal

abcam Cat# ab104225;
RRID:AB_10711153

ICC (1:500),
Lot #GR3321966-1

Antibody Anti-GAD67
Mouse
monoclonal

Millipore Sigma Cat# MAB5406;
RRID:AB_2278725

ICC (1:500),
Lot #3015328

Antibody Anti-BIN1
Rabbit
polyclonal

Santa Cruz Cat# sc-30099;
RRID:AB_2243399

ICC/PLA/IP (1:500),
Lot #K1605; H-100

Antibody Anti-LVGCC-b1
Mouse
monoclonal

abcam Cat# ab85020;
RRID:AB_1861569

ICC/PLA/IP (1:1000),
Lot #413-8RR-52

Antibody Anti-Tau
Rabbit
polyclonal

DAKO Cat# A0024;
RRID:AB_10013724

ICC/IP (1:1000),
Lot #20031827

Antibody Anti-BIN1
Mouse
monoclonal

Santa Cruz Cat# sc-13575;
RRID:AB_626753

ICC/IP (1:1000),
Lot #L3014; 99D

Cell line
(Rattus
norvegicus)

Primary
neuron

Charles River Fresh from E19
albino Sprague
Dawley rats

Genetic
reagent

AAV-BIN1-
mKate2

UPenn
Vector Core

AAV2

Genetic
reagent

AAV-mKate2 UPenn
Vector Core

AAV2

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based
reagent

Tau ASO PMID:23904623
IDT

5-ATCACTGATTTTGAAGTCCC-3

Sequence-
based
reagent

Scrambled ASO PMID:23904623
IDT

5-CCTTCCCTGAAGGTTCCTCC-3

Commercial
assay, kit

Duolink PLA kit Millipore Sigma Cat#s DUO92014;
DUO92002; DUO92004

Transfected
construct

GCaMP6f Addgene RRID:Addgene_40755

Transfected
construct

mKate2 PMID:25156556
Evrogen

Cat# FP184 Actin was removed
from the construct
obtained

Transfected
construct
(Homo sapiens)

BIN1 Horizon Discovery
ORFeome
Collaboration
Clones

OHS5894-
202501160

Isoform 1

Cell line
(Cricetulus
griseus)

CHO-K1 Millipore Sigma Cat# 85051005-1VL Chinese Hamster
Ovary cell line

Transfected
construct

mKate2-Tau-
mKate2

PMID:25156556

Transfected
construct

Fyn-SH3-CBG PMID:25156556 BIN1-SH3 or
LVGCC-b1-SH3
was cloned in
replacing Fyn-SH3

Transfected
construct
(Homo sapiens)

BIN1-SH3 IDT AAC28646.1 Codon optimized

Transfected
construct
(Homo sapiens)

LVGCC-b1-SH3 IDT AAA35632.1 Codon optimized

Primary neuron cultures
Primary hippocampal culture protocols were adapted from Rush et al., 2020. Briefly, hippocampal

tissue from E19 Sprague Dawley albino rat (Rattus norvegicus) embryos was harvested on ice in 4˚C

Hibernate E (Life Technologies, A1247601) and digested with 20 units/mL papain (Worthington Bio-

chemical Corporation, LK003178) for 10 min at 37˚C. Neurons were then dissociated by manual tritu-

ration to a single-cell suspension in Neurobasal medium (Life Technologies, 21103049)

supplemented with 1x B-27 (Gibco, 17504044), 2 mM L-Glutamine (Life Technologies, 25030081)

and 10% premium select fetal bovine serum (Atlanta Biologicals, S11550). Neuronal plating condi-

tions depended on the experiment, as follows.

Multi electrode array cultures
For 6-well multielectrode array recordings, neurons were plated at 100,000 per well in six-well MEA

plates (ALA Scientific, ALAMEA-MEMMR5). For 48-well plate multielectrode array recordings, neu-

rons were plated at 30,000 per well in 48-well MEA plates (Axion Biosystems, M768-tMEA-48B-5).

Calcium imaging, electrophysiology, and immunocytochemistry cultures
Neurons were plated at 50,000 neurons per well on 12 mm coverslips (Carolina Biological, 633029)

in 24-well plates coated overnight at 4˚C with 0.1 mg/mL Poly-D-Lysine (Sigma, P6407�10 � 5 MG)

and 0.2 mg/mL laminin (Sigma, L2020-1MG) 24–48 hr prior to the neuron harvest, with the outer

wells containing autoclaved ultrapure water (MilliQ filtered) to prevent evaporation.
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Immunoblotting
Neurons were plated at 200,000 per well in six-well plates (Corning, 08-772-1B) and maintained in a

37˚C humidified incubator with 5% CO2. 24 hr after plating, 75% of the medium was exchanged for

serum-free Neurobasal supplemented with B-27 and L-Glutamine, with 5 mM cytosine b-D-arabino-

furanoside (AraC, Sigma Aldrich, C6645) to inhibit glial proliferation. 50% medium changes were

performed weekly with Neurobasal supplemented with B-27 and L-Glutamine until experiments

were started at DIV 19–21.

BIN1 constructs and vectors
A BIN1-mKate2 (GE Dharmacon, OHS5894-202501160) construct was developed to encode human

BIN1 isoform 1 (593 AA, the major neuronal isoform) tagged with mKate2 (Evrogen, FP184, to allow

for fluorescent visualization) at the C-terminus to allow for proper function of the N-terminal mem-

brane-interacting BAR domain. A similar construct lacking the BAR domain (amino acids 32–273,

BIN1-DBAR-mKate2) was produced as a BIN1 BAR domain deletion mutant. A construct encoding

mKate2 only was used as a control. These constructs were then cloned into the CIGW vector

(rAAV9-CBA-IRES-GFP-WPRE-rBG) (St Martin et al., 2007). Due to size limitations for efficient gene

expression, the IRES-GFP was removed from the CIGW vector.

Neuronal transduction
BIN1-mKate2 and mKate2 vectors were packaged into rAAV2 at the University of Pennsylvania Vec-

tor Core (stock titers: AAV-BIN1-mKate2: 3.2e12 genomes/ml, AAV-mKate2: 9.69e12 genomes/ml;

used titers: AAV-BIN1-mKate2 and AAV-mKate2: 1e10 genomes/ml, used MOI: AAV-BIN1-mKate2

and AAV-mKate2: 200,000). AAV vectors were used in MEA and electrophysiology experiments.

Neuronal cultures were transduced on DIV 2.

Neuronal transfection
BIN1-mKate2, BIN1-DBAR-mKate2, and mKate2 vectors were used in transient transfections in cal-

cium imaging experiments. Transfections were performed at DIV 14 using a calcium phosphate pre-

cipitation protocol adapted from Frandemiche et al., 2014. Briefly, Neurobasal medium was

removed and kept until the last step of transfection used as conditioned Neurobasal medium. Neu-

rons were washed for 1–1.5 hr in DMKY buffer containing 1 mM kynurenic acid, 0.9 mM NaOH, 0.5

mM HEPES, 10 MgCl2, plus phenol red 0.05%, pH 7.4. Then, 3.5 mg of the vectors were mixed with

120 mM CaCl2 in HBSS (Life Technologies, 14175095) containing 25 mM HEPES, 140 mM NaCl, and

0.750 mM Na2HPO4, pH 7.06, left for 20 min to precipitate the DNA, and applied to the primary hip-

pocampal cultures for 30 min. The medium was then replaced with conditioned Neurobasal medium

(Life Technologies, 21103049) and cultures were returned to the incubator until use.

Multielectrode array recordings
Multi Channel Systems MEA
MEA recording protocols were adapted from Savell et al., 2019b. Briefly, E19 rat hippocampal neu-

rons were seeded to six-well MEAs containing nine extracellular recording electrodes and a ground

electrode. Neurons were transduced with AAV expressing BIN1 or control constructs on DIV2. Trans-

duced neurons had 50% medium changes with BrainPhys (StemcellTech, 05793) medium supple-

mented with N2A and SM1 at DIV 5 and 9 to promote maturation, then with supplemented

Neurobasal (Life Technologies, 21103049) at DIV 12. 20 min MEA recordings were performed at DIV

12–13 in the temperature-controlled headstage at 37˚C. Neuronal firing was amplified and acquired

at 30 kHz, digitized, and further analyzed in MC_Rack (Multi Channel Systems). Data were filtered at

10 Hz and 10,000 Hz filters and thresholded to detect action potentials at each electrode. Detected

action potentials were transferred to Offline Sorter (v. 4.0 Plexon) to differentiate multiple neurons

detected with a single electrode using principal component analysis (PCA) of waveform properties.

Offline Sorter automatically completes and plots PCA on waveforms for each electrode. Manual

inspection of PCA, shape, inter-spike intervals, auto-correlograms, and cross-correlograms allowed

us to distinguish between multiple units on a single electrode and to do per-neuron analyses. After

waveforms were split into units, analysis of each unit’s action potential frequency and burst firing

was completed in NeuroExplorer (v. 5.0, Plexon) using the built-in Burst Analysis function, with
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Poisson burst surprise = 5. Next, firing rates and bursting analysis were performed in NeuroExplorer

(v. 5.0 Plexon). Researchers were blinded to experimental conditions performed in all MEA analyses.

Axion Biosciences MEA
Single neuron electrophysiological activity was recorded using an Axion Maestero recording system

as in Savell et al., 2019a. Briefly, neurons were plated on the 48-well MEA (Axion Biosystems,

M768-tMEA-48B-5) with 16 extracellular recording electrodes and a ground electrode per well at a

density of 30,000 neurons per well in Neurobasal medium (5 mL) with 10% FBS (Atlanta Biologicals,

S11550) and placed in a 37˚C incubator with 5% CO2. After allowing neurons to attach to the plate

for 2 hr, 300 mL serum-free Neurobasal (Life Technologies, 21103049) was added. The next day,

AraC was added as with other experiments and a 50% medium change with BrainPhys (Stemcell

Technologies Inc, 05790) supplemented with SM1 and L-glutamine was done at DIV 5. At DIV 6, neu-

rons were treated with ASO to reduce Tau protein levels. At DIV 9, a 50% medium change was com-

pleted with supplemented BrainPhys, followed by a 50% medium change with supplemented

Neurobasal at DIV 12. At DIV 13, neurons were recorded using Axion AxIS software for 15 min. Elec-

trical activity was measured by an interface board at 12.5 kHz, digitized, and transmitted to an exter-

nal computer for data acquisition and analysis in Axion AxIS Navigator software (Axion Biosystems).

All data were filtered using dual 0.01 Hz (high pass) and 5,000 Hz (low-pass) Butterworth filters.

Action potential thresholds were set automatically using an adaptive threshold for each electrode

(>6 standard deviations from the electrode’s mean signal). Neuronal waveforms collected in Axion

AxIS Navigator were exported to Offline Sorter (v. 4.0 Plexon). Offline Sorter automatically com-

pletes and plots PCA on waveforms for each electrode. Manual inspection of PCA, shape, inter-spike

intervals, auto-correlograms, and cross-correlograms allowed us to distinguish between multiple

units on a single electrode and to do per-neuron analyses. After waveforms were split into units,

analysis of each unit’s action potential frequency and burst firing was completed in NeuroExplorer

(v. 5.0, Plexon) using the built-in Burst Analysis function, with Poisson burst surprise = 5. Next, firing

rates and bursting analysis were performed in NeuroExplorer (v. 5.0 Plexon). Researchers were

blinded to experimental conditions performed in all MEA analyses.

Antisense oligonucleotide application
Tau anti-sense oligonucleotide (ASO) sequences were adapted from DeVos et al., 2013 and pro-

duced by Integrated DNA Technology (Tau ASO: 5-ATCACTGATTTTGAAGTCCC-3, Nontargeting

control ASO: 5-CCTTCCCTGAAGGTTCCTCC-3). ASOs were dissolved to 100 mM in 10 mM Tris

with 0.1 mM EDTA and stored at �20˚C until use. At DIV 6, one week before testing for both MEA

experiments and PLA, neurons were treated with ASO to a final concentration of 1 mM.

Calcium imaging
Calcium imaging was adapted from Léveillé et al., 2008. Briefly, rat primary hippocampal neurons

(DIV 14) were transfected (see Neuronal transfection section) with the genetically engineered calcium

sensor GCaMP6f (gift from Dr. Alain Buisson, originally developed by Douglas Kim and GENIE Proj-

ect, Addgene plasmid #40755, Chen et al., 2013). At DIV 21, the neurons were incubated for 15

min at room temperature in HEPES and bicarbonate buffered saline solution (HBBSS) containing 116

mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.8 mM MgSO4, 1.3 mM NaH2PO4, 12 mM HEPES, 5.5 mM

glucose, 25 mM bicarbonate and 10 mM glycine at pH 7.45. Neurons that were transfected with

mKate2 or BIN1-mKate2 vectors (see BIN1 constructs and vectors section) were recorded for 8 min.

Experiments were performed at room temperature with continuous perfusion at 2 ml/min with a

peristaltic pump, on the stage of a Nikon A1R Confocal (Nikon, TE2000) inverted microscope

equipped with a 100 W mercury lamp and oil-immersion Nikon 40x objective with 1.3 numerical

aperture (Nikon, Tokyo, Japan). GCaMP6f (excitation: 340/380 nm, emission: 510 nm) ratio images

were acquired at 8 Hz with a digital camera (Princeton Instruments, Trenton, NJ) using Metafluor 6.3

software (Universal Imaging Corporation, West Chester, PA, USA). Fluorescence ratios (340/380 nm)

were converted to intracellular Ca2+ concentration using the following formula:

½Ca2þ�
i
¼Kdð

R�Rmin

Rmax �R
Þð
F0

Fs

Þ
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where R is the measured ratio of 340/380 fluorescence, Rmin is the ratio measured in a Ca2+-free

solution, Rmax is the ratio measured in a saturated Ca2+ solution, Kd = 135 nM (the dissociation con-

stant for GCaMP6f), and F0 and Fs are the fluorescence intensities measured at 380 nm, respectively,

in a Ca2+-free solution or in a saturated Ca2+ solution.

Electrophysiology
All electrophysiological recordings were performed in primary hippocampal neuronal cultures after

19–21 DIV. Whole-cell patch-clamp recordings were made from visually identified pyramidal neu-

rons. Recorded signals were amplified with a MultiClamp 700B amplifier (Molecular Devices), filtered

at 5 kHz, and sampled at 10 kHz with Digidata 1550A (Molecular Devices). Recordings were acquired

using pClamp (v.10) and analyzed using Clampfit (Molecular Devices). Patch pipettes had a resis-

tance of 2.5–5 MW when filled with the internal solution required for the experiments described

below. All recordings were performed at room temperature (21–23˚C). Internal solution included 120

mM Cs-gluconate, 0.6 mM EGTA, 2.8 mM NaCl, 5 mM MgCl2, 2 mM ATP, 0.3 mM GTP, 20 mM

HEPES, and 5.0 mM QX-314. External solution included 119 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO4,

2.5 mM CaCl2, 1 mM NaH2PO4, 26 mM NaHCO3, 11 mM glucose (pH 7.3). Voltage-clamp record-

ings to measure sEPSCs were performed from cultured neurons by whole-cell patch-clamp holding

the neurons at –70 mV with 100 mM picrotoxin (GABAAR antagonist, Tocris, 11–281 G) in the bath

solution. Voltage-clamp recordings to measure sIPSCs were performed from cultured neurons by

whole-cell patch-clamp holding the neurons at 0 mV in 10 mM DNQX (AMPAR antagonist, Sigma,

D0540-25MG), 100 mM APV (NMDAR antagonist, Tocris, 01-055-0), and 10 mM nifedipine (L-type

VGCC antagonist, Sigma, N7634-25G) to enrich for sIPSCs from spontaneously active interneurons

rather than from interneuron-driven by excitatory transmission.

Immunocytochemistry (ICC) and NeuN quantification
ICC was adapted from Rush et al., 2020. Briefly, primary neurons on coverslips were fixed with 4%

PFA and 4% sucrose in 1x PBS. Coverslips were permeabilized with 0.25% Triton X-100 in 1x PBS for

10 min at room temperature then blocked for one hour in 5% FBS in 1x PBS. Primary antibody for

NeuN (abcam, ab104225, 1:500), GAD67 (Millipore Sigma, MAB5406, 1:500), BIN1 (Santa Cruz, sc-

30099, 1:500), or LVGCC-b1 (Abcam, S7-18, 1:1,000) in 1% FBS in 1x PBS was applied overnight at

4˚C. Coverslips were then washed 3 � 5 min in 1x PBS, then incubated in Alexa Fluor fluorescent

antibodies (1:1,000) in 1% FBS in 1x PBS for 1 hr at room temperature. Coverslips were washed 3 �

5 min in 1x PBS, then mounted in Prolong Diamond. For neuron quantification, 10 � 10 images at

20x were taken with an epiflourescent microscope and automatically stitched together using Nikon

NIS-Elements. NeuN images were thresholded in ImageJ, then quantified using ImageJ (v. 2.0.0-rc-

69/1.52 p) particle analyzer.

Proximity Ligation Assay (PLA)
PLA was adapted from Rush et al., 2020. Briefly, neurons on coverslips were fixed and permeabi-

lized as with ICC, then were incubated overnight with primary antibodies for BIN1 (Santa Cruz, sc-

30099, 1:500) and LVGCC-b1 (Abcam, S7-18, 1:1,000) overnight at 4˚C, then PLA was performed

using the Duolink In Situ Fluorescence kit (Sigma, DUO92004-100RXN). After PLA, coverslips were

incubated with secondary antibody to view BIN1 and mounted with Duolink In Situ Mounting

Medium with DAPI. Fluorescent images were taken using an epifluorescence microscope at 60x with

four channels: DAPI (nuclei), FITC (PLA), and TRITC (mKate2). 7–9 images per slide were obtained

and analyzed using ImageJ (v. 2.0.0-rc-69/1.52 p). PLA puncta were quantified using ImageJ particle

analyzer, and the average number of puncta per field of view (FOV) or each coverslip was used for

analysis.

Bioluminescence Resonance Energy Transfer (BRET)
BRET was conducted as described in Cochran et al., 2014. Codon-optimized human BIN1-SH3 or

LVGCC-b1-SH3 domains were fused on the C-terminus to click beetle green (CBG) luciferase (Prom-

ega, E1461) replacing the Fyn-SH3 in the previously described donor construct. Tau tagged at each

terminus with mKate2 (Evrogen, FP184) served as the acceptor. Chinese hamster ovary (CHO) cells

(Sigma, 85051005-1VL) obtained from ECACC (Lot number 12G006) were authenticated using DNA
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Fingerprinting and DNA bar-coding sequencing and tested negative for mycoplasma contamination

using PCR, a Vero indicator cell line, and Hoechst 33258 fluorescent detection system (Certificate of

Analysis test number 47856). CHO cells were plated in 24-well opaque white plates (Promega,

6005168) using the manufacturer’s instructions and transfected with donor and acceptor constructs

using Fugene. Forty-eight hours later, fluorescence was read by excitation with a 530/25 nm filter

and emission with a 645/40 nm filter on a Synergy2 (BioTek) to control for the concentration of the

donor. Immediately after fluorescence measurement, D-luciferin (Promega, E1605) was added to a

final concentration of 200 mM to each well. Two to 4 hr later, after the signal had stabilized, plates

were read with 645/40 nm filter. Measured BRET fluorescence was normalized to mKate2

fluorescence.

Co-immunoprecipitation
Mouse hemibrains were finely chopped while frozen, then thawed on ice in PBS plus protease inhibi-

tors (Fisher PI-78439), phosphatase inhibitors (Sigma-Aldrich, P5726), and 1 mM of the cell-perme-

able cross-linker DSP (Fisher, PI-22585). Hemibrains were then homogenized for 15 s using a hand-

held Kontes Pellet Pestle homogenizer, then pipetted up and down 20x to obtain a smooth lysate.

Lysates were spun 2 � 10 min at 800 x g, then cleared lysates were incubated for 15 min at 4˚C on

an end-over-end rotator. Next, lysates were brought to 100 mM Tris to inactivate DSP and incubated

for another 15 min at 4˚C on an end-over-end rotator. Samples were then diluted 1:1 with a mild co-

IP buffer: 10 mM Tris (pH 7.5), 10 mM NaCl, 3 mM MgCl2, 1 mM EGTA, and 0.05% Nonidet P-40, a

mild lysis buffer previously shown to be amenable to co-IP experiment (Filiano et al., 2008). At this

point, an input fraction was set aside before adding IP antibody to the lysate, with 5 mg of antibody

used in each case. Lysate/antibody mixtures were incubated overnight on an end-over-end rotator.

Next, 50 uL of Protein G–coated magnetic beads (Life Technologies, 10004D) were added and incu-

bated for 8 hr at 4˚C on an end-over-end rotator. Next, non-interacting lysate was removed, the

bead/antibody/antigen complex was washed, then protein was eluted with 50 mM Glycine (pH 2.8)

and neutralized with 1 M Tris, reduced with b-Mercaptoethanol and an 80˚C incubation for 10 min,

then cooled and probed by immunoblotting.

Immunoblots
5 mg of immunoprecipitated samples were loaded and separated on 4–12% NuPage acrylamide gels

(Invitrogen) with NuPage MOPS running buffer for 2 hr at 110 V. Next, proteins were transferred to

Immobilon-FL PVDF membranes (Millipore) using the NuPage transfer buffer transfer system (Invitro-

gen) overnight. The membrane was blocked in LI-COR Odyssey blocking buffer (LI-COR, 927–40000)

for 1 hr at room temperature and incubated with the appropriate primary antibody. After primary

antibody treatment, membranes were washed three times in tris-buffered saline with 0.1% Tween

(TBS-T), followed by incubation for 1 hr with Alexa Fluor 700– or 800–conjugated goat antibodies

specific for mouse immunoglobulin G (1:20,000, LI-COR). Membranes were then washed three times

in TBST-T, followed by a single wash in TBS, imaged on the LI-COR Odyssey fluorescence imaging

system, and quantified using LI-COR Image Studio (v. 5.2.5).

Animals
All breeding and experimental procedures were approved by the University of Alabama at Birming-

ham Institutional Animal Care and Use Committee and follow the guidelines by the National Insti-

tutes of Health. Male and female Tau+/– mice lacking exon 1 of MAPT gene were bred to obtain

Tau–/– mice with littermate Tau+/+ controls. Mice were maintained under standard laboratory condi-

tions (12 hr light/dark cycle, 50% humidity, Harlan 2916 diet, and water ad libitum). Genotype was

verified by standard PCR protocol.

Statistics
Statistical distribution of data varied widely between data sets in this study, so we analyzed each

data set for normality and analyzed using either parametric or non-parametric tests accordingly. The

specific test used is indicated in the figure legend in each case. All statistical tests were performed

with Prism 8 (GraphPad, v. 8.4.0).
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Eckert A, Staufenbiel M, Hardeman E, Götz J. 2010. Dendritic function of tau mediates amyloid-beta toxicity in
Alzheimer’s disease mouse models. Cell 142:387–397. DOI: https://doi.org/10.1016/j.cell.2010.06.036,
PMID: 20655099

Joutsa J, Rinne JO, Hermann B, Karrasch M, Anttinen A, Shinnar S, Sillanpää M. 2017. Association between
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PH, Mayeux R. 2011. Identification of novel loci for alzheimer disease and replication of CLU, PICALM, and
BIN1 in caribbean hispanic individuals. Archives of Neurology 68:320–328. DOI: https://doi.org/10.1001/
archneurol.2010.292, PMID: 21059989

Lerdkrai C, Asavapanumas N, Brawek B, Kovalchuk Y, Mojtahedi N, Olmedillas Del Moral M, Garaschuk O. 2018.
Intracellular Ca2+ stores control in vivo neuronal hyperactivity in a mouse model of alzheimer’s disease. PNAS
115:E1279–E1288. DOI: https://doi.org/10.1073/pnas.1714409115, PMID: 29358403
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