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Abstract The neural circuits responsible for animal behavior remain largely unknown. We

summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly

Drosophila melanogaster. Improved methods include new procedures to prepare, image, align,

segment, find synapses in, and proofread such large data sets. We define cell types, refine

computational compartments, and provide an exhaustive atlas of cell examples and types, many of

them novel. We provide detailed circuits consisting of neurons and their chemical synapses for

most of the central brain. We make the data public and simplify access, reducing the effort needed
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to answer circuit questions, and provide procedures linking the neurons defined by our analysis

with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs

on different scales, electrical consequences of compartmentalization, and evidence that maximizing

packing density is an important criterion in the evolution of the fly’s brain.

Introduction
The connectome we present is a dense reconstruction of a portion of the central brain (referred to

here as the hemibrain) of the fruit fly, Drosophila melanogaster, as shown in Figure 1. This region

was chosen since it contains all the circuits of the central brain (assuming bilateral symmetry), and in

particular contains circuits critical to unlocking mysteries involving associative learning in the mush-

room body, navigation and sleep in the central complex, and circadian rhythms among clock circuits.

The largest dense reconstruction to date, it contains around 25,000 neurons, most of which were rig-

orously clustered and named, with about 20 million chemical synapses between them, plus portions

of many other neurons truncated by the boundary of the data set (details in Figure 1). Each neuron

is documented at many levels - the detailed voxels that constitute it, a skeleton with segment diame-

ters, its synaptic partners and the location of most of their synapses.

Producing this data set required advances in sample preparation, imaging, image alignment,

machine segmentation of cells, synapse detection, data storage, proofreading software, and proto-

cols to arbitrate each decision. A number of new tests for estimating the completeness and accuracy

were required and therefore developed, in order to verify the correctness of the connectome.

These data describe whole-brain properties and circuits, as well as contain new methods to clas-

sify cell types based on connectivity. Computational compartments are now more carefully defined,

we conclusively identify synaptic circuits, and each neuron is annotated by name and putative cell

type, making this the first complete census of neuropils, tracts, cells, and connections in this portion

of the brain. We compare the statistics and structure of different brain regions, and for the brain as

a whole, without the confounds introduced by studying different circuitry in different animals.

eLife digest Animal brains of all sizes, from the smallest to the largest, work in broadly similar

ways. Studying the brain of any one animal in depth can thus reveal the general principles behind

the workings of all brains. The fruit fly Drosophila is a popular choice for such research. With about

100,000 neurons – compared to some 86 billion in humans – the fly brain is small enough to study at

the level of individual cells. But it nevertheless supports a range of complex behaviors, including

navigation, courtship and learning.

Thanks to decades of research, scientists now have a good understanding of which parts of the

fruit fly brain support particular behaviors. But exactly how they do this is often unclear. This is

because previous studies showing the connections between cells only covered small areas of the

brain. This is like trying to understand a novel when all you can see is a few isolated paragraphs.

To solve this problem, Scheffer, Xu, Januszewski, Lu, Takemura, Hayworth, Huang, Shinomiya

et al. prepared the first complete map of the entire central region of the fruit fly brain. The central

brain consists of approximately 25,000 neurons and around 20 million connections. To prepare the

map – or connectome – the brain was cut into very thin 8nm slices and photographed with an

electron microscope. A three-dimensional map of the neurons and connections in the brain was then

reconstructed from these images using machine learning algorithms. Finally, Scheffer et al. used the

new connectome to obtain further insights into the circuits that support specific fruit fly behaviors.

The central brain connectome is freely available online for anyone to access. When used in

combination with existing methods, the map will make it easier to understand how the fly brain

works, and how and why it can fail to work correctly. Many of these findings will likely apply to larger

brains, including our own. In the long run, studying the fly connectome may therefore lead to a

better understanding of the human brain and its disorders. Performing a similar analysis on the brain

of a small mammal, by scaling up the methods here, will be a likely next step along this path.
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All data are publicly available through web interfaces. This includes a browser interface, NeuPrint

(Clements et al., 2020), designed so that any interested user can query the hemibrain connectome

even without specific training. NeuPrint can query the connectivity, partners, connection strengths

and morphologies of all specified neurons, thus making identification of upstream and downstream

partners both orders of magnitude easier, and significantly more confident, compared to existing

genetic methods. In addition, for those who are willing to program, the full data set - the gray scale

voxels, the segmentation and proofreading results, skeletons, and graph model of connectivity, are

also available through publicly accessible application program interfaces (APIs).

This effort differs from previous EM reconstructions in its social and collaborative aspects. Previ-

ous reconstructions were either dense in much smaller EM volumes (such as Meinertzhagen and

O’Neil, 1991; Helmstaedter et al., 2013; Takemura et al., 2017) or sparse in larger volumes (such

as Eichler et al., 2017 or Zheng et al., 2018). All have concentrated on the reconstruction of spe-

cific circuits to answer specific questions. When the same EM volume is used for many such efforts,

as has occurred in the Drosophila larva and the full adult fly brain, this leads to an overall reconstruc-

tion that is the union of many individual efforts (Saalfeld et al., 2009). The result is inconsistent

Figure 1. The hemibrain and some basic statistics. The highlighted area shows the portion of the central brain that was imaged and reconstructed,

superimposed on a grayscale representation of the entire Drosophila brain. For the table, a neuron is traced if all its main branches within the volume

are reconstructed. A neuron is considered uncropped if most arbors (though perhaps not the soma) are contained in the volume. Others are

considered cropped. Note: (1) our definition of cropped is somewhat subjective; (2) the usefulness of a cropped neuron depends on the application;

and (3) some small fragments are known to be distinct neurons. For simplicity, we will often state that the hemibrain contains » 25K neurons.
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coverage of the brain, with some regions well reconstructed and others missing entirely. In contrast,

here we have analyzed the entire volume, not just the subsets of interest to specific groups of

researchers with the expertise to tackle EM reconstruction. We are making these data available with-

out restriction, with only the requirement to cite the source. This allows the benefits of known cir-

cuits and connectivity to accrue to the field as a whole, a much larger audience than those with

expertise in EM reconstruction. This is analogous to progress in genomics, which transitioned from

individual groups studying subsets of genes, to publicly available genomes that can be queried for

information about genes of choice (Altschul et al., 1990).

One major benefit to this effort is to facilitate research into the circuits of the fly’s brain. A com-

mon question among researchers, for example, is the identity of upstream and downstream (respec-

tively input and output) partners of specific neurons. Previously, this could only be addressed by

genetic trans-synaptic labeling, such as trans-Tango (Talay et al., 2017), or by sparse tracing in pre-

viously imaged EM volumes (Zheng et al., 2018). However, the genetic methods may give false pos-

itives and negatives, and both alternatives require specialized expertise and are time consuming,

often taking months of effort. Now, for any circuits contained in our volume, a researcher can obtain

the same answers in seconds by querying a publicly available database.

Another major benefit of dense reconstruction is its exhaustive nature. Genetic methods such as

stochastic labeling may miss certain cell types, and counts of cells of a given type are dependent on

expression levels, which are always uncertain. Previous dense reconstructions have demonstrated

that existing catalogs of cell types are incomplete, even in well-covered regions (Takemura et al.,

2017). In our hemibrain sample, we have identified all the cells within the reconstructed volume,

thus providing a complete and unbiased census of all cell types in the fly’s central brain (at least in

this single female), and a precise count of the cells of each type.

Another scientific benefit lies in an analysis without the uncertainty of pooling data obtained from

different animals. The detailed circuitry of the fly’s brain is known to depend on nutritional history,

age, and circadian rhythm. Here, these factors are held constant, as are the experimental methods,

facilitating comparison between different fly brain regions in this single animal. Evaluating stereotypy

across animals will of course eventually require additional connectomes.

Previous reconstructions of compartmentalized brains have concentrated on particular regions

and circuits. The mammalian retina (Helmstaedter et al., 2013) and cortex (Kasthuri et al., 2015),

and insect mushroom bodies (Eichler et al., 2017; Takemura et al., 2017) and optic lobes

(Takemura et al., 2015) have all been popular targets. Additional studies have examined circuits

that cross regions, such as those for sensory integration (Ohyama et al., 2015) or motion vision

(Shinomiya et al., 2019).

So far lacking are systematic studies of the statistical properties of computational compartments

and their connections. Neural circuit motifs have been studied (Song et al., 2005), but only those

restricted to small motifs and at most a few cell types, usually in a single portion of the brain. Many

of these results are in mammals, leading to questions of whether they also apply to invertebrates,

and whether they extend to other regions of the brain. While there have been efforts to build

reduced, but still accurate, electrical models of neurons (Marasco et al., 2012), none of these to our

knowledge have used the compartment structure of the brain.

What is included
Table 1 shows the hierarchy of the named brain regions that are included in the hemibrain. Table 2

shows the primary regions that are at least 50% included in the hemibrain sample, their approximate

size, and their completion percentage. Our names for brain regions follow the conventions of

Ito et al., 2014 with the addition of ‘(L)’ or ‘(R)’ to indicate whether the region (most of which occur

on both sides of the fly) has its cell bodies in the left or right, respectively. The mushroom body

(Tanaka et al., 2008; Aso et al., 2014) and central complex (Wolff et al., 2015; Wolff and Rubin,

2018) are further divided into finer compartments.

Appendix 1—table 6 provide the list of identified neuron types and their naming schemes. These

include newly identified sensory inputs and motor outputs.

The nature of the proofreading process allows us to improve the data even after their initial publi-

cation. Our initial data release was version v1.0 (Xu et al., 2020c). Version v1.1 is now available,

including improvements such as better accuracy, more consistent cell naming and typing, and inclu-

sion of anatomical names for central complex neurons. The old version(s) remain online and
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Table 1. Brain regions contained and defined in the hemibrain, following the naming conventions of Ito et al., 2014 with the

addition of (R) and (L) to specify the side of the soma for that region.

Italics indicate master regions not explicitly defined in the hemibrain. Region LA is not included in the volume. The regions are hierar-

chical, with the more indented regions forming subsets of the less indented. The only exceptions are dACA, lACA, and vACA which

are considered part of the mushroom body but are not contained in the master region MB.

OL(R) Optic lobe CX Central complex LH(R) Lateral horn

LA lamina FB Fan-shaped body

ME(R) Medula FBl1 Fan-shaped body layer 1 SNP(R)/(L) Superior neuropils

AME(R) Accessory medulla FBl2 Fan-shaped body layer 2 SLP(R) Superior lateral protocerebrum

LO(R) Lobula FBl3 Fan-shaped body layer 4 SIP(R)/(L) Superior intermediate protocerebrum

LOP(R) Lobula plate FBl4 Fan-shaped body layer 4 SMP(R)(L) Superior medial protocerebrum

FBl5 Fan-shaped body layer 5

MB(R)/(L) Mushroom body FBl6 Fan-shaped body layer 6 INP Inferior neuropils

CA(R)/(L) Calyx FBl7 Fan-shaped body layer 7 CRE(R)/(L) Crepine

dACA(R) Dorsal accessory calyx FBl8 Fan-shaped body layer 8 RUB(R)/(L) Rubu

lACA(R) Lateral accessory calyx FBl9 Fan-shaped body layer 9 ROB(R) Round body

vACA(R) Ventral accessory calyx EB Ellipsoid body SCL(R)/(L) Superior clamp

PED(R) Pedunculus EBr1 Ellipsoid body zone r1 ICL(R)/(L) Inferior clamp

a’L(R)/(L) Alpha prime lobe EBr2r4 Ellipsoid body zone r2r4 IB Inferior bridge

a’1(R) Alpha prime lobe compartment 1 EBr3am Ellipsoid body zone r3am ATL(R)/(L) Antler

a’2(R) Alpha prime lobe compartment 2 EBr3d Ellipsoid body zone r3d

a’3(R) Alpha prime lobe compartment 3 EBr3pw Ellipsoid body zone r3pw AL(R)/(L) Antennal lobe

aL(R)/(L) Alpha lobe EBr5 Ellipsoid body zone r5

a1(R) Alpha lobe compartment 1 EBr6 Ellipsoid body zone r6 VMNP Ventromedial neuropils

a2(R) Alpha lobe compartment 2 AB(R)/(L) Asymmetrical body VES(R)/(L) Vest

a3(R) Alpha lobe compartment 3 PB Protocerebral bridge EPA(R)/(L) Epaulette

gL(R)/(L) Gamma lobe PB(R1) PB glomerulus R1 GOR(R)/(L) Gorget

g1(R) Gamma lobe compartment 1 PB(R2) PB glomerulus R2 SPS(R)/(L) Superior posterior slope

g2(R) Gamma lobe compartment 2 PB(R3) PB glomerulus R3 IPS(R)/(L) Inferior posterior slope

g3(R) Gamma lobe compartment 3 PB(R4) PB glomerulus R4

g4(R) Gamma lobe compartment 4 PB(R5) PB glomerulus R5 PENP Pariesophageal neuropils

g5(R) Gamma lobe compartment 5 PB(R6) PB glomerulus R6 SAD Saddle

b’L(R)/(L) Beta prime lobe PB(R7) PB glomerulus R7 AMMC Antennal mechanosensory and motor center

b’1(R) Beta prime lobe compartment 1 PB(R8) PB glomerulus R8 FLA(R) Flange

b’2(R) Beta prime lobe compartment 2 PB(R9) PB glomerulus R9 CAN(R) Cantle

bL(R)/(L) Beta lobe PB(L1) PB glomerulus L1 PRW prow

b1(R) Beta lobe compartment 1 PB(L2) PB glomerulus L2

b2(R) Beta lobe compartment 2 PB(L3) PB glomerulus L3 GNG Gnathal ganglia

PB(L4) PB glomerulus L4

LX(R)/(L) Lateral complex PB(L5) PB glomerulus L5 Major Fiber bundles

BU(R)/(L) Bulb PB(L6) PB glomerulus L6 AOT(R) Anterior optic tract

LAL(R)/(L) Lateral accessory lobe PB(L7) PB glomerulus L7 GC Great commissure

GA(R) Gall PB(L8) PB glomerulus L8 GF(R) Giant Fiber (single neuron)

PB(L9) PB glomerulus L9 mALT(R)/(L) Medial antennal lobe tract

VLNP(R) Ventrolateral neuropils NO Noduli POC Posterior optic commissure

AOTU(R) Anterior optic tubercle NO1(R)/(L) Nodulus 1

AVLP(R) Anterior ventrolateral protocerebrum NO2(R)/(L) Nodulus 2

Table 1 continued on next page
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available, to allow reproducibility of older analyses, but we strongly recommend all new analyses use

the latest version. The analyses in this article, and in the corresponding articles on the mushroom

body and central complex, are based on version v1.1, unless otherwise noted.

What is not included
This research focused on the neurons of the brain and the chemical synapses between them. Every

step in our process, from staining and sample preparation through segmentation and proofreading,

has been optimized with this goal in mind. While neurons and their chemical synapses are critical to

brain operation, they are far from the full story. Other contributors, known to be important, could

not be included in our study, largely for technical reasons. Among these are gap junctions, glia, and

structures internal to the cell such as mitochondria. Gap junctions, or electrical connections between

neurons, are difficult to reliably detect by FIB-SEM under the best of circumstances and not detect-

able at the low (for EM) resolution needed to complete this study in a reasonable amount of time.

PVLP(R) Posterior ventrolateral protocerebrum NO3(R)/(L) Nodulus 3

PLP(R) Posterior lateral cerebrum

WED(R) Wedge

Table 2. Regions with �50% included in the hemibrain, sorted by completion percentage.

The approximate percentage of the region included in the hemibrain volume is shown as ‘%inV’. ‘T-

bars’ gives a rough estimate of the size of the region. ‘comp%’ is the fraction of the post-synaptic

densities (PSDs) contained in the brain region for which both the PSD and the corresponding T-bar

are in neurons marked ‘Traced’.

Name %inV T-bars comp% Name %inV T-bars comp%

PED(R) 100% 54805 85% aL(R) 100% 95375 84%

b’L(R) 100% 67695 83% bL(R) 100% 71112 83%

gL(R) 100% 176785 83% a’L(R) 100% 39091 82%

EB 100% 164286 81% bL(L) 56% 58799 81%

NO 100% 36722 79% b’L(L) 88% 57802 78%

gL(L) 55% 133256 76% CA(R) 100% 69517 73%

AB(R) 100% 2734 65% aL(L) 51% 44803 62%

FB 100% 451031 62% AL(R) 83% 501004 59%

AB(L) 100% 572 57% PB 100% 46557 55%

AME(R) 100% 6045 51% BU(R) 100% 9385 46%

CRE(R) 100% 137946 40% AOTU(R) 100% 92578 38%

LAL(R) 100% 234388 38% SMP(R) 100% 510937 34%

PVLP(R) 100% 475219 30% ATL(R) 100% 25472 29%

SPS(R) 100% 253818 29% ATL(L) 100% 28153 29%

VES(R) 84% 157168 29% IB 100% 200447 28%

CRE(L) 90% 132656 28% SIP(R) 100% 187493 26%

BU(L) 52% 7014 26% GOR(R) 100% 27140 26%

WED(R) 100% 232898 25% SMP(L) 100% 460784 26%

EPA(R) 100% 31438 26% PLP(R) 100% 429949 26%

AVLP(R) 100% 630538 23% ICL(R) 100% 202549 23%

SLP(R) 100% 487795 23% LO(R) 64% 855251 22%

SCL(R) 100% 189569 22% GOR(L) 60% 19558 21%

LH(R) 100% 231662 19% CAN(R) 68% 6512 16%
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Their contribution to the connectome will need to be established through other means - see the sec-

tion on future research. Glial cells were difficult to segment, due to both staining differences and

convoluted morphologies. We identified the volumes where they exist (a glia ’mask’, which allows

these regions to be color-coded when viewed in NeuroGlancer) but did not separate them into cells.

Structures internal to the neurons, except for synapses, are not considered here even though many

are visible in our EM preparation. The most obvious example is mitochondria. Again, we have identi-

fied many of them so we could evaluate their effect on segmentation, but they are not included in

our connectome. Finally, autapses (synapses from a neuron onto itself) are known to exist in Dro-

sophila, but are sufficiently rare that they fall well below the rate of false positives in our automated

synapse detection. Therefore most of the putative autapses are false positives, and we do not

include them in our connectivity data.

Differences from connectomes of vertebrates
Most accounts of neurobiology define the operation of the mammalian nervous system with, at

most, only passing reference to invertebrate brains. Fly (or other insect) nervous systems differ from

those of vertebrates in several aspects (Meinertzhagen, 2016b). Some main differences include:

. Most synapses are polyadic. Each synapse structure comprises a single presynaptic release site
and, adjacent to this, several neurites expressing neurotransmitter receptors. An element,
T-shaped and typically called a T-bar in flies, marks the site of transmitter release into the cleft
between cells. This site typically abuts the neurites of several other cells, where a postsynaptic
density (PSD) marks the receptor location.

. Most neurites are neither purely axonic nor dendritic, but have both pre- and postsynaptic
partners, a feature that may be more prominent in mammalian brains than recognized
(Morgan and Lichtman, 2020). Within a single brain region, however, neurites are frequently
predominantly dendritic (postsynaptic) or axonic (presynaptic).

. Unlike some synapses in mammals, EM imagery (at least as we have acquired and analyzed it
here) fails to reveal obvious information about whether a synapse is excitatory or inhibitory.

. The soma or cell body of each fly neuron resides in a rind (the cell body layer) on the periphery
of the brain, mostly disjoint from the main neurites innervating the internal neuropil. As a
result, unlike vertebrate neurons, no synapses form directly on the soma. The neuronal process
between the soma and the first branch point is called the cell body fiber (CBF), which is like-
wise not involved in the synaptic transmission of information.

. Synapse sizes are much more uniform than those of mammals. Stronger connections are
formed by increasing the number of synapses in parallel, not by forming larger synapses, as in
vertebrates. In this paper, we will refer to the ‘strength’ of a connection as the synapse count,
even though we acknowledge that we lack information on the relative activity and strength of
the synapses, and thus a true measure of their coupling strength.

. The brain is small, about 250 mm per side, and has roughly the same size as the dendritic arbor
of a single pyramidal neuron in the mammalian cortex.

. Axons of fly neurons are not myelinated.

. Some fly neurons rely on graded transmission (as opposed to spiking), without obvious ana-
tomical distinction. Some neurons even switch between graded and spiking operation
(Pimentel et al., 2016).

Connectome reconstruction
Producing a connectome comprising reconstructed neurons and the chemical synapses between

them required several steps. The first step, preparing a fly brain and imaging half of its center, pro-

duced a dataset consisting of 26 teravoxels of data, each with 8 bits of grayscale information. We

applied numerous machine-learning algorithms and over 50 person-years of proofreading effort over

» 2 calendar years to extract a variety of more compact and useful representations, such as neuron

skeletons, synapse locations, and connectivity graphs. These are both more useful and much smaller

than the raw grayscale data. For example, the connectivity could be reasonably summarized by a

graph with »25,000 nodes and » 3 million edges. Even when the connections were assigned to dif-

ferent brain regions, such a graph took only 26 MB, still large but roughly a million fold reduction in

data size.
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Many of the supporting methods for this reconstruction have been recently published. Here, we

briefly survey each major area, with more details reported in the companion papers. Major advances

include:

. New methods to fix and stain the sample, preparing a whole fly brain with well-preserved sub-
cellular detail particularly suitable for machine analysis.

. Methods that have enabled us to collect the largest EM dataset yet using Focused Ion Beam
Scanning Electron Microscopy (FIB-SEM), resulting in isotropic data with few artifacts, features
that significantly sped up reconstruction.

. A coarse-to-fine, automated flood-filling network segmentation pipeline applied to image
data normalized with cycle-consistent generative adversarial networks, and an aggressive auto-
mated agglomeration regime enabled by advances in proofreading.

. A new hybrid synapse prediction method, using two differing underlying techniques, for accu-
rate synapse prediction throughout the volume.

. New top-down proofreading methods that utilize visualization and machine learning to achieve
orders of magnitude faster reconstruction compared with previous approaches in the fly’s
brain.

Each of these is explained in more detail in the following sections and, where necessary, in the

appendix. The companion papers are ‘The connectome of the Drosophila melanogaster mushroom

body: implications for function’ (Li et al., 2020) and ‘A complete synaptic-resolution connectome of

the Drosophila melanogaster central complex’ by Jayaraman, et al.

Image stack collection
The first steps, fixing and staining the specimen, have been accomplished taking advantage of three

new developments. These improved methods allow us to fix and stain a full fly’s brain but neverthe-

less recover neurons as round profiles with darkly stained synapses, suitable for machine segmenta-

tion and automatic synapse detection. We started with a 5-day-old female of wild-type Canton S

strain G1 x w1118, raised on a 12 hr day/night cycle. 1.5 hr after lights-on, we used a custom-made

jig to microdissect the brain, which was then fixed and embedded in Epon, an epoxy resin. We then

enhanced the electron contrast by staining with heavy metals, and progressively lowered the tem-

perature during dehydration of the sample. Collectively, these methods optimize morphological

preservation, allow full-brain preparation without distortion (unlike fast freezing methods), and pro-

vide increased staining intensity that speeds the rate of FIB-SEM imaging (Lu et al., 2019).

The hemibrain sample is roughly 250 � 250 � 250 mm, larger than we can FIB-SEM without intro-

ducing milling artifacts. Therefore, we subdivided our epoxy-embedded samples into 20-mm-thick

slabs, both to avoid artifacts and allow imaging in parallel (each slab can be imaged in a different

FIB machine) for increased throughput. To be effective, the cut surfaces of the slabs must be smooth

at the ultrastructural level and have only minimal material loss. Specifically, for connectomic research,

all long-distance processes must remain traceable across sequential slabs. We used an improved ver-

sion of our previously published ‘hot-knife’ ultrathick sectioning procedure (Hayworth et al., 2015)

which uses a heated, oil-lubricated diamond knife, to section the Drosophila brain into 37 sagittal

slabs of 20 mm thickness with an estimated material loss between consecutive slabs of only ~30 nm –

sufficiently small to allow tracing of long-distance neurites. Each slab was re-embedded, mounted,

and trimmed, then examined in 3D with X-ray tomography to check for sample quality and establish

a scale factor for Z-axis cutting by FIB. The resulting slabs were FIB-SEM imaged separately (often in

parallel, in different FIB-SEM machines), and the resulting volume datasets were stitched together

computationally.

Connectome studies come with clearly defined resolution requirements – the finest neurites must

be traceable by humans and should be reliably segmented by automated algorithms

(Januszewski et al., 2018). In Drosophila, the very finest neural processes are usually 50 nm but can

be as little as 15 nm (Meinertzhagen, 2016a). This fundamental biological dimension determines

the minimum isotropic resolution requirements for tracing neural circuits. To meet the demand for

high isotropic resolution and large volume imaging, we chose the FIB-SEM imaging platform, which

offers high isotropic resolution (<10 nm in x, y, and z), minimal artifacts, and robust image alignment.

The high-resolution and isotropic dataset possible with FIB-SEM has substantially expedited the Dro-

sophila connectome pipeline. Compared to serial-section imaging, with its sectioning artifacts and

inferior Z-axis resolution, FIB-SEM offers high-quality image alignment, a smaller number of artifacts,
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and isotropic resolution. This allows higher quality automated segmentation and makes manual

proofreading and correction easier and faster.

At the beginning, deficiencies in imaging speed and system reliability of any commercial FIB-SEM

system capped the maximum possible image volume to less than 0.01% of a full fly brain, problems

that persist even now. To remedy them, we redesigned the entire control system, improved the

imaging speed more than 10x, and created innovative solutions addressing all known failure modes,

which thereby expanded the practical imaging volume of conventional FIB-SEM by more than four

orders of magnitude from 10
3�m3 to 3 � 107 �m3, while maintaining an isotropic resolution of 8 � 8 �

8 nm voxels (Xu et al., 2017; Xu et al., 2020a). In order to overcome the aberration of a large field

of view (up to 300 mm wide), we developed a novel tiling approach without sample stage movement,

in which the imaging parameters of each tile are individually optimized through an in-line auto focus

routine without overhead (Xu et al., 2020b). After numerous improvements, we have transformed

the conventional FIB-SEM from a laboratory tool that is unreliable for more than a few days of imag-

ing to a robust volume EM platform with effective long-term reliability, able to perform years of con-

tinuous imaging without defects in the final image stack. Imaging time, rather than FIB-SEM

reliability, is now the main impediment to obtaining even larger volumes.

In our study here, the Drosophila ’hemibrain’, 13 consecutive hot-knifed slabs were imaged using

two customized enhanced FIB-SEM systems, in which an FEI Magnum FIB column was mounted at

90˚ upon a Zeiss Merlin SEM. After data collection, streaking artifacts generated by secondary elec-

trons along the FIB milling direction were computationally removed using a mask in the frequency

domain. The image stacks were then aligned using a customized version of the software platform

developed for serial section transmission electron microscopy (Zheng et al., 2018; Khairy et al.,

2018), followed by binning along the z-axis to form the final 8 � 8 � 8 nm3 voxel datasets. Milling

thickness variations in the aligned series were compensated using a modified version of the method

described by Hanslovsky et al., 2017, with the absolute scale calibrated by reference to the

MicroCT images.

The 20 mm slabs generated by the hot-knife sectioning were re-embedded in larger plastic tabs

prior to FIB-SEM imaging. To correct for the warping of the slab that can occur in this process, meth-

ods adapted from Kainmueller (Kainmueller et al., 2008) were used to find the tissue-plastic inter-

face and flatten each slab’s image stack.

The series of flattened slabs was then stitched using a custom method for large-scale deformable

registration to account for deformations introduced during sectioning, imaging, embedding, and

alignment (Saalfeld et al. in prep). These volumes were then contrast adjusted using slice-wise con-

trast limited adaptive histogram equalization (CLAHE) (Pizer et al., 1987), and converted into a ver-

sioned database (Distributed, Versioned, Image-oriented Database, or DVID) (Katz and Plaza,

2019), which formed the raw data for the reconstruction, as illustrated in Figure 2.

Automated segmentation
Computational reconstruction of the image data was performed using flood-filling networks (FFNs)

trained on roughly five billion voxels of volumetric ground truth contained in two tabs of the hemi-

brain dataset (Januszewski et al., 2018). Initially, the FFNs generalized poorly to other tabs of the

hemibrain, whose image content had different appearances. Therefore, we adjusted the image con-

tent to be more uniform using cycle-consistent generative adversarial networks (CycleGANs)

(Zhu et al., 2017). Specifically, ‘generator’ networks were trained to alter image content such that a

second ‘discriminator’ network was unable to distinguish between image patches sampled from, for

example, a tab that contained volumetric training data versus a tab that did not. A cycle-consistency

constraint was used to ensure that the image transformations preserved ultrastructural detail. The

improvement is illustrated in Figure 3. Overall, this allowed us to use the training data from just two

slabs, as opposed to needing training data for each slab.

FFNs were applied to the CycleGAN-normalized data in a coarse-to-fine manner at 32 � 32 � 32

nm3 and 16 � 16 � 16 nm3, and to the CLAHE-normalized data at the native 8 � 8 � 8 nm3 resolu-

tion, in order to generate a base segmentation that was largely over-segmented. We then agglomer-

ated the base segmentation, also using FFNs. We aggressively agglomerated segments despite

introducing a substantial number of erroneous mergers. This differs from previous algorithms, which

studiously avoided merge errors since they were so difficult to fix. Here, advances in proofreading
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Figure 2. The 13 slabs of the hemibrain, each flattened and co-aligned. A vertical section at the level of the fan-shaped body is shown. Colors are

arbitrary and added to the monochrome data to show brain regions, as defined below. Scale bar 50 mm.
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methodology described later in this report enabled efficient detection and correction of such

mergers.

We evaluated the accuracy of the FFN segmentation of the hemibrain using metrics for expected

run length (ERL) and false merge rate (Januszewski et al., 2018). The base segmentation (i.e. the

automated reconstruction prior to agglomeration) achieved an ERL of 163 mm with a false merge

Figure 3. Examples of results of CycleGAN processing. (a) Original EM data from tab 34 at a resolution of 16 nm / resolution, (b) EM data after

CycleGAN processing, (c–d) FFN segmentation results with the 16 nm model applied to original and processed data, respectively. Scale bar in (a)

represents 1 mm.
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rate of 0.25%. After (automated) agglomeration, run length increased to 585 mm but with a false

merge rate of 27.6% (i.e. nearly 30% of the path length was contained in segments with at least one

merge error). We also evaluated a subset of neurons in the volume, ~500 olfactory PNs and mush-

room body KCs chosen to roughly match the evaluation performed in Li et al., 2019 which yielded

an ERL of 825 mm at a 15.9% false merge rate.

Synapse prediction
Accurate synapse identification is central to our analysis, given that synapses form both a critical

component of a connectome and are required for prioritizing and guiding the proofreading effort.

Synapses in Drosophila are typically polyadic, with a single presynaptic site (a T-bar) contacted by

multiple receiving dendrites (most with PSDs) as shown in Figure 4A. Initial synapse prediction

revealed that there are over 9 million T-bars and 60 million PSDs in the hemibrain. Manually validat-

ing each one, assuming a rate of 1000 connections annotated per trained person, per day, would

have taken more than 230 working years. Given this infeasibility, we developed machine learning

approaches to predict synapses as detailed below. The results of our prediction are shown in

Figure 4B, where the predicted synapse sites clearly delineate many of the fly brain regions.

Given the size of the hemibrain image volume, a major challenge from a machine learning per-

spective is the range of varying image statistics across the volume. In particular, model performance

can quickly degrade in regions of the data set with statistics that are not well-captured by the train-

ing set (Buhmann et al., 2019).

To address this challenge, we took an iterative approach to synapse prediction, interleaving

model re-training with manual proofreading, all based on previously reported methods

(Huang et al., 2018). Initial prediction, followed by proofreading, revealed a number of false posi-

tive predictions from structures such as dense core vesicles which were not well-represented in the

original training set. A second filtering network was trained on regions causing such false positives,

Figure 4. Well-preserved membranes, darkly stained synapses, and smooth round neurite profiles are characteristics of the hemibrain sample. Panel (A)

shows polyadic synapses, with a red arrow indicating the presynaptic T-bar, and white triangles pointing to the PSDs. We identified in total 64 million

PSDs and 9.5 million T-bars in the hemibrain volume (Figure 1). Thus the average number of PSDs per T-bar in our sample is 6.7. Mitochondria (‘M’),

synaptic vesicles (‘SV’), and the scale bar (0.5 mm) are shown. Panel (B) shows a horizontal cross section through a point cloud of all detected synapses.

This EM point cloud defines many of the compartments in the fly’s brain, much like an optical image obtained using antibody nc82 (an antibody against

Bruchpilot, a component protein of T-bars) to stain synapses. This point cloud is used to generate the transformation from our sample to the standard

Drosophila brain.
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and used to prune back the original set of predictions. We denote this pruned output as the ‘initial’

set of synapse predictions.

Based on this initial set, we began collecting human-annotated dense ground-truth cubes

throughout the various brain regions of the hemibrain, to assess variation in classifier performance

by brain region. From these cubes, we determined that although many regions had acceptable pre-

cision, there were some regions in which recall was lower than desired. Consequently, a subset of

cubes available at that time was used to train a new classifier focused on addressing recall in the

problematic regions. This new classifier was used in an incremental (cascaded) fashion, primarily by

adding additional predictions to the existing initial set. This gave better performance than complete

replacement using only the new classifier, with the resulting predictions able to improve recall while

largely maintaining precision.

As an independent check on synapse quality, we also trained a separate classifier

(Buhmann et al., 2019), using a modified version of the ‘synful’ software package. Both synapse pre-

dictors give a confidence value associated with each synapse, a measure of how firmly the classifier

believes the prediction to be a true synapse. We found that we were able to improve recall by taking

the union of the two predictor’s most confident synapses, and similarly improve precision by remov-

ing synapses that were low confidence in both predictions. Figure 5A and B show the results, illus-

trating the precision and recall obtained in each brain region.

Figure 5. Precision and recall for synapse prediction, panel (A) for T-bars, and panel (B) for synapses as a whole including the identification of PSDs. T-

bar identification is better than PSD identification since this organelle is both more distinct and typically occurs in larger neurites. Each dot is one brain

region. The size of the dot is proportional to the volume of the region. Humans proofreaders typically achieve 0.9 precision/recall on T-bars and 0.8

precision/recall on PSDs, indicated in purple. Data available in Figure 5—source datas 1–2.

The online version of this article includes the following source data for figure 5:

Source data 1. Data for Figure 5A.

Source data 2. Data for Figure 5B.
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Proofreading
Since machine segmentation is not perfect, we made a concerted effort to fix the errors remaining

at this stage by several passes of human proofreading. Segmentation errors can be roughly grouped

into two classes - ‘false merges’, in which two separate neurons are mistakenly merged together,

and ‘false splits’, in which a single neuron is mistakenly broken into several segments. Enabled by

advances in visualization and semi-automated proofreading using our Neu3 tool (Hubbard et al.,

2020), we first addressed large false mergers. A human examined each putative neuron and deter-

mined if it had an unusual morphology suggesting that a merge might have occurred, a task still

much easier for humans than machines. If judged to be a false merger, the operator identified dis-

crete points that should be on separate neurons. The shape was then resegmented in real time

allowing users to explore other potential corrections. Neurons with more complex problems were

then scheduled to be re-checked, and the process repeated until few false mergers remained.

In the next phase, the largest remaining pieces were merged into neuron shapes using a combi-

nation of machine-suggested edits (Plaza, 2014) and manual intuition, until the main shape of each

neuron emerged. This requires relatively few proofreading decisions and has the advantage of pro-

ducing an almost complete neuron catalog early in the process. As discussed below, in the section

on validation, emerging shapes were compared against genetic/optical image libraries (where avail-

able) and against other neurons of the same putative type, to guard against large missing or super-

fluous branches. These procedures (which focused on higher-level proofreading) produced a

reasonably accurate library of the main branches of each neuron, and a connectome of the stronger

neuronal pathways. At this point, there was still considerable variations among the brain regions,

with greater completeness achieved in regions where the initial segmentation performed better.

Finally, to achieve the highest reconstruction completeness possible in the time allotted, and to

enable confidence in weaker neuronal pathways, proofreaders connected remaining isolated frag-

ments (segments) to already constructed neurons, using NeuTu (Zhao et al., 2018) and Neu3

(Hubbard et al., 2020). The fragments that would result in largest connectivity changes were consid-

ered first, exploiting automatic guesses through focused proofreading where possible. Since proof-

reading every small segment is still prohibitive, we tried to ensure a basic level of completeness

throughout the brain with special focus in regions of particular biological interest such as the central

complex and mushroom body.

Figure 6. Division of the sample into brain regions. (A) A vertical section of the hemibrain dataset with synapse point clouds (white), predicted glial

tissue (green), and predicted fiber bundles (magenta). (B) Grayscale image overlaid with segmented neuropils at the same level as (A). (C) A frontal view

of the reconstructed neuropils. Scale bar: (A, B) 50 mm.
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Defining brain regions
In a parallel effort to proofreading, the sample was annotated with discrete brain regions. Our pro-

gression in mapping the cells and circuits of the fly’s brain bears formal parallels to the history of

mapping the earth, with many territories that are named and with known circuits, and others that still

lack all or most of these. For the hemibrain dataset, the regions are based on the brain atlas in

Ito et al., 2014. The dataset covers most of the right hemisphere of the brain, except the optic lobe

(OL), periesophageal neuropils (PENP) and gnathal ganglia (GNG), as well as part of the left hemi-

sphere (Table 2). It covers about 36% of all synaptic neuropils by volume, and 54% of the central

brain neuropils. We examined innervation patterns, synapse distribution, and connectivity of recon-

structed neurons to define the neuropils as well as their boundaries on the dataset. We also made

necessary, but relatively minor, revisions to some boundaries by considering anatomical features

that had not been known during the creation of previous brain maps, while following the existing

structural definitions (Ito et al., 2014). We also used information from synapse point clouds, a pre-

dicted glial mask, and a predicted fiber bundle mask to determine boundaries of the neuropils

(Figure 6A). The brain regions of the fruit fly (Figure 6, B and C) include synaptic neuropils and non-

synaptic fiber bundles. The non-synaptic cell body layer on the brain surface, which contains cell

bodies of the neurons and some glia, surrounds these structures. The synaptic neuropils can be fur-

ther categorized into two groups: delineated and diffuse neuropils. The delineated neuropils have

distinct boundaries throughout their surfaces, often accompanied by glial processes, and have clear

internal structures in many cases. They include the antennal lobe (AL), bulb (BU), as well as the neu-

ropils in the optic lobe (OL), mushroom body (MB), and central complex (CX). Remaining are the dif-

fuse neuropils, sometimes referred to as terra incognita, since most have been less investigated than

the delineated neuropils.

Diffuse (terra incognita) neuropils
In the previous brain atlas of 2014, boundaries of some terra incognita neuropils were somewhat

arbitrarily determined, due to a lack of precise information of the landmark neuronal structures used

for the boundary definition. In the hemibrain data, we adjusted these boundaries to trace more faith-

fully the contours of the structures that are much better clarified by the EM-reconstructed data.

Examples include the lateral horn (LH), ventrolateral neuropils (VLNP), and the boundary between

the crepine (CRE) and lateral accessory lobe (LAL). The LH has been defined as the primary projec-

tion target of the olfactory projection neurons (PNs) from the antennal lobe (AL) via several antennal

lobe tracts (ALTs) (Ito et al., 2014; Pereanu et al., 2010). The boundary between the LH and its sur-

rounding neuropils is barely visible with synaptic immunolabeling such as nc82 or predicted synapse

point clouds, as the synaptic contrast in these regions is minimal. The olfactory PNs can be grouped

into several classes, and the projection sites of the uniglomerular PNs that project through the

medial ALT (mALT), the thickest fiber bundle between the AL and LH, give the most conservative

and concrete boundary of the ‘core’ LH (Figure 7A). Multiglomerular PNs, on the other hand, proj-

ect to much broader regions, including the volumes around the core LH (Figure 7B). These regions

include areas which are currently considered parts of the superior lateral protocerebrum (SLP) and

posterior lateral protocerebrum (PLP). Since the ‘core’ LH roughly approximates the shape of the tra-

ditional LH, and the boundaries given by the multiglomerular PNs are rather diffused, in this study

we assumed the core to be the LH itself. Of course, the multiglomerular PNs convey olfactory infor-

mation as well, and therefore the neighboring parts of the SLP and PLP to some extent also receive

inputs from the antennal lobe. These regions might be functionally distinct from the remaining parts

of the SLP or PLP, but they are not explicitly separated from those neuropils in this study.

The VLNP is located in the lateral part of the central brain and receives extensive inputs from the

optic lobe through various types of the visual projection neurons (VPNs). Among them, the projec-

tion sites of the lobula columnar (LC), lobula plate columnar (LPC), lobula-lobula plate columnar

(LLPC), and lobula plate-lobula columnar (LPLC) cells form characteristic glomerular structures, called

optic glomeruli (OG), in the AOTU, PVLP, and PLP (Klapoetke et al., 2017; Otsuna and Ito, 2006;

Panser et al., 2016; Wu et al., 2016). We exhaustively identified columnar VPNs and found 41 types

of LC, two types of LPC, six types of LLPC, and three types of LPLC cells (including sub-types of pre-

viously identified types). The glomeruli of these pathways were used to determine the medial bound-

ary of the PVLP and PLP, following existing definitions (Ito et al., 2014), except for a few LC types
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Figure 7. Reconstructed brain regions and substructures. (A, B) Dorsal views of the olfactory projection neurons (PNs) and the innervated neuropils, AL,

CA, and LH. Uniglomerular PNs projecting through the mALT are shown in (A), and multiglomerular PNs are shown in (B). (C, D) Columnar visual

projection neurons. Each subtype of cells is color coded. LC cells are shown in (C), and LPC, LLPC, and LPLC cells are shown in (D). (E, F) The nine

layers of the fan-shaped body (FB), along with the asymmetrical bodies (AB) and the noduli (NO), displayed as an anterior-ventral view (E), and a lateral

Figure 7 continued on next page
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which do not form glomerular terminals. The terminals of the reconstructed LC cells and other lobula

complex columnar cells (LPC, LLPC, LPLC) are shown in Figure 7C and D, respectively.

In the previous paper (Ito et al., 2014), the boundary between the CRE and LAL was defined as

the line roughly corresponding to the posterior-ventral surface of the MB lobes, since no other

prominent anatomical landmarks were found around this region. In this dataset, we found several

glomerular structures surrounding the boundary both in the CRE and LAL. These structures include

the gall (GA), rubus (RUB), and round body (ROB). Most of them turned out to be projection targets

of several classes of central complex neurons, implying the ventral CRE and dorsal LAL are closely

related in their function. We re-determined the boundary so that each of the glomerular structures

would not be divided into two, while keeping the overall architecture and definition of the CRE and

LAL. The updated boundary passes between the dorsal surface of the GA and the ventral edge of

the ROB. Other glomerular structures, including the RUB, are included in the CRE.

Delineated neuropils
Substructures of the delineated neuropils have also been added to the brain region map in the hemi-

brain. The asymmetrical bodies (AB) were added as the fifth independent neuropil of the CX

(Wolff and Rubin, 2018). The AB is a small synaptic volume adjacent to the ventral surface of the

fan-shaped body (FB) that has historically been included in the FB (Ito et al., 2014). The AB has

been described as a Fasciclin II (FasII)-positive structure that exhibits left-right structural asymmetry

by Pascual et al., 2004, who reported that most flies have their AB only in the right hemisphere,

while a small proportion (7.6%) of wild-type flies have their AB on both sides. In the hemibrain data-

set, the pair of ABs is situated on both sides of the midline, but the left AB is notably smaller than

the right AB (right: 1679 mm3, left: 526 mm3), still showing an obvious left-right asymmetry. The

asymmetry is consistent with light microscopy data (Wolff and Rubin, 2018), though the absolute

sizes differ, with the light data showing averages (n = 21) of 522 mm3 for the right and 126 mm3 on

the left. The AB is especially strongly connected to the neighboring neuropil, the FB, by neurons

including vDeltaA_a (anatomical name AF in Wolff and Rubin, 2018), while it also houses both pre-

and postsynaptic terminals of the CX output neurons such as the subset of FS4A and FS4B neurons

that project to AB. These anatomical observations imply that the AB is a ventralmost annexed part

of the FB, although this possibility is neither developmentally nor phylogenetically proven.

The round body (ROB) is also a small round synaptic structure situated on the ventral limit of the

crepine (CRE), close to the b lobe of the MB (Lin et al., 2013; Wolff and Rubin, 2018). It is a glo-

merulus-like structure and one of the foci of the CX output neurons, including the PFR (protocerebral

bridge – fan-shaped body – round body) neurons. It is classified as a substructure of the CRE along

with other less-defined glomerular regions in the neuropil, many of which also receive signals from

the CX. Among these, the most prominent one is the rubus (RUB). The ROB and RUB are two dis-

tinct structures; the RUB is embedded completely within the CRE, while the ROB is located on the

ventrolateral surface of the CRE. The lateral accessory lobe (LAL), neighboring the CRE, also houses

similar glomerular terminals, and the gall (GA) is one of them. While the ROB and GA have relatively

clear boundaries separating them from the surrounding regions, they may not qualify as indepen-

dent neuropils because of their small size and the structural similarities with the glomerulus-like ter-

minals around them. They may be comparable with other glomerular structures such as the AL

glomeruli and the optic glomeruli in the lateral protocerebrum, both of which are considered as sub-

structures of the surrounding neuropils.

Substructures of independent neuropils are also defined using neuronal innervations. The five MB

lobes on the right hemisphere are further divided into 15 compartments (a1–3, a’1–3, b1–2, b’1–2,

and g1–5) (Tanaka et al., 2008; Aso et al., 2014) by the mushroom body output neurons (MBONs)

and dopaminergic neurons (DANs). Our compartment boundaries were defined by approximating

the innervation of these neurons. Although the innervating regions of the MBONs and DANs do not

Figure 7 continued

view (F). In (E), three FB tangential cells (FB1D (blue), FB3A (green), FB8H (purple)) are shown as markers of the corresponding layers (FBl1, FBl3, and

FBl8, respectively). (G) Zones in the ellipsoid body (EB) defined by the innervation patterns of different types of ring neurons. In this horizontal section

of the EB, the left side shows the original grayscale data, and the seven ring neuron zones (see Table 1) are color-coded. The right side displays the

seven segmented zones based on the innervation pattern, in a slightly different section. Scale bar: 20 mm.
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perfectly tile the entire lobes, the compartments have been defined to tile the lobes, so that every

synapse in the lobes belongs to one of the 15 compartments.

The anatomy of the central complex is discussed in detail in the companion paper ‘A complete

synaptic-resolution connectome of the Drosophila melanogaster central complex’. Here, we summa-

rize the division of its neuropils into compartments.

The FB is subdivided into nine horizontal layers (FBl1-9) (Figure 7E and F) as already illustrated

(Wolff et al., 2015). The layer boundaries in our dataset were determined by the pattern of innerva-

tion of 574 FB tangential cells, which form nine groups depending on the dorsoventral levels they

innervate in the FB. Since tangential cells overlap somewhat, and do not entirely respect the layer

boundaries, these boundaries were chosen to maximize the containment of the tangential arbors

within their respective layers.

The EB is likewise subdivided into zones by the innervating patterns of the EB ring neurons, the

most prominent class of neurons innervating the EB. The ring neurons have six subtypes, ER1-ER6,

and each projects to specific zones of the EB. Among them, the regions innervated by ER2 and ER4

are mutually exclusive but highly intermingled, so these regions are grouped together into a single

zone (EBr2r4). ER3 has the most neurons among the ring neuron subtypes and is further grouped

into five subclasses (ER3a, d, m, p, and w). While each subclass projects to a distinct part of the EB,

the innervation patterns of the subclasses ER3a and ER3m, and also ER3p and ER3w, are very similar

to each other. The region innervated by ER3 is, therefore, subdivided into three zones, including

EBr3am, EBr3pw, and EBr3d. Along with the other three zones, EBr1, EBr5, and EBr6 (innervated by

ER1, ER5, and ER6), the entire EB is subdivided into seven non-overlapping zones (Figure 7G).

Unlike other zones, EBr6 is innervated only sparsely by the ER6 cells, with the space filled primarily

by synaptic terminals of other neuron types, including the extrinsic ring neurons (ExR). Omoto et al.,

2017 segmented the EB into five domains (EBa, EBoc, EBop, EBic, EBip) by the immunolabeling pat-

tern of DN-cadherin, and each type of the ring neurons may innervate more than one domain in the

EB. Our results show that the innervation pattern of each ring neuron subtype is highly compartmen-

talized at the EM level and the entire neuropil can be sufficiently subdivided into zones based purely

on the neuronal morphologies. The neuropil may be subdivided differently if other neuron types,

such as the extrinsic ring neurons (ExR) (Omoto et al., 2018), are recruited as landmarks.

Quality of the brain region boundaries
Since many of the terra incognita neuropils are not clearly partitioned from each other by solid

boundaries such as glial walls, it is important to evaluate if the current boundaries reflect anatomical

and functional compartments of the brain. To check our definitions, which are mostly based on mor-

phology, we compute metrics for each boundary between any two adjacent neuropil regions. The

first is the area of each boundary, in square microns, as shown in Figure 8A. The map shows results

for brain regions that are over 75% in the hemibrain region, restricted to right regions with excep-

tion to the asymmetric AB(L). By restricting our analysis to the right part of the hemibrain, we hope-

fully minimize the effect of smaller, traced-but-truncated neuron fragments on our metric.

Next, for each boundary, we compute the number of ‘excess’ neuron crossings by traced neu-

rons, where excess crossings are defined as 0 for a neuron that does not cross the boundary, and

n� 1 for a neuron crosses the same boundary n times. There is no contribution to the metric from

neurons that cross a boundary once, since most such crossings are inevitable no matter where the

boundary is placed. Figure 8B shows the number of excess crossings normalized by the area of

boundary. A bigger dot indicates a potentially less well-defined boundary.

We spot checked many of the instances and in general note that the brain regions with high

excess crossings per area, such as those in SNP, INP and VLNP, tend to have less well-defined

boundaries. In particular, the boundaries at SMP/CRE, CRE/LAL, SMP/SIP, and SIP/SLP have worse

scores, indicating these boundaries may not reflect actual anatomical and functional segregation of

the neuropils. These brain regions were defined based on the arborization patterns of characteristic

neuron types, but because neurons in the terra incognita neuropils tend to be rather heterogeneous,

there are many other neuron types that do not follow these boundaries. The boundary between the

FB and the AB also has a high excess crossing score, suggesting the AB is tightly linked to the neigh-

boring FB.
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Figure 8. Quality checks of the brain compartments. (A) Areas of the boundaries (in square microns) between adjacent neuropils, indicated on a log

scale. (B) The number of excess crossings normalized by the area of neuropil boundary. Larger dots indicate a more uncertain boundary. Data available

in Figure 8—source data 1.

Figure 8 continued on next page
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Insights for a whole-brain remapping
The current brain regions based on Ito et al., 2014 contain a number of arbitrary determinations of

brain regions and their boundaries in the terra incognita neuropils. In this study, we tried to solidify

the ambiguous boundaries as much as possible using the information from the reconstructed neu-

rons. However, large parts of the left hemisphere and the subesophageal zone (SEZ) are missing

from the hemibrain dataset, and neurons innervating these regions are not sufficiently reconstructed.

This incompleteness of the dataset is the main reason that we did not alter the previous map drasti-

cally and kept all the existing brain regions even if their anatomical and functional significance is not

obvious. Once a complete EM volume of the whole fly brain is imaged and most of its 100,000 neu-

rons are reconstructed, the entire brain can be re-segmented from scratch with more comprehensive

anatomical information. Arbitrary or artificial neuropil boundaries will thereby be minimized, if not

avoided, in a new brain map. Anatomy-based neuron segmentation strategies such as NBLAST may

be used as neutral methods to revise the neuropils and their boundaries. Any single method, how-

ever, is not likely to produce consistent boundaries throughout the brain, especially in the terra

incognita regions. It may be necessary to use different methods and criteria to segment the entire

brain into reasonable brain regions. Such a new map would need discussion in a working group, and

approval from the community in advance (as did the previous map [Ito et al., 2014]), insofar as it

would replace the current map and therefore require a major revision of the neuron mapping

scheme.

Cell type classification
Defining cell types for groups of similar neurons is a time-honored means to help to understand the

anatomical and functional properties of a circuit. Presumably, neurons of the same type have similar

circuit roles. However, the definition of what is a distinct cell type and the exact delineation between

one cell type and another remains inherently subjective and represents a classic taxonomic chal-

lenge, pitting ‘lumpers’ against ‘splitters’. Therefore, despite our best efforts, we recognize that our

typing of cells may not be identical to that proposed by other experts. We expect future revisions to

cell type classification, especially as additional dense connectome data become available.

One common method of cell type classification, used in flies, exploits the GAL4 system to high-

light the morphology of neurons having similar gene expression (Jenett et al., 2012). Since these

genetic lines are imaged using fluorescence and confocal microscopy, we refer to them as ‘light

lines’. Where they exist and are sufficiently sparse, light lines provide a key method for identifying

types by grouping morphologically similar neurons together. However, there are no guarantees of

coverage, and it is difficult to distinguish between neurons of very similar morphology but different

connectivity.

We enhanced the classic view of morphologically distinct cell types by defining distinct cell types

(or sub-types) based on both morphology and connectivity. Connectivity-based clustering often

reveals clear cell type distinctions, even when genetic markers have yet to be found, or when the

neuronal morphologies of different types are hardly distinguishable in optical images. For example,

the two PEN (protocerebral bridge - ellipsoid body - noduli) neurons have very similar forms but

quite distinct inputs (Figure 9; Turner-Evans et al., 2019) Confirming their differences, PEN1 and

PEN2 neurons, in fact, have been shown to have different functional activity (Green et al., 2017).

Based on our previous definition of cell type, many neurons exhibit a unique morphology or con-

nectivity pattern at least within one hemisphere of the brain (with a matching type in the other hemi-

sphere in most cases). Because our hemibrain volume covers only the right-side examples of

ipsilaterally-projecting neurons, and the contralateral arborizations of bilaterally-projecting neurons

arising from the left side of the brain were in practice very difficult to match to neurons in the right

side, many partial neurons were therefore left uncategorized. As a result, many neuron types consist-

ing of a distinct morphology and connectivity have only a single example in our reconstruction.

Figure 8 continued

The online version of this article includes the following source data for figure 8:

Source data 1. Data for Figure 8.
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It is possible to provide coarser groupings of neurons. For instance, most cell types are grouped

by their cell body fiber representing a distinct clonal unit, which we discuss in more detail below.

Furthermore, each neuron can be grouped with neurons that innervate similar brain regions. In this

paper, we do not explicitly formalize this higher level grouping, but data on the innervating brain

regions can be readily mined from the dataset.

Methodology for assigning cell types and nomenclature
Assigning types and names to the more than 20,000 reconstructed cells was a difficult undertaking.

Less than 20% of neuron types found in our data have been described in the literature, and half of

our neurons have no previously annotated type. Adding to the complexity, prior work focused on

morphological similarities and differences, but here we have, for the first time, connectivity informa-

tion to assist in cell typing as well.

Many cell types in well-explored regions have already been described and named in the litera-

ture, but existing names can be both inconsistent and ambiguous. The same cell type is often given

differing names in different publications, and conversely, the same name, such as PN for projection

neuron, is used for many different cell types. Nonetheless, for cell types already named in the litera-

ture (which we designate as published cell types, many indexed, with their synonyms, at http://vir-

tualflybrain.org), we have tried to use existing names. In a few cases, using existing names created

conflicts, which we have had to resolve. ‘R1’, for example, has long been used both for photorecep-

tor neurons innervating the lamina and medulla, and ring neurons in the ellipsoid body of the central

complex. Similarly, ‘LN’ has been used to refer to lateral neurons in the circadian clock system, ‘local

neurons’ in the antenna lobe, and LAL-Nodulus neurons in the central complex. To resolve these

conflicts, the ellipsoid body ring neurons are now named ’ER1’ instead of ‘R1’, and the nodulus neu-

rons are now ‘LNO’ and ’GLNO’ instead of ‘LN’ and ‘GLN’. The names of the antennal lobe local

Figure 9. An example of two neurons with very similar shapes but differing connectivities. PEN1 is on the left, PEN2 on the right.
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neuron are always preceded by lowercase letters for their cell body locations to differentiate them

from the clock neuron names, for example, lLN1 versus LNd. Similarly, ‘dorsal neurons’ of the circa-

dian clock system and ‘descending neurons’ in general, both previously abbreviated as ‘DN’, are dis-

tinguished by the following characters - numbers for the clock neurons (e.g. DN1) and letters for

descending neurons (e.g. DNa01).

Overall, we defined a ‘type’ of neurons as either a single cell or a group of cells that have a very

similar cell body location, morphology, and pattern of synaptic connectivity. We were able to trace

from arborizations to the cell bodies for 15,912 neurons in the hemibrain volume, » 85% of which

are located in the right side of the brain while the rest are in the medialmost part of the left-side

brain.

We classified these neurons in several steps. The first step classified all cells by their lineage,

grouping neurons according to their bundle of cell body fibers (CBFs). Neuronal cell bodies are

located in the cell body layer that surrounds the brain, and each neuron projects a single CBF

towards synaptic neuropils. In the central brain, cell bodies of clonally related neurons deriving from

a single stem cell (called a neuroblast in the insect brain) tend to form clusters, from each of which

arises one or several bundles of CBFs. Comparing the location, trajectory, and the combined arbori-

zation patterns of all the neurons that arise from a particular CBF with the light microscopy (LM)

image data of the neuronal progeny that derive from single neuroblasts (Ito et al., 2013; Yu et al.,

2013), we confirmed that the neurons of each CBF group belong to a single lineage.

We carefully examined the trajectory and origins of CBFs of the 15,752 neurons on the right cen-

tral brain and identified 192 distinct CBF bundles. Neurons arising from four specific CBF bundles

arborize primarily in the contralateral brain side, which is not fully covered in the hemibrain volume.

We characterized these neurons using the arborization patterns in the right-side brain that are

formed by the neurons arising from the left-side CBFs.

The CBF bundles and associated neuronal cell body clusters were named according to their loca-

tion (split into eight sectors of the brain surface with the combination of Anterior/Posterior, Ventral/

Dorsal, and Medial/Lateral) and a number within the sector given according to the size of cell popu-

lation. Thus, CBF group ADM01 is the group with the largest number of neurons in the Anterior Dor-

sal Medial sector of the brain’s surface (see the cellBodyFiber field of the Neuprint database

explained later). For the neurons of the four CBF bundles that arborize primarily in the contralateral

brain side - AVM15, 18, 19, and PVM10 - we indicated CBF information in the records of the left-

side neurons.

Among the 192 bundles, 155 matched the CBF bundles of 92 known and six newly identified

clonal units (Ito et al., 2013; Yu et al., 2013), a population of neurons and neuronal circuits derived

from a single stem cell. The remaining 37 CBF bundles are minor populations and most likely of

embryonic origin. In addition, we found 80 segregated cell body fiber bundles (SCB001-080, total-

ling 112 cells) with only one or two neurons per bundle. Many of them are also likely of embryonic

origin.

We were able to identify another 6682 neurons that were not traced up to their cell bodies. For

the neurons that arise from the contralateral side, we gave matching neuron names and associated

CBF information, provided their specific arborization patterns gave us convincing identity informa-

tion by comparison with cells that we identified in the right side of the brain. For the neurons arising

from the ventralmost part of the brain outside of the hemibrain volume, we identified and gave

them names if we could find convincingly specific arborization patterns, even if the CBF and cell

body location data were missing. Sensory neurons that project to the specific primary sensory cen-

ters were also identified insofar as possible. In total, we typed and named 22,594 neurons.

Different stem cells sometimes give rise to neurons with very similar morphologies. We classified

these as different types because of their distinct developmental origin and slightly different locations

of their cell bodies and CBFs. Thus, the next step in neuron typing was to cluster neurons within

each CBF group. This process consisted of three further steps, as shown in Figure 10. First, we used

NBLAST (Costa et al., 2016) to subject all the neurons of a particular CBF group to morphology-

based clustering. Next, we used CBLAST, a new tool to cluster neurons based on synaptic connectiv-

ity (see the next section). This step is an iterative process, using neuron morphology as a template,

regrouping neurons after more careful examination of neuron projection patterns and their connec-

tions. Neurons with similar connectivity characteristics but with distinguishable shapes were catego-

rized into different morphology types. Those with practically indistinguishable shapes but with
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different connectivity characteristics were categorized into connectivity types within a morphology

type. Finally, we validated the cell typing with extensive manual review and visual inspection. This

review allowed us both to confirm cell type identity and help ensure neuron reconstruction accuracy.

In total we identified 5229 morphology types and 5609 connectivity types in the hemibrain dataset.

(See Table 3 for the detailed numbers and Appendix 1—table 6 for naming schemes for various

neuron categories.)

In spite of this general rule, we assigned the same neuron type name for the neurons of different

lineages in the following four cases.

. Mushroom body intrinsic neurons called Kenyon cells, which are formed by a set of four near-
identical neuroblasts (Ito et al., 1997) (see also the accompanying MB paper).

Figure 10. Workflow for defining cell types.
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. Columnar neurons of the central complex, where neurons arising from different stem cells
form repetitive column-like arrangement and are near identical in terms of connectivity with
tangential neurons (Hanesch et al., 1989; Wolff et al., 2015; Wolff and Rubin, 2018) (and
the accompanying CX paper).

. The PAM cluster of the dopaminergic neurons, where one of the hemilineages of the two
clonal units forms near identical set of neurons (Lee et al., 2020) (accompanying MB paper).

Table 3. Summary of the numbers and types of the neurons in the hemibrain EM dataset.

m-types is the number of morphology types; c-types the number of connectivity types; and c/t the average number of cells per con-

nectivity type. Brain regions with repetitive array architecture tend to have higher average numbers of cells per type (see Figure 12).

The cell number includes » 4000 neurons on the contralateral side, and the percentage of contralateral cells varies between 0 and

» 50% depending on the category. For example, the central complex includes neurons on both sides of the brain, the mushroom

body neurons are identified mostly on the right side, and many left-side antennal lobe sensory neurons are included as they tend to

terminate bilaterally. Because of these differences, the figures shown above do not indicate the number of cells (or cell number per

type) per brain side.

Brain regions (neuropils) or neuron types Cells m-types c-types C/t Notes

Central complex neuropil neurons 2826 224 262 10.8

Mushroom body neuropil neurons 2315 72 80 28.9 Including MB-associated DANs

Mushroom body neuropil neurons 2003 51 51 39.3 Excluding MB-associated DANs

Dopaminergic neurons (DANs) 335 35 43 7.8 Including MB-associated DANs

Dopaminergic neurons (DANs) 23 14 14 1.7 Excluding MB-associated DANs

Octopaminergic neurons 19 10 10 1.9

Serotonergic (5HT) neurons 9 5 5 1.8

Peptidergic and secretory neurons 51 12 14 3.6

Circadian clock neurons 27 7 7 3.9

Fruitless gene expressing neurons 84 29 30 2.8

Visual projection neurons and lobula intrinsic neurons 3723 160 160 23.3

Descending neurons 103 51 51 2.0

Sensory associated neurons 2768 67 67 41.3

Antennal lobe neuropil neurons 604 284 294 2.1

Lateral horn neuropil neurons 1496 517 683 2.2

Anterior optic tubercle neuropil neurons 243 77 80 3.0

Antler neuropil neurons 81 45 45 1.8

Anterior ventrolateral protocerebrum neuropil neurons 1276 596 629 2.0

Clamp neuropil neurons 746 364 382 2.0

Crepine neuropil neurons 333 108 115 2.9

Inferior bridge neuropil neurons 264 119 119 2.2

Lateral accessory lobe neuropil neurons 429 204 206 2.1

Posterior lateral protocerebrum neuropil neurons 480 255 260 1.8

Posterior slope neuropil neurons 621 303 311 2.0

Posterior ventrolateral protocerebrum neuropil neurons 348 151 156 2.2

Saddle neuropil and antennal mechanosensory and motor center neurons 219 96 99 2.2

Superior lateral protocerebrum neuropil neurons 1096 468 494 2.2

Superior intermediate protocerebrum neuropil neurons 220 90 92 2.4

Superior medial protocerebrum neuropil neurons 1494 605 629 2.4

Vest neuropil neurons 137 84 85 1.6

Wedge neuropil neurons 559 212 230 2.4

Total 22,594 5229 5609 4.0
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. Cell body fiber groupings for neurons of the lateral horn, where systematic neuron names have
already been given based on the light microscopy analysis (Frechter et al., 2019), which did
not allow for the precise segregation of very closely situated CBF bundles. Individual cell types
exist within the same lineage, however.

‘Lumping’ versus ‘splitting’ is a difficult problem for classification. Following the experiences of

taxonomy, we opted for splitting when we could not obtain convincing identity information, a deci-

sion designed to ease the task of future researchers. If we split two similar neuron types into Type 1

and Type 2, then there is a chance future studies might conclude that they are actually subsets of a

common cell type. If so, then at that time we can simply merge the two types as Type 1, and leave

the other type name unused, and publish a lookup table of the lumping process to keep track of the

names that have been merged. The preceding studies can then be re-interpreted as the analyses on

the particular subsets of a common neuron type. If, on the contrary, we lump the two similar neurons

into a common type, then a later study finds they are actually a mixture of two neuron types, then it

would not be possible to determine which of the two neuron types, or a mixture of them, was ana-

lyzed in preceding studies.

In the hemibrain, using the defined brain regions (neuropils) and reference to known expression

driver strains, we were able to assign a cell type to many cells. Where possible, we matched previ-

ously defined cell types with those labeled in light data using a combination of Neuprint, an interac-

tive analysis tool (described later), Color_MIP_mask search (Otsuna et al., 2018), and human

Figure 11. The number of cell types in each major brain region. The total number of cell types shown in this graph is larger than the total number of

cell types shown in Table 3, because types that arborize in multiple regions are counted in each region in which they occur. Data available in

Figure 11—source data 1.

The online version of this article includes the following source data for figure 11:

Source data 1. Data for Figure 11.
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recognition to find the matching cell types, especially in well-explored neuropils such as the mush-

room body and central complex, where abundant cell type information was already available and

where we are more confident in our anatomical expertise (see the accompanying MB and CX

papers). Even though most of the cell types in the MB and CX were already known, we still found

new cell types in these regions, an important vindication of our methods. In these cases, we tried to

name them using the existing schemes for these regions, and further refined these morphological

groupings with relevant information on connectivity.

To give names to neuron types, we categorized neurons that share certain characteristics into

groups and distinguished individual types by adding identifiers (IDs) with numbers, uppercase let-

ters, or combinations of these. (See Appendix 1—table 6 for the summary of the naming schemes

of all the neuron types). For example, the tangential neurons of the fan-shaped body (FB) of the cen-

tral complex were grouped as ‘FB’, and an ID of their primary innervating FB layer was added with

numbers 1–9. Different types of neurons that arborize in each layer were further distinguished by

uppercase letters. Thus, for example the FB7B neurons are the second type of tangential neurons

that arborize in the seventh layer of FB. We also used uppercase letters to subdivide the neuron

types that have previously been reported as a single type to keep naming consistency. For example,

a population of antennal lobe local neurons that has been known as LN2L was divided into five mor-

phology subtypes as lLN2F, 2P, 2R, 2S, and 2T for their full, patchy, regional, star-like and tortuous

arborization patterns while still indicating that they are part of the LN2 population. The letter ‘L’ at

the end of the previous name, which referred to the cell body location on the lateral side of the AL,

was moved in front of LN to keep consistency with the established naming scheme for the olfactory

projection neurons (e.g., DA1_lPN).

Neuron types that are known to exist were sometimes not identified in the particular brain sample

used for the hemibrain EM dataset. In such cases, the corresponding ID numbers were kept blank.

For example, the MBON08 neurons were not identified in the current sample and the number was

therefore skipped.

Although the morphology type names generally end with either numbers or uppercase letters, in

a few cases lower case letters were used for distinguishing morphological subtypes to keep the nam-

ing convention of that cell group consistent. For example, subtypes of the neurons in the optic lobes

were distinguished as, for example LC28a and LC28b, because such subtypes of the optic lobe neu-

rons have historically been distinguished by lowercase letters.

If neurons of near-identical morphology could be further subdivided into different connectivity

types, they were suffixed with an underscore and a lowercase letter, for example FB2F_a, FB2F_b,

and FB2F_c. A neuron type without such a suffix consists of a single connectivity type.

The cell type names are indicated in the ‘type’ field of the NeuPrint database. In the ‘instance’

field, information about the side of the neuronal cell body, when it is known, is added as _R and _L

after the cell type name. The name of the CBF group is indicated in the ‘cellBodyFiber’ field of the

right-side neurons except for those that belong to AVM15, 18, 19, and PVM10 groups, and in the

same field of the left-side neurons for those four CBF groups. For the rest of the neurons, the CBF

information is shown in the ‘instance’ field in parentheses when it is known.

Across the brain, we looked for neurons that correspond to already known cell types, and as far

as possible gave them consistent names. These include: olfactory projection neurons and local neu-

rons associated with the antennal lobe (Tanaka et al., 2012; Bates et al., 2020; Marin et al., 2020),

neurons associated with the lateral horn (Dolan et al., 2019; Frechter et al., 2019; Bates et al.,

2020), aminergic and peptidergic neurons (Bergland et al., 2012; Busch et al., 2009; Mao and

Davis, 2009; Martelli et al., 2017; Pech et al., 2013; Pooryasin and Fiala, 2015; Shao et al., 2017;

White et al., 2010), neurons associated with the circadian clock (Helfrich-Förster et al., 2007), and

neurons that express the fruitless gene (Cachero et al., 2010; Yu et al., 2010; Zhou et al., 2014;

Wang et al., 2020).

In some cases, we found candidate neurons that do not precisely match previously identified neu-

rons. For example, in addition to the three cell types that match the octopaminergic (OA) neurons

OA-ASM1, 2 and 3 (Busch et al., 2009), we found two neuron types in the same location that

appear to match some of the tdc2-Gal4 expressing neurons in the FlyCircuit database of single-cell

labeling images (Chiang et al., 2011). Because of the remaining uncertainty we gave them the

canonical names SMP143 and SMP149, but added ‘Tdc2 (OA)-ASM candidates’ in the Notes field.

We also found that the FB2B neurons share the same cell body location and appear to match
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another type of tdc2-Gal4 expressing neurons in the FlyCircuit database. Although OA-immunoreac-

tive neurites have been observed in the FB (Sinakevitch et al., 2005), it is not known from where

they are derived. Considering that the particular neurons may produce only tyramine (TA) but not

OA, we added ‘Tdc2 (TA)-ASM candidates’ in the Notes. Due to similar considerations, the number

of candidate neurons may not match the actual known numbers for many neuron types.

For the multiglomerular olfactory projection neurons and local interneurons of the antennal lobe,

we devised new naming schemes by expanding the naming scheme of uniglomerular projection neu-

rons, which consists of the contributing antennal lobe glomerulus and the location of the cell body

cluster (Bates et al., 2020; Marin et al., 2020). Because the list of contributing glomeruli is not a

useful designator for the multiglomerular projection neurons, we used information about the anten-

nal lobe tract (ALT) projection pathways instead. Unique type ID numbers were then added at the

end of the names of the multiglomerular projection neurons (1-92) and local neurons (1-50). For the

local neurons LN1-6 the numbers were kept consistent with the published neuron names

(Tanaka et al., 2012); for the newly identified local neurons and for the multiglomerular projection

neurons, ID numbers were sorted according to the cell body location from dorsal to ventral.

For the neurons associated with the lateral horn, we expanded the existing naming scheme

(names such as PV5a1) based on the cell body cluster location (uppercase letters and first number),

anatomically associated groups (lower case letter), and individual neuron type (last number), which

has previously been applied for »30% of the lateral horn neurons (Frechter et al., 2019;

Figure 12. Histogram showing the number of cell types with a given number of constituent cells. Data available in Figure 12—source data 1.

The online version of this article includes the following source data for figure 12:

Source data 1. Data for Figure 12.
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Bates et al., 2020). The neuron types that have been defined in the lateral horn sometimes contain

slightly larger morphological varieties of neurons than would be categorized as different types in the

hemibrain volume. To reconcile this slight discrepancy while keeping the published neuron type

names as consistent as possible, in some cases we used suffices _a, _b, etc., for distinguishing not

only the neurons that are different in their connectivity but also those that have minute but distinct

morphological differences. Because of this technical issue more neurons are distinguished by suffices

in the lateral horn than in other brain regions.

In cases where we gave new neuron names to the already known ones, or slightly modified the

existing names for the sake of naming scheme consistency, we indicated the most commonly used

previous names in the notes field, from where users can look for further synonyms using the Virtual

Fly Brain database (http://virtualflybrain.org).

For the optic lobe neurons, we categorized only the VPNs based primarily on the specific projec-

tion patterns of their axon terminals in the central brain. Newly identified neuron types were given

higher numbers than those already used (Fischbach and Dittrich, 1989; Panser et al., 2016;

Otsuna and Ito, 2006; Hausen, 1984). Neurons that arborize only in the optic lobe are not classi-

fied, except for several intrinsic neurons in the lobula, because the hemibrain dataset does not pro-

vide enough information about their projection patterns in the optic lobe for conclusive cell typing.

Olfactory-, thermo-, and hygro-receptor (sensory) neurons were named according to their target

glomeruli in the antennal lobe (Fishilevich and Vosshall, 2005; Couto et al., 2005; Gallio et al.,

2011; Enjin et al., 2016; Frank et al., 2017; Marin et al., 2020). Some of the auditory receptor neu-

rons (Johnston’s organ neurons) were also identified, but their precise target zones in the antennal

mechanosensory and motor center (Kamikouchi et al., 2006) were not determined because of the

insufficient information in the hemibrain image volume.

The neurons associated with the ocellar ganglion (OCG), a detached ganglion just beneath the

ocelli, were categorized into eight types based on the morphology of their terminals in the central

brain. Precise classification of OCG neurons is not possible without the projection pattern informa-

tion in the OCG. To remedy this problem the neurons that share the common projection patterns

within the brain were classified as OCG1, OCG2, etc., and when the projection pattern information

in the OCG is available they will be classified in more detail as OCG1A, OCG1B, etc.

Outside the heavily studied regions, and the neuron types explained above, the fly’s circuits are

largely composed of cells of so-far unknown type. Because such neurons, in what is called the terra

incognita of the fly brain, account for nearly 70% of the total neuron types, it was necessary to devise

a systematic naming scheme to give them names that annotate reasonable morphological character-

istics and are easy to pronounce. About 40% of these neurons extend their projections to regions

outside of the imaged volume of the hemibrain EM dataset, such as the contralateral brain side, the

ventralmost parts of the brain, and the optic lobes. Since whole brain reconstructions of such neu-

rons will soon become available, the naming scheme should provide reasonable names for the neu-

rons that are not fully traceable within the hemibrain image volume.

To address this problem, we tested various naming schemes using single-cell LM images of about

500 neuron types in these regions. LM images have much lower spatial resolution but visualize entire

projection patterns across the brain compared to the EM data. We found the regions (neuropils) of

the central brain with the most extensive arborization by counting the voxel numbers of the three-

dimensional LM data. We also simulated the numbers of output and input synapses available in the

EM data by assessing the number of boutons and spines - characteristic morphology of output and

input synaptic sites - in the LM images. Regions with the largest number of output synapses tend to

lie on the contralateral side of the brain, out of the hemibrain volume, making it difficult to use EM

information as a primary determining factor. Regions with the largest number of input synapses

often showed discrepancies between EM and LM images, mainly due to the varying completeness of

fine dendritic fragments in the EM data. We found the names based on the neuropils with the larg-

est number of voxels gave the most consistent names, regardless of whether we used the informa-

tion of the entire brain or only the image area that corresponds to the hemibrain volume. Because

the still unmapped fragments of input dendritic arborizations are thin and tiny, with much smaller

volumes compared to the already mapped major branches, we found the voxel counts of dendrites

are much less affected by potential incompleteness than the counts of input synapses.

We then applied the above LM-based naming scheme to the EM data of terra incognita neurons,

and found that naming based on EM voxel count matched with either the neuropils with the largest
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or second-largest number of output or input synapses for more than 95% of the neuron types. For

the remaining types, we took the neuropil names with the second largest voxel numbers, which

resulted in near-perfect match with the neuron type name and either the region of the most major

or second major output/input synapses, making the names reasonable for connectivity analysis.

There is one more factor we had to consider. Certain groups of neuron types tend to share com-

mon core projection patterns and differ slightly only in the extent of arbors in each neuropil. For

functional interpretation it would be more convenient if such neurons were classified into the same

category of neuropils. If we gave names simply to individual neuron types, however, such neurons

tend to be scattered into various neuropil categories affected by the slight differences of arboriza-

tion patterns. To address this problem, we performed NBLAST morphological clustering with a

higher threshold than used for individual neuron typing, to group the neurons that share the same

CBF bundle and rather similar morphology into a common neuropil category. This additional pro-

cess, however, sometimes caused mismatches between the resulting neuropil name and the most

major or second major output/input synapses if the arborization pattern of that neuron type deviates

too much from the rest of the group. In these cases we split such neuron types from the group and

assigned them into more appropriate neuropil categories.

Between 45 and 630 neuron types were assigned into each neuropil category and distinguished

with three-digit ID numbers, for example SLP153 and WED048, using the standard nomenclature

abbreviations of the neuropils (Ito et al., 2014). We gave sequential numbers to the neuron types

that share the same CBF bundles and common core projection patterns so that neurons with similar

appearance would be assigned similar names, as far as possible. Within each CBF group, neurons

are sorted from the ones with broader and more extensive projections to the ones with restricted

local arborizations. Because of this numbering scheme, broadly arborizing neurons have scattered

numbers within the number range of each neuropil category, depending on the CBF groups they

belong to.

Results of cell typing
Using the workflow of Figure 10, we identified 22,594 neurons with 5229 morphological types and

5609 connectivity types (Table 3). Over 2000 of these are types with only a single instance, although

presumably, for a whole brain reconstruction, most of these types would have partners on the oppo-

site side of the brain.

Figure 11 shows the number of distinct neuron types found in different brain regions. Figure 12

shows the distribution of the number of neurons in each cell type.

In spite of our extensive efforts, the assignment of type names to neurons is still ongoing.

Because we opted for splitting rather than lumping of hard to differentiate cell types, it is possible

that some of the neuron types may be merged with others in the future. In such cases, the number

that is unused after the merger should not be re-used for other later-discovered neuron types, in

order to avoid confusion. There may also be cases where neuron types could be split, or that neuron

types that are missing in the current brain sample might be identified in EM or LM images of other

brain samples. In such cases the newly identified neurons are expected to be given numbers above

the current number range.

Although cell types and names may change, and indeed have already changed between versions

v1.0 and v1.1 of our reconstruction, what will not change are the unique body ID numbers given in

the database that refer to a particular (traced) cell in this particular image dataset. We strongly

advise that such body IDs be included in any publications based on our data to avoid confusion as

cell type names evolve.

CBLAST
As part of our effort to assign cell types, we built a tool for cell type clustering based on neuron con-

nectivity, called CBLAST (by analogy with the existing NBLAST [Costa et al., 2016], which forms

clusters based on the shapes of neurons). The overall flow of the tool is described in Figure 13, and

the code and instructions on how to install and run it can be found at https://github.com/connec-

tome-neuprint/CBLAST (Plaza and Dreher, 2020; copy archived at https://github.com/elifesciences-

publications/CBLAST).
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Partitioning a network into clusters of nodes that exhibit similar connectivity is known as commu-

nity detection or graph clustering (Fortunato and Hric, 2016). Numerous methods have been pro-

posed for selecting such partitions, the best known being the stochastic block model. To non-

theoreticians, the process by which most methods choose a partitioning is not intuitive, and the

results are not easily interpretable. Furthermore, most approaches do not readily permit a domain

expert to guide the partitioning based on their intuition or on other features of the nodes that are

not evident in the network structure itself. In contrast, CBLAST is based on traditional data clustering

concepts, leading to more intuitive results. Additionally, users can apply their domain expertise by

manually refining the partitioning during successive iterations of the procedure. This is especially

useful in the case of a network like ours, in which noise and missing data make it difficult to rely

solely on connectivity to find a good partitioning automatically. Additionally, other graph clustering

methods do not accommodate the notion of left-right symmetry amongst communities, a feature

that is critical for assigning cell types in a connectome.

CBLAST clusters neurons together using a similarity feature score defined by how the neuron dis-

tributes inputs and outputs to different neuron types. However, this is a circular requirement since

neuron types must already be defined to use this technique. CBLAST therefore uses an iterative

approach, refining cell type definitions successively. Initial cell type groups are putatively defined

Figure 13. Overview of the operation of CBLAST.
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using an initial set of features based on morphological overlap as in NBLAST and/or based on the

distribution of inputs and outputs in defined brain regions. These initial groups are fed into CBLAST

in which the user can visualize and analyze the results using plots such as that in Figure 14. Given

the straightforward similarity measure, the user can look at the input and output connections for

each neuron to better understand the decision made by the clustering algorithm. As the definitions

of cell type definitions are improved, the clustering becomes more reliable. In some cases, this read-

ily exposes incompleteness (e.g., due to the boundary of the hemibrain sample) in some neurons

which would complicate clustering even for more computationally intensive strategies such as a

Figure 14. Cells of nine types plotted according to their connectivities. Coordinates are in arbitrary units after dimensionality reduction using UMAP

(McInnes et al., 2018). The results largely agree with those from morphological clustering but in some cases show separation even between closely

related types.
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stochastic block model. Based on these interactions, the user makes decisions and refines the clus-

ters manually, iterating until further changes are not observed.

Our large, dense connectome is a key requirement for CBLAST. Unless a significant fraction of a

neuron’s inputs and outputs is known, neurons that are in fact similar may not cluster together cor-

rectly. This requirement is not absolute, as we note that CBLAST is often able to match left and right

symmetric neurons, despite some of these left side neurons being truncated by the boundaries of

the dataset. Nonetheless, reconstruction incompleteness and any noise in the reconstruction can

contribute to noise in clustering results.

CBLAST usually generates clusters that are consistent with the morphological groupings of the

neurons, with CBLAST often suggesting new sub-groupings as intended. This agreement serves as

some validation of the concepts behind CBLAST. In some cases it can be preferable to NBLAST,

since the algorithm is less sensitive to exact neuron location, and for many applications the connec-

tivity is more important than the morphology. In Figure 14, we show the results of using CBLAST on

a few neuron types extracted from the ellipsoid body. The clusters are consistent with the morphol-

ogy, with exception to a new sub-grouping for R3p being suggested as a more distinct group than

type ExR7/ExR6.

Assessing morphologies and cell types
Verifying correctness and completeness in these data is a challenging problem because no existing

full brain connectome exists against which our data might be compared. We devised a number of

tests to check the main features: Are the morphologies correct? Are the regions and cell types cor-

rectly defined? Are the synaptic connection counts representative?

Assessing completeness is much easier than assessing correctness. Since the reconstruction is

dense, we believe the census of cells, types, and regions should be essentially complete. The main

arbors of every cell within the volume are reconstructed, and almost every cell is assigned a cell

type. Similarly, since the identified brain regions nearly tile the entire brain, these are complete as

well.

For checking morphologies, we searched for major missing or erroneous branches using a num-

ber of heuristics. Each neuron was reviewed by multiple proofreaders. The morphology of each neu-

ron was compared with light microscopy data whenever it was available. When more than one cell of

a given type was available (either left and right hemisphere, or multiple cells of the same type in one

hemisphere), a human examined and compared them. This helped us find missing or extra branches,

and also served as a double check on the cell type assignment. In addition, since the reconstruction

is dense, all sufficiently large ‘orphan’ neurites were examined manually until they were determined

to form part of a neuron, or they left the volume. To help validate the assigned cell types, proof-

readers did pairwise checks of every neuron with types that had been similarly scored.

For subregions in which previous dense proofreading was available (such as the alpha lobes of

the mushroom body), we compared the two connectomes. We were also helped by research groups

using both sparse tracing in the full fly brain TEM dataset (Zheng et al., 2018), and our hemibrain

connectome. They were happy to inform us of any inconsistencies. There are limits to this compari-

son, as the two samples being compared were of different ages and raised under different condi-

tions, then prepared and imaged by different techniques, but this comparison would nevertheless

have revealed any gross errors. Finally, we generated a ‘probabilistic connectome’ based on a differ-

ent segmentation, and systematically visited regions where the two versions differed.

Assessing synapse accuracy
As discussed in the section on finding synapses, we evaluated both precision (the fraction of found

synapses that are correct) and recall (fraction of true synapses that were correctly predicted) on sam-

ple cubes in each brain region. We also double checked by comparing our findings with a different,

recently published, synapse detection algorithm (Buhmann et al., 2019).

As a final check, we also evaluated the end-to-end correctness of given connections between neu-

rons for different cell types and across brain regions. Specifically, for each neuron, we sampled 25

upstream connections (T-bar located within the neuron) and 25 downstream connections (PSD

located within the neuron), and checked whether the annotations were correct, meaning that the

pre/post annotation was valid and assigned to the correct neuron.
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In total, we examined 1735 traced neurons spanning 1518 unique cell types (therefore examining

roughly 43,000 upstream connections and 43,000 downstream connections). The histogram of syn-

apse accuracy (end-to-end precision of predicted synapses) is given in Figure 15. Median precision

for upstream connections, as well as for downstream connections, is 88%. Additionally, 90% of cell

types have an accuracy of at least 70%. For the few worst cases, we manually refined the synapse

predictions afterwards. We note that the worst outlier, having an upstream connection accuracy of

12%, is both a case involving few total connections (17 T-bars), and some ambiguity in the ground-

truth decisions (whether the annotated location is an actual T-bar).

We also evaluated single-connection pathways across each brain region. In the fly, functionally

important connections are thought typically to have many synapses, with the possible exception of

cases where many neurons of the same type synapse onto the same downstream partner. However,

the presence of connections represented by few synapses is also well known, even if the biological

importance of these is less clear. Regardless, we wanted to ensure that even single connection path-

ways were mostly correct. We sampled over 5500 single-connection pathways, distributed across 57

brain regions. Mean synapse precision per brain region was 76.1%, suggesting that single-connec-

tion accuracy is consistent with overall synapse prediction accuracy.

We also undertook a preliminary evaluation of two-connection pathways (two synapses between

a single pair of neurons). We sampled 100 such two-connection pathways within the FB. Overall syn-

apse precision (over the 200 synapses) is 79%, consistent with the single-edge accuracy. Moreover,

the results also suggest that synapse-level accuracy is largely uncorrelated with pathway/bodies,

implying that the probability that both synapses in a two-connection pathway were incorrect is 4.4%

(1� 0:792), close to the observed empirical value of 3%. (Applying a �2 goodness of fit test with a

null hypothesis of independence gives a p value of 0.7.)

Assessing connection completeness
A synapse in the fly’s brain consists of a presynaptic density (with a characteristic T-bar) and typically

several postsynaptic partners (PSDs). The T-bars are contained in larger neurites, and most (>90%)

Figure 15. Connection precision of upstream and downstream partners for » 1000 cell types. Data available in Figure 15—source data 1.

The online version of this article includes the following source data for figure 15:

Source data 1. Data on 1735 neurons, one per row.
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of the T-bars in our dataset were contained in identified neurons. The postsynaptic densities are typ-

ically in smaller neurites, and it is these that are difficult for both machine and human to connect

with certainty.

With current technology, tracing all fine branches in our EM images is impractical, so we sampled

among them (at completeness levels typically ranging from 20% to 85%) and traced as many as prac-

tical in the allotted time. The goal is to provide synapse counts that are representative, since com-

pleteness is beyond reach and largely superfluous. Assuming the missing PSDs are independent

(which we try to verify), then the overall circuit emerges even if a substantial fraction of the connec-

tions are missing. If a connection has a synapse count of 10, for example, then it will be found in the

final circuit with more than 99.9% probability, provided at least half the individual synapses are

traced.

If unconnected small twigs are the main source of uncertainty in our data (as we believe to be the

case), then as the proofreading proceeds the synapse counts of existing connections should only

increase. Of course corrections resulting in lower synapse counts, such as correcting a false

Figure 16. Difference between synapse counts in connections of the Ellipsoid Body, with increased completeness in proofreading. Roughly 40,000

connection strengths are shown. Almost all points fall above the line Y = X, showing that almost all connections increased in synapse count, with very

few decreasing. In particular, no path decreased by more than five synapses. Only two new strong (count >10) paths were found that were not present

in the original. As proofreading proceeds, this error becomes less and less common since neuron fragments (orphans) are added in order of decreasing

size (see text). Data available in Figure 16—source data 1.

The online version of this article includes the following source data for figure 16:

Source data 1. Data for Figure 16.

Scheffer, Xu, Januszewski, et al. eLife 2020;9:e57443. DOI: https://doi.org/10.7554/eLife.57443 34 of 83

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.57443


connection or removing an incorrect synapse, are also possible, but are considerably less likely. To

see if our proofreading process worked as expected, we took a region that had been read to a lower

percentage completion and then spent the manual effort to reach a higher percentage, and com-

pared the two circuits. (A versioned database such as DVID is enormously helpful here.) If our efforts

were successful, ideally what we see is that almost all connections that changed had more synapses,

very few connections got fewer synapses, and no new strong (many synapse) connections appeared

(since all strong connections should already be present even in low coverage proofreading). If this is

the behavior we find, we could be reasonably certain that the circuits found are representative for all

many-synapse connections.

Figure 16 shows such an analysis. The results support our view that the circuits we report reflect

what would be observed if we extrapolated to assign all pre- and postsynaptic elements.

Interpreting the connection counts
Given the complexity of the reconstruction process, and the many different errors that could occur,

how confident should the user be that the returned synapse counts are valid? This section gives a

quick guide in the absence of detailed investigation. The number of synapses we return is the num-

ber we found. The true number could range from slightly less, largely due to false synapse predic-

tions, to considerably more, in the regions with low percentage reconstructed. For connections

known to be in a specific brain region, the reciprocal of the completion percentage (as shown in

Table 1) gives a reasonable estimate of the undercount.

If we return a count of 0 (the neurons are not connected), there are two cases. If the neurons do

not share any brain regions, then the lack of connections is real. If they do share a brain region or

regions, then a count of 0 is suspect. It is possible that there might be a weak connection (count 1–

2) and less likely there is a connection of medium strength (3–9 synapses). Strong connections can

be confidently ruled out, minus the small chance of a mis- or un-assigned branch with many

synapses.

If we report a weak connection (1–2 synapses), then the true strength might range from 0 (the

connection does not exist) through a weak connection (3–9 synapses). If your model or analysis relies

on the strength of these weak connections, it is a good idea to manually check our reconstruction. If

your analysis does not depend on knowledge of weak connections, we recommend ignoring connec-

tions based on three or fewer synapses.

If we report a medium strength connection (3–9 synapses) then the connection is real. The true

strength could range from weak to the lower end of a strong connection.

If we report a strong connection (10 or more synapses), the connection not only exists, but is

strong. It may well be considerably stronger than we report.

Data representation
The representation of connectomics data is a significant problem for all connectomics efforts. The

raw image data on which our connectome is based is larger than 20 TB, and takes 2 full days to

download even at a rate of 1 gigabit/second. Looking forward, this problem will only get worse.

Recent similar projects are generating petabytes worth of data (Yin et al., 2019), and a mouse brain

of 500 mm3, at a typical FIB-SEM resolution of 8 nm isotropic, would require almost 1000 petabytes.

In contrast, most users of connectivity information want a far smaller amount of much more spe-

cific information. For example, a common query is ‘what neurons are downstream (or upstream) of a

given target neuron?’. This question can be expressed in a few tens of characters, and the desired

answer, the top few partners, fits on a single page of text.

Managing this wide range of data, from the raw gray-scale through the connectivity graph,

requires a variety of technologies. An overview of the data representations we used to address these

needs is shown in Figure 17.

This organization offers several advantages. In most cases, instead of transferring files, the user

submits queries for the portion of data desired. If the user needs only a subset of the data (as almost

all users do) then they need not cope with the full size of the data set. Different versions of the data

can be managed efficiently behind the scenes with a versioned database such as DVID (Katz and

Plaza, 2019) that keeps track of changes and can deliver data corresponding to any previous ver-

sion. The use of existing software infrastructure, such as Google buckets or the graph package
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neo4j, which are already optimized for large data, helps with both performance and ease of develop-

ment. The advanced user is not limited to these interfaces - for those who may wish to validate or

extend our results; we have provided procedures whereby the user can make personal copies of

each representation, including the grayscale, the DVID data storage, and our editing and proofread-

ing software. These allow other researchers to establish an entirely independent version of all we

have done, completely under their control. Contact the authors for the details of how to copy all the

underlying data and software.

What are the data types?
Grayscale data correspond to traditional electron microscope images. This is written only once, after

alignment, but often read, because it is required for segmentation, synapse finding, and proofread-

ing. We store the grayscale data, eight bits per voxel, in Google buckets, which facilitates access

from geographically distributed sites.

Segmentation, synapses, and identifying regions annotate and give biological meaning to the

grayscale data. For segmentation, we assign a 64 bit neuron ID to each voxel. Despite the larger

size per voxel (64 vs 8 bits) compared with the grayscale, the storage required is much smaller (by a

factor of more than 20) since segmentation compresses well. Although the voxel level segmentation

is not needed for connectivity queries, it may be useful for tasks such as computing areas and cross-

sections at the full resolution available, or calculating the distance between a feature and the

boundary.

Synapses are stored as point annotations - one point for a presynaptic T-bar, and one point for

each of its postsynaptic densities (or PSDs). The segmentation can then be consulted to find the

identity of the neurons containing their connecting synapses.

Figure 17. Overview of data representations of our reconstruction. Circles are stored data representations, rectangles are application programs,

ellipses represent users, and arrows indicate the direction of data flow labeled with transformation and/or format. Filled areas represent existing

technologies and techniques; open areas were developed for the express purpose of EM reconstruction of large circuits.
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The compartment map of the brain is stored as a volume specified at a lower resolution, typically

a 32 � 32 � 32 voxel grid. At 8 nm voxels, this gives a 256 nm resolution for brain regions, compara-

ble to the resolution of confocal laser scanning microscopy.

Unlike the grayscale data, segmentation, synapses, and regions are all modified during proof-

reading. This requires a representation that must cope with many users modifying the data simulta-

neously, log all changes, and be versioned. We use DVID (Katz and Plaza, 2019), developed

internally, to meet these requirements.

Neuron skeletons are computed from the segmentation (Zhao and Plaza, 2014), and not entered

or edited directly. A skeleton representation describes each neuron with (branching) centerlines and

diameters, typically in the SWC format popularized by the simulator Neuron (Carnevale and Hines,

2006). These are necessarily approximations, since it is normally not possible (for example) to match

both the cross-sectional area and the surface area of each point along a neurite with such a repre-

sentation. But SWC skeletons are a good representation for human viewing, adequate for automatic

morphology classification, and serve as input to neural simulation programs such as ‘Neuron’. SWC

files are also well accepted as an interchange format, used by projects such as NeuroMorpho

(Ascoli et al., 2007) and FlyBrain (Shinomiya et al., 2011).

The connectivity graph is also derived from the data and is yet more abstract, describing only the

identity of neurons and a summary of how they connect - for example, Neuron ID1 connects to neu-

ron ID2 through a certain number of synapses. In our case, it also retains the brain region informa-

tion and the location of each synapse. Such a connectivity graph is both smaller and faster than the

geometric data, but sufficient for most queries of interest to biologists, such as finding the upstream

or downstream partners of a neuron. A simple connectivity graph is often desired by theorists, par-

ticularly within brain regions, or when considering neural circuits in which each neuron can be repre-

sented as a single node.

A final, even more abstract form is the adjacency matrix: This compresses the connectivity

between each pair of neurons to a single number. Even this most economical form requires careful

treatment in connectomics. As our brain sample contains more than 25K traced neurons as well as

many unconnected fragments, the adjacency matrix has more than a billion entries (most of which

are zero). Sparse matrix techniques, which report only the non-zero coefficients, are necessary for

practical use of such matrices.

Accessing the data
For the hemibrain project, we provide access to the data through a combination of a software inter-

face (Clements et al., 2020) and a server (https://neuprint.janelia.org, also accessible through

https://doi.org/10.25378/janelia.12818645). Login is via any Google account; users who wish to

remain anonymous can create a separate account for access purposes only. Data are available in the

form of gray-scale, pixel-level segmentation, skeletons, and a graph representation. Two previous

connectomics efforts are available as well (a seven-column optic lobe reconstruction

[Takemura et al., 2015] and the alpha lobe of the mushroom body [Takemura et al., 2017]). These

can be found at https://neuprint-examples.janelia.org .

The most straightforward way to access the hemibrain data is through the Neuprint

(Clements et al., 2020) interactive browser. This is a web-based application that is intended to be

usable by biologists with minimal or no training. It allows the selection of neurons by name, type, or

brain region, displays neurons, their partners, and the synapses between these in a variety of forms,

and provides many of the graphs and summary statistics that users commonly want.

Neuprint also supports queries from languages such as Python (Sanner, 1999) and R, as used by

the neuroanatomy tool NatVerse (Manton et al., 2019). Various formats are supported, including

SWC format for the skeletons. In particular, the graph data can be queried through an existing graph

query language, Cypher (Francis et al., 2018), as seen in the example below. The schema for the

graph data is shown in Figure 18.

MATCHX(n:Neuron)X-X[c:ConnectsTo]X->X(t:Neuron)XWHEREXt.

typeX=X`MBON18'X

RETURNXn.type,Xn.bodyId,Xc.weightXORDERXBYXc.weightXDESCENDING

This query looks for all neurons that are presynaptic to any neuron of type ‘MBON18’. For each

such neuron it returns the types and internal identities of the presynaptic neuron, and the count of
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synapses between them. The whole list is ordered in order of decreasing synapse count. This is just

an illustration for a particular query that is quite common and supported in Neuprint without the

need for any programming language.

Adjacency matrices, if needed, can be derived from the graph representation. We provide a small

demonstration program that queries the API and generates such matrices, either with or without the

brain regions. The two matrices themselves are available in gzipped Python format.

The raw greyscale images, with overlays of segmentation and feature masks (such as glia and

mitochondria), can be viewed in the publicly available tool NeuroGlancer (Perlman, 2019). This

viewer can be selected from the Neuprint browser.

For more information on accessing data and other hemibrain updates, please see https://www.

janelia.org/project-teams/flyem/hemibrain .

Matching EM and light microscopy data
No two flies are identical, and brain samples differ in size and orientation. Furthermore, different

preparation methods cause tissues to swell and shrink by varying amounts. Therefore, the first step

when comparing the features of different brains is registration to a common reference frame.

Some of these differences are illustrated in Figure 19. Compared to the hemibrain EM data (Fig-

ure 19(a)), the confocal laser scanning microscopy images of the previous brain atlas (Ito et al.,

2014) are about 17% smaller (Figure 19(b)), and the JRC2018 unisex template brain used for the

registration of EM and light microscopy brain images (Bogovic et al., 2020) is about 30% smaller

(Figure 19(c)). Since unfixed brains right after dissection in saline are 15–20% larger than the anti-

body-labeled brains mounted in 80% glycerol – similar to Figure 19(b) – a raw female brain will be

nearly the same size as the hemibrain EM stack.

The orientation of the brain samples may also vary. There is about 18.5˚ of tilt between the hemi-

brain EM stack and the 2014 brain atlas, and about 14˚ of tilt between hemibrain EM and the

JRC2018 template. To create matching vertical or horizontal sections, therefore, each image stack

should be re-sliced after applying the corresponding rotation.

Figure 18. Schema for the neo4j graph model of the hemibrain. Each neuron contains 0 or more SynapseSets, each of which contains one or more

synapses. All the synapses in a SynapseSet connect the same two neurons. If the details of the synapses are not needed, the neuron-to-neuron weight

can be obtained as a property on the ‘ConnectsTo’ relation, as can the distribution of this weight across different brain regions (the roiInfo).
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The raw EM data, segmentation, and skeletons (as displayed in Neuprint) were all computed in a

reference frame corresponding to Figure 19(a), whereas the light lines and tools such as Color_-

MIP_mask search (Otsuna et al., 2018) use the reference frame of Figure 19(c). Therefore, registra-

tion is required to map between the EM and light representations.

We registered the hemibrain EM data to the JRC2018 Drosophila template brain using an auto-

matic registration algorithm followed by manual correction. We began by using the automated

T-bar predictions (described in section on synapse prediction) to generate a T-bar density volume

rendered at a resolution comparable to those from light microscopic images. This hemibrain synapse

density volume was automatically registered to the template brain using elastix (Klein et al., 2010).

The resulting registration was manually fine-tuned using BigWarp (Bogovic et al., 2016). The total

transform is the composition of the elastix and BigWarp transformations, and can be found at

https://www.janelia.org/open-science/jrc-2018-brain-templates. We estimated a corresponding

inverse transformation and make that available as well.

Using these transformations, an implementation that matches EM to light lines, and vice versa, is

publicly accessible at https://neuronbridge.janelia.org/. This matching software is accessible directly

from the Neuprint browser, where it can be launched from the tabular display of selected neurons.

For those not familiar with NeuronBridge, an explanatory video explains the matching process. The

details of the underlying algorithm will be covered in a separate paper by Otsuna et al., but are

briefly sketched here.

If starting from an EM neuron of interest, researchers can use NeuronBridge to identify GAL4

lines labeling that neuron. First, the EM representation of the neuron is spatially transformed into

Figure 19. Comparison of the size and orientation of brain images. Sagittal section images at the plane of the mushroom body pedunculus are shown.

Parallel lines indicate the direction of serial sectioning. Purple dotted lines indicate the axes of the pedunculus to show the sample orientation.

Numbers indicate the angles of the pedunculus axes relative to the horizontal axis. Scale bar: 50 mm for all images. CA: calyx of the mushroom body.

Panel (a) Hemibrain EM image stack. Grayscale indicates the density of the points of the presynaptic T-bars (point clouds). (b) Confocal light microscopy

image stack provided by the Insect Brain Name Working Group (Ito et al., 2014), of a female brain mounted in 80% glycerol after antibody labeling.

Presynaptic sites are labeled by GFP fused with the synaptic vesicle-associated protein neuronal synaptobrevin (nSyb), driven by the pan-neuronal

expression driver line elav-GAL4 C155. (c) JRC2018 Unisex brain template (Bogovic et al., 2020), which is an average of 36 female and 26 male brains

mounted in DPX plastic after dehydration with ethanol and clearization with xylene. Presynaptic sites are labeled with the SNAP chemical tag knock-in

construct inserted into the genetic locus of the active zone protein bruchpilot (brp). The relative sizes of the brains, measured as the height along the

lines that are perpendicular to the pedunculus axes, are 100:83:70 for (a), (b), and (c). These differences in size and orientation must be taken into

account when comparing the sections and reconstructed neurons of the hemibrain EM and registered light microscopy images.
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the JRC 2018 unisex template space where GAL4 driver line images are registered. The EM neuron

is then used to create a mask (Otsuna et al., 2018) that narrows the search space considerably, mak-

ing it easier to find corresponding neurons even in crowded GAL4 driver line images.

The opposite direction, finding an EM neuron that corresponds to a light neuron, is also sup-

ported. In this case the scoring of a potential match must be modified, since the light image contains

the entire neuron, but many EM neurons are trunctated by the limits of our reconstructed volume.

Both of these cases are discussed in the upcoming paper, with examples.

As another option, since hemibrain neurons are skeletonized, users can query GAL4 neuronal

skeleton databases using NBLAST (Costa et al., 2016).

Longer term storage of data, and archival references
Historically, archival data from biology data have been expressed as files that are included with sup-

plementary data. However, for connectivity data this practice has two main problems. First, the data

are large, and hard to store. Journals, for example, typically limit supplemental data to a few 10s of

megabytes. The data here are about 6 orders of magnitude larger. Second, connectome data are

not static, during proofreading and even after initial publication. As proofreading proceeds, the

data improve in their completeness and quality. The question then is how to refer to the data as

they existed at some point in time, required for reproducibility of scientific results. If represented as

files, this would require many copies, checkpointed at various times - the ‘as submitted’ version, the

‘as published’ version, the ‘current best version’, and so on.

We resolve this, at least for now, by hosting the data ourselves and making them available

through query mechanisms. Underlying our connectome data is a versioned database (DVID) so it is

technically possible to access every version of the data as it is revised. However, as it requires effort

to host and format this data for the Neuprint browser and API, only selected versions (called named

versions) are available by default from the website, starting with the initial versions, which are ‘hemi-

brain:v1.0’ and the much improved ‘hemibrain:v1.1’. Since multiple versions are available, when

reproducibility is required (such as when referencing the data in a paper) it is best to refer explicitly

to the version used by name (such as ‘hemibrain:v1.1’) because we expect new milestone versions

every few months, at least at first. We will supply a DOI for each of these versions, and each is

archived, can be viewed and queried through the web browser and APIs at any time, and will not

change.

The goal of multiple versions is that later versions should be of higher quality. Towards this end

we have implemented several systems for reporting errors so we can correct them. Users can add

annotations in NeuroGlancer (Perlman, 2019), the application used in conjunction with Neuprint to

view image data, where they believe there are such errors. To make this process easier, we provide

a video explaining it. We will review these annotations and amend those that we agree are prob-

lems. Users can also contact us via email about problems they find.

Archival storage is an issue since, unlike genetic data, there is not yet an institutional repository

for connectomics data and the data are too large for journals to archive. We pledge to keep our

data available for at least the next 10 years.

Analysis
Of necessity, most previous analyses have concentrated on particular circuits, cell types, or brain

regions with relevance to specific functions or behaviors. For example, a classic paper about motifs

(Song et al., 2005) sampled the connections between one cell type (layer five pyramidal neurons) in

one brain region (rat visual cortex), and found a number of non-random features, such as over-repre-

sented reciprocal connections and a log-normal strength distribution. However, it has never been

clear which of these observations generalize to other cell types, other brain regions, and the brain as

a whole. We are now in a position to make much stronger statements, ranging over all brain regions

and cell types.

In addition, many analyses are best performed (or can only be performed) on dense connec-

tomes. Type-wide observations depend on a complete census of that cell type, and depending on

the observation, a complete census of upstream and downstream partners as well. Some analyses,

such as null observations about motifs (where certain motifs do not occur in all or portions of the

fly’s brain) can only be undertaken on dense connectomes.
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Compartment statistics
One analysis enabled by a dense whole-brain reconstruction involves the comparison between the

circuit architectures of different brain areas within a single individual.

The compartments vary considerably. Table 4 shows the connectivity statistics of compartments

that are completely contained within the volume, have at least 100 neurons, and have the largest or

smallest value of various statistics. Across regions, the number of neurons varies by a factor of 74,

the average number of partners of each neuron by a factor of 36, the network diameter (defined as

the maximum length of the shortest path between any two neurons) by a factor of 4, the average

strength of connection between partner neurons by a factor of 5, and the fraction of reciprocal con-

nections by a factor of 5. The average graph distance between neurons is more conserved, differing

by a factor of only 2.

Paths in the fly brain are short
Neurons in the fly brain are tightly interconnected, as shown in Figure 20, which plots what fraction

of neuron pairs are connected as a function of the number of interneurons between them. Three

quarters of all possible pairs are connected by a path with fewer than three interneurons, even when

only connections with �5 synapses are included. If weaker connections are allowed, the paths

become shorter yet. These short paths and tight coupling are very different from human designed

systems, which have much longer path lengths connecting node pairs. As an example, a standard

electrical engineering benchmark (S38584 from Brglez et al., 1989) is shown alongside the hemi-

brain data in Figure 20A–B. The connection graph for this example has roughly the same number of

nodes as the graph of the fly brain, but pair-to-pair connections involve paths more than an order of

magnitude longer – a typical node pair is separated by 60 intervening nodes. This is because a typi-

cal computational element in a human designed circuit (a gate) connects only to a few other ele-

ments, whereas a typical neuron receives input from, and sends outputs to, hundreds of other

neurons.

Distribution of connection strength
The distribution of connection strengths has been studied in mammalian tissue, looking at specific

cell types in specific brain areas. These findings, such as the log-normal distribution of connection

strengths in rat cortex, do not appear to generalize to flies. Assuming the strength of a connection

is proportional to the number of synapses in parallel, we can plot the distribution of connection

strengths, summing over the whole central brain, as shown in Figure 21. We find a nearly pure

power law with an exponential cutoff, very different from the log-normal distribution of strengths

found by Song et al., 2005 in pyramidal cells in the rat cortex, or the bimodal distribution found for

Table 4. Regions with minimum or maximum characteristics, picked from those regions lying wholly within the reconstructed volume

and containing at least 100 neurons.

Yellow indicates a minimum value; blue a maximal value. Volume is in cubic microns. N is the number of neurons in the region, L the

number of connections between those neurons, hki the average number of partners (in the region), D the network diameter (the maxi-

mum length of the shortest path between neurons), hstri the average connection strength, broken up into non-reciprocal and recipro-

cal. fracR is the fraction of connections that are reciprocal, and AvgDist the average number of hops (one hop corresponding to a

direct synaptic connection) between any two neurons in the compartment.

Name Volume N L hki D hstri hnon-ri hri fracR AvgDist

MB(R) 309371 3514 574732 163.555 8 3.275 3.081 3.388 0.632 2.215

bL(R) 29695 1171 108250 92.442 8 2.019 1.856 2.122 0.613 2.090

EB 93932 555 58789 105.926 5 10.087 4.610 12.215 0.720 1.798

AB(L) 526 100 1250 12.500 4 2.182 1.765 2.687 0.453 1.938

PLP(R) 367711 6913 244182 35.322 15 2.791 2.479 3.866 0.225 3.148

SNP(R) 1076257 9130 811279 88.859 13 3.026 2.552 4.539 0.239 2.724

RUB(L) 834 128 623 4.867 6 7.313 2.766 20.253 0.260 2.727

EPA(R) 29947 1483 18848 12.709 13 2.224 2.152 2.700 0.131 3.471
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pyramidal cells in the mouse by Dorkenwald et al., 2019. However, we caution that these analyses

are not strictly comparable. Even aside from the very different species examined, the three analyses

differ. Both Song and Dorkenwald looked at only one cell type, with excitatory connections only, but

one looked at electrical strength while the other looked at synapse area as a proxy for strength. In

our analysis, we use synapse count as a proxy for connection strength, and look at all cell types,

including both excitatory and inhibitory synapses.

Small motifs
As mentioned earlier, there have been many studies of small motifs, usually involving limited circuits,

cell types, and brain regions. We emphatically confirm some traditional findings, such as the over-

representation of reciprocal connections. We observe this in all brain regions and among all cell

types, confirming similar findings in the antennal lobe (Horne et al., 2018). This can now be

assumed to be a general feature of the fly’s brain, and possibly all brains. In the fly, the incidence

varies somewhat by compartment, however, as shown in Table 4.

Large motifs
We define a large motif as a graph structure that involves every cell of an abundant type (N � 20).

The most tightly bound motif is a clique, in which every cell of a given type is connected to every

other cell of that type, with synapses in both directions. Such connections, as illustrated in Figure 22

(a), are extremely unlikely in a random wiring model. Consider, for example, the clique of ER4d cells

found in the ellipsoid body, as shown in Table 5. In the ellipsoid body, two cells are connected with

an average probability of 0.19. Therefore, the odds of finding all 600 possible connections between

ER4d cells, assuming a random wiring model, is 0:19600 » 10�432.

Figure 20. Plots of the percentage of pairs connected (of all possible) versus the number of interneurons required. (a) It shows the data from the whole

hemibrain, for up to eight interneurons. (b) It is a much wider view of the same data, shown on a log scale so the curve from a human designed system

is visible. Data available in Figure 20—source datas 1–6.

The online version of this article includes the following source data for figure 20:

Source data 1. Data for threshold 1 trace.

Source data 2. Data for threshold 3.

Source data 3. Data for threshold 5 trace.

Source data 4. Data for threshold 10 trace.

Source data 5. Data for threshold 20 trace.

Source data 6. Data for human designed trace.
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In the fly’s brain, only a few cell types form large cliques, as shown in Table 5. All true cliques are

among the ring neurons in the central complex, with a near-clique among the KCab-p cells of the

mushroom body. The cell types PFNa and PFNd are included although they do not form a clique as

shown in Figure 22(a). However, these neurons are part of symmetrical structures, the noduli, that

occur on both sides of the brain. Within each side, the cells form a clique, as shown in Figure 22(d).

The cliques within the central complex, and their potential operation, are discussed in detail in the

companion paper on the central complex by Jayaraman et al.

The next most tightly bound motifs are individual cells that connect both to and from all cells of a

given type, but are themselves of a different type. This is illustrated in Figure 22(b). Such a motif is

often speculated to be a gain or sparseness controlling circuit, where the single neuron reads the

collective activation of a population and then controls their collective behavior. A well-known exam-

ple is the APL neuron in the mushroom body, which connects both to and from all the Kenyon cells,

and is thought to regulate the sparseness of the Kenyon cell activation (Lin et al., 2014).

Figure 21. The number of connections with a given strength. Up to a strength of 100, this is well described by a power law (exponent �1.67) with

exponential cutoff (at N = 42). Data available in Figure 21—source data 1.

The online version of this article includes the following source data for figure 21:

Source data 1. Data for Figure 21.
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We search for this motif by looking at cells with few instances (one or two) connecting bidirection-

ally to almost all cells (at least 90%) of an abundant type (N � 20). We find this motif in three regions

of the brain – it is common in the CX (73 different cells overseeing 22 cell types), the optic lobe cir-

cuits (19 cells overseeing 14 types), and somewhat in the MB (12 types overseeing nine types). A

spreadsheet containing these cell types, who they connect to, and the numbers and strengths of

their connections is described in the appendix and included as supplementary data. We only analyze

the optical circuits here, since the mushroom body and central complex are the subjects of compan-

ion papers. We observe three variations on this motif - a single cell connected to all of a type (Fig-

ure 23(a), found five times), a single cell with bidirectional connections to many types (Figure 23(b),

found once), and multiple cells all connected bidirectionally to a single type (Figure 23(c)), found

three times. We find one circuit that is a combination: There is one cell that connects bidirectionally

to all the LC17 neurons, and then a higher order cell that connects bidirectionally to a larger set

(LPLC1, LPLC2, LLP1, LPC1, and LC17). In this case, these are all looming-sensitive cells and hence

these circuits may regulate the features of the overall looming responses. It is tempting to speculate

that the more complex structures of Figure 23 (b) and (c) arose from the simpler structures of (a)

Figure 22. Large motifs searched for. Squares represent abundant types with at least 20 instances. Circles represent sparse types with at most two

instances. Panel (a) shows a clique, where all possible connections are present. (b) It shows bidirectional connections between a sparse type and all

instances of an abundant type. (c) It shows unidirectional connections from all of an abundant type to a sparse type. Panel (d) illustrates a cell type that

does not form a clique overall, but does within each of two compartments.
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through cell type duplication followed by divergence, but the connectomes of many more related

species will be needed before this argument could be made quantitative.

The least tightly bound large motif is a cell that connects either to or from (but not both) all cells

of a given type, as shown in Figure 22(c). Examples include the mushroom body output neurons

(Takemura et al., 2017). This is a very common motif, found in many regions. We find more than

500 examples of this in the fly’s brain.

Table 5. Cell types that form cliques and near-cliques in the hemibrain data.

To be included, a cell type must have at least 20 cell instances, 90% or more of which have bidirec-

tional connections to at least 90% of cells of the same type. Coverage is the fraction of all possible

edges in the clique that are present with any synapse count >0. Average strength is the average num-

ber of synapses in each connection. Synapses is the total number of synapses in the clique.

Type Region Cells Coverage Avg. strength Synapses

KCab-p MB 59/60 3455/3540 5.13 17722

Delta7 PB, CX 42/42 1719/1722 14.21 24433

ER2_c EB, CX 21/21 420/420 33.76 14180

ER3w EB, CX 20/20 380/380 28.00 10639

ER4d EB, CX 25/25 600/600 54.94 32961

ER5 EB, CX 20/20 380/380 26.61 10111

PFNa NO(R) 29/29 811/812 6.74 5467

PFNa NO(L) 29/29 811/812 7.22 5858

PFNd NO(R) 20/20 377/380 7.69 2899

PFNd NO(L) 20/20 378/380 7.60 2874

Figure 23. One to many motifs found in the optic circuits. Cell types consisting of a single cell, or a left-right pair, are shown at the top of the diagram.

Corresponding cell type, each with many instances, are shown at the bottom of the diagram, with the number of cells per type shown inside. The

arrows show the average count of synaptic connections per one cell of the bottom group. (a) An example of the most common case is shown. Here one

cell, PLP008, has bidirectional connections to all 82 cells of type LC13. (b) It shows a single cell with exhaustive connections to several types. (c) It shows

an alternative motif where several cells form these one-to-many connections.
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Brain regions and electrical response
How does the compartmentalization of the fly brain affect neural computation? In a few cases this

has been established. For example, the CT1 neuron performs largely independent computations in

each branch (Meier and Borst, 2019), whereas estimates show that within the medulla, the delays

within each neuron are likely not significant for single column optic lobe neurons, and hence the neu-

rons likely perform only a single computation (Takemura et al., 2013). Similarly, compartments of

PEN2 neurons in the protocerebral bridge have been shown to respond entirely differently from

their compartments in the ellipsoid body (Green et al., 2017; Turner-Evans et al., 2019).

Our detailed skeleton models allow us to construct electrical models of neurons. (In what follows,

we use the word ‘compartment’ to mean a named physical region of the brain, as shown in Table 1,

as opposed to the electrical sub-divisions used in simulation.) In particular, to look more generally at

the issues of intra– vs inter–compartment delays and amplitudes, we can construct a linear passive

model for each neuron. Our method is similar to that elsewhere (Segev et al., 1985), except that

instead of using right cylinders, we represent each segment of the skeleton as a truncated cone. This

is then used to derive the axonic resistance, the membrane resistance, and membrane capacitance

for each segment. To analyze the effect of compartment structure on neuron operation, we inject

the neuron at a postsynaptic density (input) with a signal corresponding to a typical synaptic input (1

nS conductance, 1 ms width, 0.1 ms rise time constant, 1 ms fall time constant, 60 mV reversal

potential). We then compute the response at each of the T-bar sites (outputs). Since the synapses,

both input and output, are annotated by the brain region that contains them, this allows us to calcu-

late the amplitudes and delays from each synapse (or a sample of synapses) in each compartment to

each output synapse in all other compartments.

In general, we find the compartment structure of the neuron is clearly reflected in the electrical

response. Consider, for example, the EPG neuron (Figure 24(a)) with arbors in the ellipsoid body,

the protocerebral bridge, and the gall (the gall is a sub-compartment of the LAL, the lateral acces-

sory lobe). Figure 25(a) shows the responses to synaptic input in the gall. Within the gall, the delays

are very short, and the amplitude relatively high and variable, depending somewhat on the input

and output synapse within the gall. From the gall to other regions, the delays are longer (typically a

few milliseconds) and the amplitudes much smaller and nearly constant, largely independent of the

exact transmitting and receiving synapse. There is a very clean separation between the within-

Figure 24. Neural connection patterns. (a) An EPG neuron, with arbors in three compartments. (b) Two neurons that connect in more than one

compartment, in this case the calyx and the lateral horn. They are each pre- and postsynaptic to each other in both compartments.
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compartment and across-compartment delays and amplitudes, as shown in Figure 25(a). The same

overall behavior is true for inputs into the other regions - short delays and strong responses within

the compartment, with longer delays and smaller amplitudes to other compartments.

This simple pattern motivates a model that describes delays and amplitudes not as a single num-

ber, but as an N � N matrix, where N is the number of compartments. Each row contains the esti-

mated amplitude and delay, measured in each compartment, for a synaptic input in the given

compartment. This gives a much improved estimate of the linear response. For the example EPG

neuron above, with nominal values for Ra, Rm, and Cm, if we represent all delays by a single number

then the standard deviation of the error is 0.446 ms. If instead we represent the delays as a 3 � 3

matrix indexed by the compartment, the average error is 0.045 ms, for 10x greater accuracy. Simi-

larly, the average error in amplitude drops from 0.168 mv to 0.021 mv, an eightfold improvement.

While the improvement in error will depend on the neuron topology, in all cases it will be more accu-

rate than a point model, for relatively little increase in complexity.

The absolute values of delay and amplitude are strongly dependent on the electrical parameters

of the cell, however. A wide range of electrical properties has been reported in the fly literature (see

Table 6) and it is plausible that these vary on a cell-to-cell basis. In addition gap junctions, which are

not included in our model, could affect the apparent value of Rm. In light of these uncertainties, we

simulate with minimum, medium, and maximal values of Ra and Rm, for a total of 9 cases, as shown in

Figure 25(b). All are needed since the resistance parameters interact non-linearly. We fix the value

of Cm at 0.01 F/m2 since this value is determined by the membrane thickness and is not expected to

vary from cell to cell (Kandel et al., 2000). The results over the parameter range are shown in Fig-

ure 25(b) for the case of the EPG neuron above for delay from the gall to the PB. The intra-compart-

ment and between-compartment values are well separated for any value of the parameters (not

shown).

Figure 25. Delay versus amplitude plots for a neuron. (a) The linear response to inputs in the gall (GA) for an EPG neuron, which also has arbors in the

ellipsoid body (EB) and the protocerebral bridge (PB). Each point in the modeled plot shows the time each response reached its peak amplitude (the

delay), and the amplitude at that time, for an input injected at one of the PSDs in the gall. (b) Delays and amplitudes for gall to PB response, for all

combinations of three values of cytoplasmic resistance RA and three values of membrane resistance RM . Data available in Figure 25—source datas 1–

4.

The online version of this article includes the following source data for figure 25:

Source data 1. Data for Figure 25A (ellipsoid body).

Source data 2. Data for Figure 25A (gall).

Source data 3. Data for Figure 25A (protocerebral bridge).

Source data 4. Data for Figure 25B.

Scheffer, Xu, Januszewski, et al. eLife 2020;9:e57443. DOI: https://doi.org/10.7554/eLife.57443 47 of 83

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.57443


Programs that deduce synaptic strength and sign by fitting a computed response to a connec-

tome and measured electrical or calcium imaging data (Tschopp et al., 2018) may at some point

require estimates of the delays within cells. If this is required, the above results suggest this could be

accomplished with reasonable accuracy with a compartment-to-compartment delay table and two

additional parameters per neuron, RA and RM . This is relatively few new parameters in addition to

the many synaptic strengths already fitted.

A number of neurons have parallel connections in separate compartments (see Figure 24(b)).

This motif is common in the fly’s brain – about 5% of all connections having a strength �6 are spread

across two or more non-adjacent compartments. Given the increased delays and lower amplitudes

of cross-compartment responses, this type of interaction differs electrically from those in which all

connections are contained in a single compartment. A point neuron model cannot generate an accu-

rate response for such connections – a synapse in region A will result in a fast response in A and a

slower, smaller response in B, and vice versa, even though both of these events involve communica-

tion between the same two neurons. It is not known if this configuration has a significant influence

on the neurons’ operation.

From these models, we conclude (a) the compartment structure of the fly brain shows up directly

in the electrical response of the neurons, and (b) the compartment structure, although defined

anatomically, matches that of the electrical response. From the clear separation in Figure 25, it is

likely that the same compartment definitions could be found starting with the electrical response,

although we have not tried this. (c) These results suggest a low dimensional model for neural opera-

tion, at least in the linear region. A small region-to-region matrix can represent the delays and ampli-

tudes well. (d) Absolute delays depend strongly (but in a very predictable manner) on the values of

axial and membrane resistance, which can vary both from animal to animal and from cell to cell. (e)

Neurons that have parallel connections in separate compartments have a different electrical

response than they would have with the same total number of synapses in a single compartment.

Rent’s rule analysis
Rent’s rule (Lanzerotti et al., 2005) is an empirical observation that in human designed computing

systems, when the system is packed as tightly as possible, at every level of the hierarchy the required

communication (the number of pins) scales as a power law of the amount of contained computation,

measured in gates. Rent’s rule is an observed relationship, not derived from underlying theory, and

the relationship is not exact and still contains scatter. A biological equivalent might be the observa-

tion that brain size tends to vary as a power law of body size (Harvey and Krebs, 1990), across a

wide range of species occupying very different ecological and behavioral niches. Rent’s rule is

roughly true over many orders of magnitude in scale, and for almost every system in which it has

been measured. Somewhat surprisingly, Rent’s rule applies almost independently of the function

performed by the computation being performed, and at every level of a hierarchical system. It also

Table 6. Values reported in the literature.

Reference Ra;W �m Rm;W=m2 Cm, F/m
2

Borst (Borst and Haag, 1996), CH cells 0.60 0.25 0.015

Borst (Borst and Haag, 1996), HS cells 0.40 0.20 0.009

Borst (Borst and Haag, 1996), VS cells 0.40 0.20 0.008

Gouwens (Gouwens and Wilson, 2009), DM1 cell 1 1.62 0.83 0.026

Gouwens (Gouwens and Wilson, 2009), DM1 cell 2 1.02 2.04 0.015

Gouwens (Gouwens and Wilson, 2009), DM1 cell 3 2.66 2.08 0.008

Gouwens (Gouwens and Wilson, 2009), dendrite 1 2.44 1.92 0.008

Gouwens (Gouwens and Wilson, 2009), dendrite 2 2.66 2.08 0.008

Gouwens (Gouwens and Wilson, 2009), dendrite 3 3.11 2.64 0.006

Cuntz (Cuntz et al., 2013), HS cells 4.00 0.82 0.006

Meier (Meier and Borst, 2019), CT1 cells 4.00 0.80 0.006
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applies whether the compactness criterion is minimization of communication (partitioning) or physi-

cal close packing.

Rent’s rule is expressed as

Pins¼ a � ðcomputationÞb

where a is a scale factor (typically in the range 1–4), and b is the ‘Rent exponent’ describing how the

number of connections to the compartment varies as a function of the amount of computation per-

formed in the compartment. The Rent exponent has a theoretical range of 0.0 to 1.0, where 0 repre-

sents a constant number of connections, with no dependence on the amount of computation

performed, and 1.0 represents a circuit in which every computation is visible on a connection.

Human designed computational systems occupy almost the full range, from spreadsheets in which

Figure 26. Rent’s rule for the hemibrain. The yellow region encompasses the theoretical bounds for computation. Four varieties of human-designed

systems are shown. Those designed for visibility into computation achieve the upper bound, while those designed for minimum communication

approach the lower bounds (Microprocessors ST7LU55, LPC1102, and STM32). Human designed systems where efficient packing is the main criterion

occupy the shaded area (in 2D and 3D). The characteristics of the primary compartments completely contained in the reconstructed volume are shown

with alphanumeric labels. The hemibrain compartments fall very nearly in the same range as human designed systems designed for efficient packing.

Data available in Figure 26—source data 1.

The online version of this article includes the following source data for figure 26:

Source data 1. Data for Figure 26.
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every computation is visible, to largely serial systems in which minimizing communication (pins) is

critical. This relationship is shown in Figure 26. However, when the overriding criterion is that the

system must be packed as tightly as possible, Rent observed that the exponent of the power law

falls in a close range of roughly 0.5–0.7.

For electrical circuits, the computation is measured in gates, and the connections are measured

by pin count. These ranges are shown in Figure 26 for circuits that are roughly the size of the fly’s

brain, packed in either two (Yang et al., 2001) or three (Das et al., 2004) dimensions.

Also shown in this plot are the values for the fly’s brain computational regions. In this case, the

computation is measured as the number of contained T-bars, and the connection count is the num-

ber of neurons that have at least one synapse both inside and outside the compartment. (Very simi-

lar results are obtained if the computation is measured as the number of PSDs, or the number of

unique connection pairs). Almost all the fly brain compartments fall well within the range of expo-

nents expected for packing-dominated systems, while the ellipsoid body (EB) falls just outside the

expected area. This is perhaps due to the large number of strongly connected clique-containing cir-

cuits in the ellipsoid body (see Table 5), since such circuits have relatively few connections for the

amount of synapses they contain.

Both human designed and biological systems have huge incentives to pack their computation as

tightly as possible. A tighter packing of the same computation yields faster operation, lower energy

consumption, less material cost, and lower mass. A natural speculation, therefore, is that both the

human-designed and evolved systems are dominated by packing considerations, and that both have

found similar solutions.

Conclusions and future work
In this work, we have achieved a dream of anatomists that is more than a century old. For at least

the central brain of at least one animal with a complex brain and sophisticated behavior, we have a

complete census of all the neurons and all the cell types that constitute the brain, a definitive atlas

of the regions in which they reside, and a graph representing how they are connected.

To achieve this, we have made improvements to every stage of the reconstruction process. Better

means of sample preparation, imaging, alignment, segmentation, synapse finding, and proofreading

are all summarized in this work and will form the basis of yet larger and faster reconstructions in the

future.

We have provided the data for all the circuits of the central brain, at least as defined by nerve

cells and chemical synapses. This includes not only circuits of regions that are already the subject of

extensive study, but also a trove of circuits whose structure and function are yet unknown.

We have provided a public resource that should be a huge help to all who study fly neural circuits.

Finding upstream and downstream partners, a task that until now has typically taken months of chal-

lenging experiments, is now replaced by a lookup on a publicly available web site. Detailed circuits,

which used to require considerable patience, expertise, and expertise to acquire, are now available

for the cost of an internet query.

More widely, a dense connectome is a valuable resource for all neuroscientists, enabling novel,

system-wide analyses, as well as suggesting roles for specific pathways. A surprising revelation is the

richness of anatomical synaptic engagements, which far exceeds pathways required to support iden-

tified fly behaviors, and suggests that most behaviors have yet to be identified.

Finally, we have started the process of analyzing the connectome, though much remains to be

done. We have quantified the difference between computational compartments, determined that

the distribution of strengths is different from that reported in mammals, discovered cliques and

other structures and where these occur, examined the effect of compartmentalization on electrical

properties, and provided evidence that the wiring of the brain is consistent with optimizing packing.

Many of the extensions of this work are obvious and already underway. Not all regions of the

hemibrain have been read to the highest accuracy possible, insofar as we have concentrated first on

the regions overlapping with other projects, such as the central complex and the mushroom body.

We will continue to update other sections of the brain, and distributed circuits such as clock and

modulatory neurons that are not confined to one region, but spread throughout the brain.

There is much more to be learned about the graph properties of the brain, and how these relate

to its function.
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The two sexes of the Drosophila brain are known to differ (Auer and Benton, 2016). so that

reconstructing a male fly is critical to compare the circuits of the two sexes. A ventral nerve cord

(VNC) should be reconstructed, preferably attached to the brain of the same individual, since the cir-

cuits in the VNC are known to be crucial for fly motor behavior (Yellman et al., 1997). At least one

optic lobe should be included to simplify analysis of visual inputs to the central brain. A whole brain

connectome is preferable to the hemibrain, since then most cell types would have at least two exam-

ples, left and right, which would lend increased confidence to our reconstructions. It would also pro-

vide complete reconstruction to the many neurons that span the brain, especially the clock and

modulatory neurons, and are incomplete in the hemibrain. These four goals are combined in a proj-

ect that is currently underway, to image and reconstruct an entire male central nervous system (CNS)

including the VNC and optic lobes.

We continue to improve sample preparation, imaging, and reconstruction both to decrease the

efforts expended on reconstruction and to speed reconstruction of more specimens. Improvements

include multi-beam imaging, etching methods (Hayworth et al., 2020) that can handle larger areas,

and yet better reconstruction techniques. These improvements, however, will still rely on FIB-SEM

technology, and additional methods will likely be required to fill in other information. Gap junctions

will continue to be difficult to see in FIB-SEM, and other methods such as optical labeling, expansion

microscopy, and RNA-SEQ (to find which neurons express gap junction proteins) will be required.

Methods for estimating the extent of diffusion of the secreted modulatory transmitters and gaseous

signal molecules such as NO remain to be established. Different staining methods (and expression

driver lines) may be needed to study glia to the same extent we currently study neurons. A wide vari-

ety of techniques will be needed to understand the subcellular architecture of the neurons we have

reconstructed. Finally, larger animal brains beckon, such as the brain of a mouse and eventually a

human. The data we present here is only a start.
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Lin AC, Bygrave AM, de Calignon A, Lee T, Miesenböck G. 2014. Sparse, decorrelated odor coding in the
mushroom body enhances learned odor discrimination. Nature Neuroscience 17:559–568. DOI: https://doi.org/
10.1038/nn.3660, PMID: 24561998

Lin T-Y, Goyal P, Girshick R, He K, Dollár P. 2017. Focal loss for dense object detection. Proceedings of the IEEE
International Conference on Computer Vision 2980–2988. DOI: https://doi.org/10.1109/ICCV.2017.324

Lu Z, Xu CS, Hayworth KJ, Rivlin P, Plaza SM, Scheffer L, Rubin GM, Hess HF, Meinertzhagen IA. 2019. En bloc
preparation of Drosophila brains enables high-throughput FIB-SEM connectomics. bioRxiv. DOI: https://doi.
org/10.1101/855130

Manton JD, Bates AS, Jagannathan SR, Costa M, Schlegel P, Rohlfing T, Jefferis GS. 2019. The natverse: a
versatile computational toolbox to combine and analyse neuroanatomical data. bioRxiv. DOI: https://doi.org/
10.1101/006353

Mao Z, Davis RL. 2009. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body
neuropil: anatomical and physiological heterogeneity. Frontiers in Neural Circuits 3:5. DOI: https://doi.org/10.
3389/neuro.04.005.2009, PMID: 19597562

Marasco A, Limongiello A, Migliore M. 2012. Fast and accurate low-dimensional reduction of biophysically
detailed neuron models. Scientific Reports 2:928. DOI: https://doi.org/10.1038/srep00928, PMID: 23226594
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Appendix 1

Sensory inputs and motor outputs
The dataset covers most of the antennal lobe (AL) glomeruli, which house the presynaptic terminals

of the olfactory receptor neurons (ORNs) from the antennae. The ORNs are named after their inner-

vating glomeruli, for example ORN_DA2, and the olfactory receptors they express, as well as their

ligands, and have been identified through various physiological studies (Couto et al., 2005;

Fishilevich and Vosshall, 2005; Hallem and Carlson, 2006). The olfactory signals are then transmit-

ted by the olfactory projections neurons (PNs) to the calyx (CA) of the mushroom body, the lateral

horn (LH) and beyond.

While a large fraction of the optic lobe (OL) neuropils are missing, more than half of the lobula

(LO) and small pieces of the lobula plate (LOP) and medulla (ME) are within the dataset. Many neu-

rons connecting the OL and the central brain, called visual projection neurons (VPNs), are identified

and annotated, along with their synaptic terminals in the central brain, and in the optic lobe when

possible. Among them, the columnar VPNs, including the lobula columnar (LC), lobula plate colum-

nar (LPC), lobula-lobula plate columnar (LLPC), and lobula plate-lobula columnar (LPLC) neurons

(Ache et al., 2019; Fischbach and Dittrich, 1989; Klapoetke et al., 2017; Otsuna and Ito, 2006;

Wu et al., 2016), account for the vast majority of the population and are more or less densely identi-

fied. Since the distribution of the columnar neurons in the optic lobe follows the arrangement of the

photoreceptor cells in the compound eye, the retinotopy can be traced even in their terminals in the

central brain in some cell types, while in others the retinotopy is apparently lost in the central brain.

In most cases, these neurons terminate in synapse-rich structures called the optic glomeruli in the

ventrolateral neuropils, where they relay visual information to higher-order neurons (Panser et al.,

2016; Wu et al., 2016).

The antennal mechanosensory and motor center (AMMC) is located lateral and ventral to the

esophagus foramen. It houses terminals of the Johnston’s organ neurons (JONs), the mechanosen-

sory neurons from the Johnston’s organ in the second segment of the antennae, as well as their syn-

aptic partners. The AMMC is subdivided into five functionally and anatomically segregated zones, A,

B, C, D, and E (Kamikouchi et al., 2006). Since the neuropil is partially truncated, especially in the

medial and ventral part corresponding to the zones D and E in the hemibrain dataset, only a limited

number of the JONs innervating zones A, B, and C have been annotated, as JO-ABC.

The gustatory receptor neurons (GRNs) from the labellum and maxillary palp terminate in the gus-

tatory sensory centers in the gnathal ganglia (GNG) and the prow (PRW) (Hartenstein et al., 2018;

Ito et al., 2014; Miyazaki and Ito, 2010). Both of them are mostly out of the imaging range of the

dataset and therefore no GRNs have been identified.

We have identified 51 types of descending neurons (out of a total of 98 types identified by the

LM study) that play a key role in behavior. These neurons were annotated based on the nomencla-

ture described in a previous study (Namiki et al., 2018), namely the classes of DNa, DNb, DNg, and

DNp. Due to the lack of ventral region in the current dataset, we are not able to specify other cell

types that run in the neck connective. In addition we identified three types of descending neurons

that go out of the brain at the esophogus foramen without going via the neck connective (DNES1, 2,

and 3).

Sample preparation
We employed the Progressive Lowering of Temperature dehydration with Low temperature en bloc

Staining (PLT-LTS), a modified conventional chemical fixation and en bloc staining method. This

method, mentioned in our previous papers (Hayworth et al., 2015; Xu et al., 2017; Lu et al.,

2019), is here abbreviated as ‘C-PLT’. PLT-LTS is an optimization method to give tissue advanced

high contrast staining and minimize artifacts such as extraction, and size and shape variation, by

treating tissue under 0˚C to �25˚C in acetone or ethanol based uranyl acetate and osmium tetroxide

after routine fixation. PLT-LTS samples show highly visible membranes with fewer deflated and col-

lapsed profiles and conspicuous synaptic densities in FIB-SEM images.

Five-day-old adult female Drosophila, of the genotype Canton S G1 x w1118, were used in this

experiment. They were raised on a 12-hr day/night cycle, with dissection performed 1.5 hr after

lights-on. Isolated whole brains were fixed in 2.5% formaldehyde and 2.5% glutaraldehyde in 0.1 M
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phosphate buffer at pH 7.4 for 2 hr at 22˚C. After washing, the tissues were post-fixed in 0.5%

osmium tetroxide in double distilled H2O for 30 min at 4˚C. After washing and en bloc staining with

0.5% aqueous uranyl acetate for 30 min and then further washing in water, for 20 min in 0.8%

osmium tetroxide, a Progressive of Lowering Temperature (PLT) procedure started from 1˚C when

the tissues were transferred into 10% acetone. The temperature was progressively decreased to

�25˚C while the acetone concentration was gradually increased to 97%. The tissue was incubated in

1% osmium tetroxide and 0.2% uranyl acetate in acetone for 32 hr at �25˚C. After PLT and low tem-

perature incubation, the temperature was increased to 22˚C, and tissues were rinsed in pure acetone

following by propylene oxide, then infiltrated and embedded in Poly/Bed 812 epoxy (Luft

formulation).

Hot knife cutting
Ultrathick sectioning

The hemibrain is too large to image by FIB-SEM without artifacts so we used our ultrathick section-

ing ‘hot knife’ procedure (Hayworth et al., 2015) to first slice the brain into 20-mm-thick slabs which

were better suited to FIB-SEM imaging. The Epon-embedded Drosophila brain block’s face was

trimmed to present a width of just over 1 mm to the knife during sectioning (with the brain centered

in this width). The length of the blockface was trimmed to be >3 mm so that each cut section would

have a large enough region of blank plastic surrounding the tissue to allow forceps to grasp it during

later processing steps. All sides of the block were trimmed to be perpendicular to the face except

the trailing edge which was trimmed to slope away at » 45˚ (to prevent this trailing edge from

deforming during hot knife sectioning). Hot knife sectioning was performed on our custom ultrathick

sectioning testbed (Hayworth et al., 2015). The block was cut at a speed of 0.1 mm/s into a total of

37 slices, each 20 mm thick, using an oil-lubricated (filtered thread cutting oil, Master Plumber) dia-

mond knife (Cryo 25˚ from Diatome). The knife temperature was adjusted at the beginning of the

run to ensure sections flowed smoothly across the knife surface without curling (too cold) or buckling

(too hot). The knife temperature was measured to be 61˚C at the end of the run. The knife was

forced to oscillate via a piezo at 39 kHz during sectioning. A laser vibrometer (Polytec CLV-2534)

was used to measure the amplitude of vibration at 0.5 mm peak-to-peak. Each thick section was col-

lected individually from the knife surface by pressing a vacuum aspirator (extended fine tip plastic

transfer pipette, Samco Scientific, attached to lab vacuum) onto the surface of the section. Each sec-

tion was transferred to an individual well in the top of a 96-well microplate (Costar) into an awaiting

oil drop. Once all sections were collected, they were transferred via forceps under a dissection

microscope to a glass slide. The slide was placed on a hot plate (200˚C) long enough ( » 10 s) to flat-

ten any residual curl in the sections. Each section was then imaged in a 20x light microscope to eval-

uate its quality.

Flat embedding

Each of the 20-mm-thick Epon-embedded fly brain sections was re-embedded in Durcupan resin to

allow high quality FIB-SEM imaging. Durcupan re-embedding was required because FIB milling of

Epon-embedded tissue without a Durcupan front covering resulted in milling streaks which mar the

SEM images (Xu et al., 2017). Residual oil left over from the cutting process was first removed from

each thick sections by dipping the section in Durcupan resin. Four drops of Durcupan resin were

spaced out in sequence on a fresh glass slide. Each section was manually grasped with forceps

(under a dissecting microscope) and dipped and lightly agitated sequentially in each Durcupan

drops. Sections were gently wiped against the glass slide between each dipping to remove excess

Durcupan and oil. After the final dipping, each section was placed (blockface side up) onto the heat-

sealable side of a strip of 25 mm thick PET film (PP24I, Polymex Clear one side heat sealable/one

side untreated polyester film, Polyester Converter Ltd.). Flat embedding tissue sections against this

PET backing provided the strength needed for later mounting and handling. The PET film had been

previously affixed to a glass slide for support, separated from the slide by a thin Kapton film

designed to allow easy stripping of the PET. A gasket made from 50 mm thick adhesive-backed Kap-

ton was positioned so as to surround all of the sections making a well for Durcupan resin to be

poured into. This arrangement of sections was placed in a 65˚C oven for » 1 hr to partially cure the
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Durcupan so as to ‘tack’ the sections into position against the PET film. Then fresh Durcupan was

poured to fill the well to its brim, and several large area pieces of 20-mm-thick Durcupan (previously

cut from a blank block) were placed above the tissue sections to act as spacers during flat embed-

ding to ensure that at least a 20 mm layer of Durcupan would exist in front of each tissue section dur-

ing FIB milling. A piece of 25 mm Kapton film was laid on top of the Durcupan along with a glass

slide and a weight was placed on top to press excess Durcupan out of the well. This flat embedding

stack up was cured at 65˚C for 2 days.

Tab mounting, laser trimming, X-ray imaging

Each individual brain slab to be FIB-SEM imaged was cut out of this flat embedding using a scalpel,

and the resulting ‘tab’ was affixed with cyanoacrylate (Super Glue) to a metal stud. An ultraviolet

laser (LaserMill, New Wave Research) was used to trim away excess blank resin to minimize the FIB-

milling time required. An X-ray micro-CT scan (Versa 520, Zeiss) was then performed on each tab

prior to FIB-SEM imaging.

Imaging
For the hemibrain, thirteen such slices were imaged using two customized enhanced FIB-SEM sys-

tems, in which an FEI Magnum FIB column was mounted at 90˚ onto a Zeiss Merlin SEM. Three dif-

ferent imaging conditions were used for different sections with details listed in Appendix 1—table

1. In general, SEM images were acquired at 8 nm XY pixel size with a 4-nA beam with 1.2 kV landing

energy, but other parameters were tuned for best imaging quality. Slices 24 to 27 were imaged with

the specimen biased at + 600 V to prevent secondary electrons from reaching the detector, so that

only backscattered electrons were collected. The electron beam energy was lowered to 600 V

accordingly to maintain the same 1.2 kV landing energy. The remaining slices were imaged with

specimen grounded at 0 V, and both secondary and backscattered electrons were collected to

improve signal-to-noise ratio. As a result, SEM scanning rates were set at 2 MHz for slabs with speci-

men bias and 4 MHz for those without specimen bias. FIB milling was carried out by a 7-nA 30 kV

Ga ion beam. Since optic lobes are typically more heavily stained than the central brain, the FIB mill-

ing step size in sections 22 to 30 was set to 2 nm, while the step size on sections 31 to 34 was set at

4 nm, to compensate for staining nonuniformity while preserving throughput and signal-to-noise

ratio. The total FIB-SEM imaging time for the entire hemibrain was roughly four FIB-SEM-years: two

years of on and off operation with two machines.

Appendix 1—table 1. FIB-SEM imaging conditions.

Sample ID
Electron beam
energy (kV)

Sample
bias (kV)

Landing
energy (kV)

SEM
current (nA)

SEM scan rate
(MHz)

x-y pixel
(nm)

z-step
(nm)

Z0115-
22_Sec22

1.2 0 1.2 4 4 8 2

Z0115-
22_Sec23

1.2 0 1.2 4 4 8 2

Z0115-
22_Sec24

0.6 0.6 1.2 4 2 8 2

Z0115-
22_Sec25

0.6 0.6 1.2 4 2 8 2

Z0115-
22_Sec26

0.6 0.6 1.2 4 2 8 2

Z0115-
22_Sec27

0.6 0.6 1.2 4 2 8 2

Z0115-
22_Sec28

1.2 0 1.2 4 4 8 2

Z0115-
22_Sec29

1.2 0 1.2 4 4 8 2

Continued on next page
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Appendix 1—table 1 continued

Sample ID
Electron beam
energy (kV)

Sample
bias (kV)

Landing
energy (kV)

SEM
current (nA)

SEM scan rate
(MHz)

x-y pixel
(nm)

z-step
(nm)

Z0115-
22_Sec30

1.2 0 1.2 4 4 8 2

Z0115-
22_Sec31

1.2 0 1.2 4 4 8 4

Z0115-
22_Sec32

1.2 0 1.2 4 4 8 4

Z0115-
22_Sec33

1.2 0 1.2 4 4 8 4

Z0115-
22_Sec34

1.2 0 1.2 4 4 8 4

Slab alignment
From each of the flattened sections, we generated a multi-scale pyramid of the section faces. The

highest resolution pyramid level sat exactly at the surface plane, had a thickness of 1 pixel and

showed a significant amount of cutting artifacts. Lower levels of the pyramid were increasingly

thicker, projecting deeper into the volume and showed larger structures.

The alignment was initialized with a regularized affine alignment for the complete series of face

pairs using the feature based method by Saalfeld et al., 2010. The pyramid of section face pairs

was then used to robustly calculate pairwise deformations between adjacent sections. The faces are

of notable size (>30k2 pixels) and expose many preparation artifacts such that off the shelf registra-

tion packages failed to process them reliably. We therefore developed a custom pipeline that was

able to robustly align the complete series without manual corrections. Using the same feature-based

method as above, an increasingly fine grid of local affine transformations was calculated and con-

verted into a smooth and increasingly accurate interpolated deformation field. The resulting defor-

mation field was further refined using a custom hierarchical optic flow method down to a resolution

of 2 pixels. Optic flow minimizing the normalized cross correlation (NCC) was calculated for a pyra-

mid of square block-sizes. For each pixel, the translation vector with the highest number of votes

from all block-sizes was selected, and the resulting flow-field was further smoothed with an adaptive

Gaussian filter that was weighted by the corresponding NCC.

The deformation fields were then applied to each section volume by smoothly interpolating

between the deformation field at the top face and the affine transformation at the bottom face.

The block-based N5 format (https://github.com/saalfeldlab/n5; Saalfeld, 2020a; copy archived at

https://github.com/elifesciences-publications/n5) was used to store volumes, multi-scale face pyra-

mids, deformation fields, meta-data, and to generate the final export. Apache Spark was used to

parallelize on a compute cluster. The pipeline is open source and available on GitHub (https://

github.com/saalfeldlab/hot-knife; Saalfeld, 2020b; copy archived at https://github.com/elifescien-

ces-publications/hot-knife).

Segmentation
Image adjustment with CycleGANs

To reduce photometric variation, we first normalized the contrast of the aligned EM images at full

resolution ([8 nm]3/voxel) with CLAHE in planes parallel to the hot-knife cuts. In experiments tar-

geted to small subvolumes we observed that segmentation quality decreased in certain areas of the

hemibrain volume due to variations in the image content arising from, for example, fluctuations in

staining quality as well as reduced contrast near the boundaries of the physically distinct 13 hot-knife

‘tabs’ that partitioned the original tissue volume. To compensate for these irregularities, we trained

and applied CycleGAN (Zhu et al., 2017) models. This unsupervised machine learning method was

originally introduced to adjust the appearance of images from one set A (e.g. photos) to be similar

to those from another set B (e.g. paintings), without being given any explicit pairings between ele-

ments of both sets. Here, we extended this method to 3D volumes, and used model architectures
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and training hyperparameters as previously described (Januszewski and Jain, 2019), but without

utilizing the flood-filling module.

We trained separate CycleGAN models to make data from every tab visually similar to that of a

reference area spanning tabs 26 and 27 at [32 nm]3 and [16 nm]3 voxel sizes (i.e. using 4x, and 2x

downsampled images, respectively), yielding a total of 20 CycleGAN models (no model was trained

for tabs 26 and 27 at 32 nm and for tabs 23, 24, 26, and 27 at 16 nm). The reference area was cho-

sen based on similarity to the region in which training data for segmentation models was located.

The images in tabs 26 and 27 were sufficiently similar that no additional adjustment was required.

The bounding boxes within the hemibrain volume used for training the CycleGAN models are speci-

fied in Appendix 1—table 2.

During training, a snapshot of network weights (’checkpoint’) was saved every 30 min. CycleGAN

inference was performed over a tab- and resolution-specific region of interest (ROI;

see Appendix 1—table 3) with every saved checkpoint from the tab- and resolution-matched

model. We then segmented the resulting volumetric images with a resolution-matched flood-filling

network (FFN) model, and screened the segmentations for merge errors. Merge errors were identi-

fied by visually inspecting the largest objects (by the number of voxels) in the segmentations using a

3D mesh viewer (Neuroglancer). For every CycleGAN model, we selected checkpoints resulting in

the minimum number of mergers, and then among these, selected the checkpoint corresponding to

a segmentation with the maximum number of labeled voxels in objects containing at least 10,000

voxels.

We then performed CycleGAN inference with the selected checkpoint for every tab-resolution

pair over the part of the aligned hemibrain volume corresponding to that tab. The stitched inference

results were used as input volumes for tissue classification and neuron segmentation. CycleGAN nor-

malization was not done at the native [8 nm]3/voxel resolution because there was insufficient evi-

dence that the 8 nm FFN model could generalize well to different tabs.

Appendix 1—table 2. Bounding boxes within the hemibrain volume used for training CycleGAN

models.

Coordinates and sizes are given for [32 nm]3 voxels. The same physical area of the hemibrain volume

was used to train both 32 nm and 16 nm CycleGAN models.

Tab Start Size

X Y Z X Y Z

reference 4633 3792 2000 1374 2000 2000

22 8089 4030 1744 518 2000 2000

23 7435 3925 2101 654 2000 2000

24 6713 2939 4094 722 2000 2000

25 6017 2895 3635 694 2000 2000

28 3980 4944 3495 638 2000 2000

29 3307 2414 4094 666 2000 2000

30 2649 2519 4094 657 2000 2000

31 1979 2750 4094 670 2000 2000

32 1312 3065 4094 667 2000 2000

33 668 3101 3520 663 2000 2000

34 1 3112 3520 660 2000 2000

Tissue classification

We manually labeled voxels in 4 tabs of the hemibrain volume as belonging to one of 7 classes: ‘bro-

ken white tissue’, trachea, cell bodies, glia, large dendrites, neuropil, or ‘out of bounds’. We used

these labels to train a 3D convolutional network that receives as input a field of view of 65 � 65 �

65 voxels at (16 nm)3/voxel resolution. The network uses ’valid’ convolution padding and ’max’ pool-

ing operations with a kernel and striding shape of 2 � 2 � 2, with convolution and pooling
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operations interleaved in the following sequence: convolution with 64 features maps and a 3 � 3 �

3 kernel shape, max-pooling, convolution with 64 feature maps, max-pooling, convolution with 64

feature maps, max-pooling, convolution with 3 � 3 � 3 kernel size and 16 feature maps, convolution

with 4 � 4 � 4 kernel shape 512 feature maps (i.e. fully connected layer), and finally a logistic layer

output with eight units (the first unit was unused in the labeling scheme). The network was trained

with data augmentation in which the order of the three spatial axes was randomly and uniformly per-

muted for each example during construction of the 16-example minibatch. For each example, the

order of voxels along each spatial axis was also inverted at random with 50% probability. Examples

from the seven classes were sampled randomly with equal probability. The model was implemented

in TensorFlow and training was performed with asynchronous SGD on eight workers using NVIDIA

P100 GPUs. The results can be viewed using NeuroGlancer at https://hemibrain-dot-neuroglancer-

demo.appspot.com/#!gs://flyem-views/hemibrain/v1.0/mask-view.json.

The resulting classifier output was, on certain slices of the hemibrain, manually proofread using a

custom tool (‘‘Armitage’’). The inference and proofreading process was then iterated seven times in

order to expand and improve the set of ground truth voxels, resulting in a final ground truth set with

the following number of examples in each class (sizes in Mxv, or megavoxels): 9.7 Mvx broken white

tissue, 22.9 Mvx trachea, 42.1 Mvx cell bodies, 5.6 Mvx glia, 17.7M Mvx large dendrites, 71.4 Mvx

neuropil, and 208.1 Mvx out of bounds.

Mitochondria classification

We detected and classified mitochondria within the hemibrain volume using the same neural net-

work architecture and training setup as that used for tissue classification. Ground truth data was col-

lected through iterative annotation (two rounds) in Armitage, in which voxels within hemibrain were

manually annotated as belonging to one of 4 classes: ‘background’ (33.7 Mvx), ‘regular’ (0.7 Mvx),

‘special’ (0.5 Mvx), and ‘intermediate’ (0.5 Mvx).

Appendix 1—table 3. ROIs within the hemibrain volume used for CycleGAN checkpoint selection.

Tab Voxel Res. [nm] Start Size

X Y Z X Y Z

22 32 8092 4392 5447 500 936 936

23 32 7435 2479 4979 500 936 936

24 32 6717 5414 4873 500 936 936

25 32 6010 3960 6235 500 936 936

28 32 3971 2591 2954 500 936 936

29 32 3471 4252 2224 500 936 936

30 32 2650 2995 4875 500 936 936

31 32 1982 3196 4875 500 936 936

32 32 1311 3141 4873 500 936 936

33 32 664 2850 4875 500 936 936

34 32 0 1900 4500 500 5000 2500

22 16 16080 8353 9871 1034 936 936

25 16 11900 12657 12636 1406 936 936

25 16 11900 5266 10578 1408 936 936

28 16 7900 9279 4613 1297 936 936

29 16 6550 8520 4613 1333 936 936

30 16 5250 7997 7510 1315 936 936

31 16 3860 7749 7510 1340 936 936

32 16 2550 9482 4225 1334 936 936

33 16 1280 7176 12265 1298 936 936

34 16 0 7587 12265 1328 936 936
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Automated neuron segmentation with FFNs

We trained three FFN models composed of the same architecture as detailed in previous work

(Januszewski et al., 2018) for FIB-SEM volumes, targeted specifically for 8 nm, 16 nm, and 32 nm

voxel resolution data. For the 8 nm model we used manually generated ground truth spread over six

subvolumes (5203 voxels each) located within the ellipsoid body, fan-shaped body and protocerebral

bridge. The 16 nm and 32 nm models were trained with a proofread segmentation contained within

a 8600 � 3020 � 9500 voxel region spanning tabs 26 and 27. For the 32 nm model, training exam-

ples were sampled from objects comprising 5000 or more labeled voxels at 32 nm/voxel resolution.

In total, 4.2 Gvx of labeled data were used for the 16 nm model and 423 Mvx for the 32 nm model.

We split the training examples into ‘probability classes’ similarly to Januszewski et al., 2018.

Classes 13–17 were not sampled when training the 8 nm model in order to bias it toward small-

diameter neurites. For 16 nm and 32 nm models fewer classes were used and the first class compris-

ing all initial training examples with the fraction of voxels set to 0:95fa<0:05. Other than the changes

regarding the probability classes, we followed the same procedures for training example sampling,

seed list generation, field-of-view movement, and distributed inference as detailed previously

(Januszewski et al., 2018).

FFN checkpoints were selected in a screening process. We generated tab 24 segmentations at 16

and 32 nm voxel resolution for every available checkpoint. We then screened these segmentations

for merge errors, annotating every such error with two points, one in each distinct neurite. The seg-

mentation generated with an FFN checkpoint that avoided the most errors was selected. For the 8

nm segmentation, we followed the same procedure but restricted to a 5003 subvolume within tab

24, located at 23284, 1540, 12080.

Pipeline for segmentation of hemibrain with flood-filling networks
Multi-resolution and oversegmentation consensus

We built the hemibrain segmentation with a coarse-to-fine variant of the FFN pipeline

(Januszewski et al., 2018) combining partial segmentations generated at different resolutions. First,

we used the 16 nm and 32 nm FFN models to segment the dataset at the corresponding resolution,

with voxels identified by the tissue classifier as glia and out-of-bounds excluded from FFN FOV

movement (‘tissue masking’), and voxels classified as ‘broken white tissue’ excluded from seed gen-

eration. Voxels located within 128 nm from every hot knife plane were removed from the image

data, and segmentation proceeded as if these regions did not exist. The resulting segmentation was

extended back to the original coordinate system by nearest neighbor interpolation to fill the unseg-

mented spaces.

We then removed objects smaller than 10,000 voxels from the 32 nm segmentation (we will refer

to the resulting segmentation as S32), isotropically upsampled it 2x, and combined it with the 16 nm

segmentation using oversegmentation consensus (Januszewski et al., 2018). The resulting segmen-

tation (S16) was used as the initial state for 8 nm FFN inference. In addition to tissue masking which

was applied in the same way as in the case of lower resolution segmentations, we also masked areas

within 32 voxels (at 8 nm/voxel resolution) from each hot-knife plane.

FlyEM proofreaders analyzed the roughly 200,000 largest objects in the segmentation, and manu-

ally split supervoxels identified as causing merge errors. This was done in three iterations – two tar-

geting neuropil supervoxels, and one targeting cell bodies. The resulting corrected segmentation

(S8) was used as the base segmentation for further work.

Agglomeration

For agglomeration, we modified the scheme described in Januszewski et al., 2018 for use with res-

olution-specific FFN models. First, we established a class for every segment by performing a majority

vote of the tissue classification model predictions over the voxels covered by the segment. For every

S16 segment (A, B), we also identified the maximally overlapping segment in S32 (denoted respec-

tively Amax, Bmax below). For each of the S32, S16, and S8 segmentations, we then computed candi-

date object pairs and agglomeration scores, restricting object pairs to ones involving both segments
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classified as either neuropil or ‘large dendrite’. For S8, the object pairs were additionally restricted

to those that included at least one object not present in S16.

For every evaluated segment pair (A, B) and the corresponding segments (A*, B*) generated dur-

ing agglomeration, we computed the scores originally defined in Januszewski et al., 2018 that is

the recovered voxel fractions (fAA, fAB, fBA, and fBB, where fAB is the fraction of B found in A*, and so

on), the Jaccard index JAB between A* and B*, and the number of voxels contained in A* or B* that

had been ’deleted’ (i.e., during inference their value in the predicted object mask fell from >0:8 to

<0:5) during one of the runs (dA, dB).

We then used the following criteria to connect segments A and B. In S32, we connected seg-

ments that were scored as ðf�� � 0:6 ^ JAB � 0:4Þ _ ðfA� � 0:8Þ _ ðfB� � 0:8Þ: In S16, we connected seg-

ments that either (a) were scored as d� � 0:02 or were both classified as neuropil, and

f�� � 0:6 ^ JAB � 0:4, or (b) were both classified as neuropil, Amax ¼ 0 or Bmax ¼ 0 and

ðfA� � 0:9Þ _ ðfB� � 0:9Þ. In S8, we connected segments that were scored as

ðdA � 0:02 _ dB � 0:02Þ ^ f�� � 0:6 ^ JAB � 0:8.

Given the application of oversegmentation consensus in the process of building S16, objects cre-

ated in S32 could have a different shape in S8. To compensate for this possibility, when agglomera-

tion scores were being computed for S32 segments A and B, for each we computed up to eight

maximally overlapping objects (A’, B’) in a downsampled version of S8 with matching voxel resolu-

tion, subject to a minimum overlap size of 1000 voxels and considered the agglomeration decision

to apply to all combinations of A’ and B’.

Agglomeration constraints

From the procedure above, we used the agglomeration scores to organize segment connection

decisions into priority groups and assign them a single numerical priority score (see Appendix 1—

table 4). The decisions were then sorted in ascending order of the priority score, and sequentially

processed, removing any decisions that would cause two cell bodies (as defined by manual annota-

tions), or two segments previously separated manually in S8 proofreading to be connected was

removed. Additionally, once all decisions with score <10 were processed, we also disallowed any

remaining decisions that connected together any objects larger than 100 Mvx.

Appendix 1—table 4. Criteria for agglomerating priority groups.

If an agglomeration decision fulfills the criteria for multiple priority groups, it is assigned to the one

with the lowest resulting score.

Group Segmentation Criterion Score

1 S32 ðdA � 0:02 _ dB � 0:02Þ ^ ðf�� � 0:6 ^ JAB � 0:8Þ 1� JAB

2 S16 ðdA � 0:02 _ dB � 0:02Þ ^ ðf�� � 0:6
^JAB � 0:8Þ ^ ðAmax ¼ 0 _ Bmax ¼ 0Þ^

A and B are classified as neuropil

2� JAB

3 S16 ðdA � 0:02 _ dB � 0:02Þ ^ ðf�� � 0:6
^JAB � 0:8Þ ^ ðAmax ¼ 0 _ Bmax ¼ 0Þ

3� JAB

4 S16 ðdA � 0:02 _ dB � 0:02Þ ^ ðf�� � 0:6 ^ JAB � 0:8Þ^
A and B are classified as neuropil

4� JAB

5 S16 ðdA � 0:02 _ dB � 0:02Þ ^ ðf�� � 0:6 ^ JAB � 0:8Þ 5� JAB

6 S32 ðf�� � 0:6 ^ JAB � 0:4Þ ^ ðAmax ¼ 0 _ Bmax ¼ 0Þ^ A and B are
classified as neuropil

6� JAB

7 S16 ðf�� � 0:6 ^ JAB � 0:4Þ ^ ðAmax ¼ 0 _ Bmax ¼ 0Þ 7� JAB

8 S16 ðf�� � 0:6 ^ JAB � 0:4Þ^
A and B are classified as neuropil

8� JAB

9 S16 ðf�� � 0:6 ^ JAB � 0:4Þ 9� JAB

10 S8 None 11� JAB

11 S32 None 12� maxðminðfAA; fABÞ;
minðfBA; fBBÞÞ

12 S16 None 13� maxðminðfAA;
fABÞ;minðfBA; fBBÞÞ
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Speculative agglomeration

Any body (or set of segments connected by the agglomeration graph) larger than 10 Mvx was con-

sidered to be an ‘anchor’ body. We connected smaller bodies to these anchor bodies in a greedy

procedure to further reduce the total number of bodies in the agglomerated segmentation. We

formed body pair scores using segment pair agglomeration scores as maxðminðfAA; fABÞ;minðfBA; fBBÞÞ.

We then merged every body with its highest scoring candidate partner, as long as this would not

connect two anchor bodies, and the body pair score was >0.1. This procedure was repeated seven

times.

Synapse prediction
Ground truth

For training and validation, we collected dense synapse annotations within small cubes, spread

through different brain regions. In total, we collected 122 such cubes, using 25 for classifier training,

and the remaining 97 for validation. At each cube location, proofreaders manually annotated all

T-bars within a 4003 window, and further annotated all PSDs attached to T-bars within a smaller 2563

sub-window. In total, 7.6k T-bars were annotated, split between 1.8k for training and 5.8k for valida-

tion, and 11.7k PSDs were annotated, split between 3k for training and 8.7k for validation.

Method

Details of the T-bar and PSD detection algorithms we used can be found in Huang et al., 2018. For

reference, the T-bar classifier is a 3D CNN using a U-Net architecture (Ronneberger et al., 2015),

with a receptive field size of 403 voxels and 770 k parameters.

At inference, we leverage the tissue classification results mentioned above by discarding any pre-

dictions that fell outside of tissue categories of large dendrites or neuropil.

As mentioned in the main text, after collecting ground-truth throughout additional brain regions,

we found that our initial T-bar classifier was giving lower than desired recall in certain areas. There-

fore, we trained a new classifier, and combined the results in a cascade fashion, which we found

gave better results than simply replacing the initial predictions. Specifically, we added any predic-

tions above a given confidence threshold made by the new classifier for synapses that were not near

an existing prediction, and removed any existing predictions that were far from predictions made by

the new classifier at a second lower/conservative threshold.

One difficulty in placing a single T-bar annotation at each presynaptic location is a certain ambi-

guity with respect to ‘multi T-bars’, cases in which two distinct T-bar pedestals lay in close proximity,

within the same neuron. Such a case can be difficult to distinguish from a single large synapse, both

for manual annotators as well as the automated prediction algorithm. To make such a distinction reli-

ably would require obtaining many training examples for both cases (multi T-bar versus single large

synapse), and would only have a slight effect on the final weights of the connectome (but not the

unweighted connectivity). Therefore, we make no attempt to predict multi T-bars, and instead as a

final post-processing step, collapse to a single annotation any T-bar annotations that are in close

proximity and in the same segmented body.

Finally, we observed that in certain brain regions, there are instances of T-bars in separate bodies

but in close proximity to one another. These often form a ‘convergent T-bars’ motif, in which multi-

ple T-bars closely situated in distinct bodies form a synapse onto the same PSD body. The proximity

of such T-bars is often less than the distance threshold used in the non-maxima suppression (NMS)

that is applied to generate the T-bar annotations from the pixel-wise U-Net predictions. Given the

NMS, a number of these types of T-bars would be missed by our predictor.

To address this issue, we modified the post-processing of pixel-wise predictions so as to use a

‘segmentation-aware NMS’. Specifically, we constrain the NMS applied to each pixel-wise local max-

ima to largely be limited to the specific segment in which the maxima occurs. Each segment is

dilated slightly to avoid additional predictions that only fall a very small number of voxels outside

the segment containing the maxima. (Note that unlike standard NMS, this procedure does require

that the automated segmentation be available prior to inference.) We apply the segmentation-aware
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NMS only in brain regions where convergent T-bars were observed, as occurs in the mushroom

body and fan-shaped body.

Appendix 1—figure 1. Precision-recall plot of T-bar prediction. The purple intercept indicates

estimated manual agreement rate of 0.9. Data available in Appendix 1—figure 1—source data 1.

The online version of this article includes the following source data is available for figure 1:

Appendix 1—figure 1—source data 1. Data for Appendix 1—figure 1.

Evaluation

Appendix 1—figure 1 gives the precision-recall plot for T-bar prediction, averaged over all the

available ground-truth validation cubes. As mentioned above, we do not attempt to predict multi

T-bars; therefore, for the purposes of evaluation, we also collapse any ground-truth T-bars within

close proximity in the same body to a single annotation. As can be seen from the figure, the cascade

predictions are able to increase recall while maintaining precision. One of the primary error modes

that leads to a difference between automated accuracy and manual agreement rate is the case of

convergent T-bars, noted above. For instance, in Figure 5 of the main text, the brain region with

lowest recall is b’L in the mushroom body; closer analysis revealed many convergent T-bars in the

annotated ground-truth cubes for b’L.

Appendix 1—figure 2 below in the next subsection gives the corresponding precision-recall plot

for end-to-end synapse prediction, averaged over all the available ground-truth validation cubes. As

with both (Huang et al., 2018) and (Buhmann et al., 2019), we do not attempt to predict autapses,

and remove any predicted connections that lie within the same neuron. For evaluation, any occa-

sional ground-truth autapses are filtered out.
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Additional classifier

As an independent check on synapse quality, we also trained a separate classifier proposed by Buh-

mann (Buhmann et al., 2019), using the ‘synful’ software package provided. We additionally made

several modifications to the code, including: adding an ‘ignore’ region around synapse blobs where

predictions were not penalized, using focal loss (Lin et al., 2017) to help with class imbalance, using

batch normalization (Ioffe and Szegedy, 2015) and residual layers (He et al., 2016), and adding

explicit T-bar prediction as an additional network output. We found this multi-task learning (adding

explicit T-bar prediction to PSD prediction and partner direction prediction) to be beneficial, similar

to the use of cleft prediction in Buhmann et al., 2019, most likely due to the T-bar pedestals being

a more reliable and prominent signal in our hemibrain preparation/staining than the PSDs. We refer

to this network and its resulting synapse predictions as ‘synful+’.

Appendix 1—figure 2. Precision-recall plot of end-to-end synapse prediction. The purple intercept

indicates estimated manual agreement rate of 0.8. Data available in Appendix 1—figure 2—source

data 1.

The online version of this article includes the following source data is available for figure 2:

Appendix 1—figure 2—source data 1. Data for Appendix 1—figure 2.

Appendix 1—figure 2 shows the overall end-to-end precision-recall plots for each of the classi-

fiers. As mentioned in the main text, we combined the predictions from the cascade and synful+

classifiers to yield a ‘hybrid’ classifier that achieved both better recall and precision than the two

individual classifiers. Specifically, we modified the cascade predictions by (1) adding any PSDs that

were predicted with strong confidence by synful+ and attached to existing T-bars, and (2) removing
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any PSDs that were predicted with weak confidence by the cascade classifier and not predicted by

synful+ even at a very low confidence threshold.

Pathway analysis

Given two independent sets of synapse predictions (cascade and synful+), we further conduct an

analysis of their respective connectivity graphs. We construct connectomes from each set of synapse

predictions, limited to the 21,000+ traced bodies. At the level of individual synapses, the two sets of

predictions have an agreement rate of about 80%.

However, we can look at connections of a given strength in one set of predictions, and see

whether the other set of predictions gives a corresponding connection of any strength. For instance,

among bodies that are connected with at least five synapses in the cascade predictions, less than

1% have no connection in the synful+ predictions, and similarly, among bodies that are connected

with at least five synapses in the synful+ predictions, less than 2% have no connection in the cascade

predictions. This suggests some level of stability in edges with a stronger connection, so that using a

different classifier would be still likely to maintain that edge.

We also further manually assessed the small percentage of outlier edges. We sampled 100 synap-

ses from the strongest of the edges in the cascade predictions that are not present in the synful+

predictions, and similarly 100 synapses from the synful+ predictions. For the cascade predictions, we

find an overall accuracy of 64%, lower than the general accuracy of the cascade predictor, but we

did not observe a pathway in which all sampled synapses were false positives. For the synful+ predic-

tions, we found that all sampled synapses were false positives, resulting from improper placement of

the T-bar annotation, thereby assigning the T-bar to an incorrect body. This suggests another use

for such pathway analysis, in potentially discovering particular error modes of a classifier and allow-

ing for re-training/refining to address such errors.

As a related measure of connectome stability, we also looked at how often the magnitude of the

pathway connections were comparable. For instance, we can examine connections consisting of at

least 10 synapses in one prediction set, and see how often those connections are within a factor of 2

in the other prediction set. We find that this holds for 93% of the connections of strength greater

than 10. Appendix 1—figure 3 shows a plot comparing pathway connection strength between the

two sets of predictions.
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Appendix 1—figure 3. Comparison of synful+ connection strength versus cascade connection

strength (truncated at a connection strength of 500 for clarity, omitting 40 edges from each predic-

tion set). Data available in Appendix 1—figure 3—source data 1.

The online version of this article includes the following source data is available for figure 3:

Appendix 1—figure 3—source data 1. Data for Appendix 1—figure 3.

Logistics and management
The hemibrain reconstruction required a large-scale effort involving several research labs, Janelia

shared services, about ten staff scientists, and about 60 proofreaders. The overall initiative planning,

including the choice of biological regions to image and reconstruct, timeline, and budget, was

orchestrated by the FlyEM project team at the Janelia Research Campus with a guiding steering

committee composed of several experts within the institute. The Connectomics Group at Google

Research collaborated extensively with FlyEM developing key technology to segment the hemibrain

volume.

Extensive orchestration by project staff and Janelia shared services was required to manage the

team of proofreaders and the reconstruction effort. Our proofreading team consisted of full-time

technicians hired specifically for proofreading. To satisfy the ambitious reconstruction goals of the

hemibrain effort, we hired close to 30 people in a few months to augment the existing proofreading

resources, requiring a streamlined system of recruitment and training. We found that the average

proofreader required around 2 months of training to become reasonably proficient in EM tracing,

which entailed working on carefully designed training modules and iterative feedback with more

experienced proofreaders or managers. Ongoing training was necessary for both new and experi-

enced proofreaders to meet the needs of different reconstruction tasks. The team of proofreaders

had frequent meetings, and a Slack channel, with the software staff to improve proofreading soft-

ware. We found that for a project of this size, several additional software personnel were required

for data management, monitoring, orchestrating, and streamlining proofreading assignments.

The hemibrain reconstruction involved several different reconstruction steps or workflows, many

discussed in the paper. The primary workflows were cleaving, false split review, focused proofread-

ing, and orphan linking. Cleaving is the task of splitting a falsely merged segment. False split review
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entails examining a neuron, using 3D morphology, for potential false splits. Focused proofreading is

a ‘merge’ or ‘don’t merge’ protocol based on automated suggestions from the segmentation algo-

rithm. Orphan linking is fixing small detached segments that should either be annotated as exiting

the hemibrain dataset, or be merged to a larger, already proofread body. Overall, we estimate that

we undertook » 50–100 proofreading years of reconstruction effort.

Anatomical names in the central complex
Appendix 1—table 5 provides two names for CX neurons: a short name useful for searching data-

bases and an anatomical name that reveals morphological insight indicated by the input and output

neuropils in the name. Previously published neurons (e.g. PB, NO, AB, EB ring neurons) now have

short names, but their anatomical names are largely unchanged. Slight modifications were made to

two neuron names to eliminate duplications with names in other brain regions or species: LN was

changed to LNO1 and LGN to LGNO. In addition, the hyphens used in the abbreviated neuron

names in Wolff and Rubin, 2018 have been eliminated. The new anatomical names are limited to

three neuropils: two input followed by an output brain region. Neurons that arborize in only two

structures are named by the input followed by output neuropil. Two-letter abbreviations are used

for the CX brain regions: PB, FB, EB, NO, and AB. All remaining neuropils follow the three-letter

abbreviations established in Ito et al., 2014.

For fan-shaped body columnar and tangential cell anatomical names, numbers that follow ‘FB’

indicate layers, and layer numbers followed by a lower case ‘d’ or ‘v’ indicate the arbor is restricted

to the dorsal or ventral half of the indicated layer (e.g. FB6d). Many FB arbors extend vertically to

span more than one layer, a form that is indicated by sequential numbers separated by commas

(e.g. FB2,3,4 indicates a single, vertical arbor that extends across layers 2, 3, and 4 of the FB). Some

FB neurons have two distinct arbors in different layers; these are indicated by a gap in the layer num-

bers (e.g. FB2,6 has one arbor in layer 2 and a second in layer 6).

Inevitably, the large number of cell types and three-neuropil limit for anatomical names results in

redundancy in neuron names. To give a unique identity to each name, ‘_#’ is appended to otherwise

indistinguishable names (e.g. LALCREFB2_1 and LALCREFB2_2).

The nomenclature system for the anatomical names was designed to enable visualization of a neu-

ron’s morphology. High synaptic density generally correlates with more prominent arbors in light

level images and therefore provides a visual depiction of the neuron’s overall shape. In most cases,

synaptic density was therefore used as the primary metric in naming neurons. Synapse counts were

retrieved from the neuPrint database. Only fully traced neurons from the right hemisphere were

used in this analysis.

Different criteria were applied to FB tangential and columnar neurons when selecting neuropils to

include in neuron names. The FB tangential neurons exhibit the greatest number of both presynaptic

and postsynaptic terminals within a single FB layer, so naming these neurons based on neuropils

with highest synaptic density would limit morphological insight. For example, FB layer 2 tangential

neurons would be named FB2-neuropil X-FB2, FB2-neuropil Y-FB2, etc. Furthermore, since only a

small number of neuropils are frequently arborized by the FB tangential neurons (e.g., SLP, SIP,

SMP, CRE), names would be highly redundant. Instead, a more complete visual representation of a

cell’s morphology is achieved by using the brain regions with the second and third greatest number

of input synapses (the first and second neuropils in the name). FB layer information is included in the

third, or output, neuropil since presynaptic arbors are greatest in the FB in tangential neurons.

Occasional exceptions were made to include neuropils that would provide deeper insight into

morphology. For example, according to the rules above, CRENO2FB4_2 (FB4M) should be named

CRELALFB4 or CRESMPFB4 since 10–12% of input synapses are in the LAL and in the CRE, whereas

only 6% are in NO2. An exception was made in this cell’s name since arbors in the noduli distinguish

this cell from other CRELALFB4 and CRESMPFB4 cells. Similarly, for neurons with equivalent synaptic

density in several neuropils, those neuropils that best portrayed the neuron’s unique morphology

were chosen (e.g. SIPSCLFB2, or FB2H_a and FB2H_b).

Appendix 1—table 5. Corresponding short and anatomical names for cell types in the central

complex.

These types were determined by different methods and different researchers, using different criteria.
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Short Long Short Long Short Long Short Long

vDeltaA_a AF FB3B EBCREFB3 FB6C_a SIPSMPFB6_1 FC2B FB1d,3,5,6CRE

vDeltaA_b FB1D0FB8 FB3C LALSMPFB3 FB6C_b SIPSMPFB6_1 FC2C FB1d,3,6,7CRE

vDeltaB FB1D0FB7_1 FB3D LALCREFB3 FB6D SMPFB6 FC3 FB2,3,5,6CRE

vDeltaC FB1D0FB7_2 FB3E SMPLALFB3 FB6E SIPSMPFB6_2 FR1 FB2-5RUB

vDeltaD FB1D0FB6 FB4A CRESMPFB4_1 FB6F SMPSIPFB6_3 FR2 FB2-4RUB

vDeltaE FB1,2,3D0FB6v FB4B NO2LALFB4 FB6G SIPSMPFB6_3 FS1A FB2-6SMPSMP

vDeltaF FB1,2,3D0FB5d FB4C CRENO2FB4_1 FB6H SMPSIPFB6_4 FS1B FB2,5,
SMPSMP

vDeltaG FB1,2D0FB5d FB4D CRESMPFB4_2 FB6I SMPSIPFB6_5 FS2 FB3,6SMP

vDeltaH FB1,2D0FB5 FB4E CRELALFB4_1 FB6J FB6_1 FS3 FB1d,3,6,7SMP

vDeltaI FB1D0FB5 FB4F_a CRELALFB4_2 FB6K SMPSIPFB6_6 FS4A FB3,8ABSMP

vDeltaJ FB1D0FB5v FB4F_b CRELALFB4_2 FB6L FB6_2 FB1,3,8SMP

vDeltaK FB1vD0FB4d5v FB4G CRELALFB4_3 FB6M WEDLALFB6 FS4B FB2,8ABSMP

vDeltaL FB1vD0FB4 FB4H CRELALFB4_4 FB6N CRESMPFB6_1 FB1,2,8SMP

vDeltaM FB1vD0FB4 FB4I LALCREFB4 FB6O SIPSMPFB6_4 FS4C FB2,6,7SMP

hDeltaA FB4D5FB4 FB4J CRELALFB4_5 FB6P SMPCREFB6_1 GLNO LGNO

hDeltaB FB3,4vD5FB3,4v FB4K CRESMPFB4_3 FB6Q SIPSMPFB6_5 IbSpsP IbSpsP

hDeltaC FB2,6D7FB6 FB4L LALSIPFB4 FB6R SMPSIPFB6_7 LCNOp LCNp

hDeltaD FB1,8D3FB8 FB4M CRENO2FB4_2 FB6S SIPSMPFB6_6 LCNOpm LCNpm

hDeltaE FB1,7D3FB7 FB4N SMPCREFB4 FB6T SIPSMPFB6_7 LNO1 LNO1

hDeltaF FB1,6d,7D2FB6,7 FB4O CRESMPFB4d FB6U SMPCREFB6_2 LNO2 LNO2

hDeltaG FB2,3,5d6vD3FB6v FB4P_a CRESMPFB4_ 4 FB6V SMPCREFB6_3 LNO3 LNO3

hDeltaH FB2d,4D3FB5 FB4P_b CRESMPFB4_ 4 FB6W CRESMPFB6_2 LNOa LNa

hDeltaI FB2,3,4,5D5FB4,5v FB4Q_a CRESMPFB4_5 FB6X SMPCREFB6_4 LPsP LPsP

hDeltaJ FB1,2,3,4D5FB4,5 FB4Q_b CRESMPFB4_5 FB6Y SMPSIPFB6_8 Delta7 Delta7

hDeltaK EBFB3,4D5FB6 FB4R CREFB4 FB6Z SMPSIPFB6_9 EL EBGAs

hDeltaL FB2,6D5FB6d FB4X CRESIPFB4,5 FB7A SIPSLPFB7 EPG EPG

hDeltaM FB2,4D3FB5 FB4Y EBCREFB4,5 FB7B SMPSLPFB7 EPGt EPGt

FB1A SMPSIPFB1,3 FB4Z FB4d5v FB7C SMPSIPFB7_1 P1-9 PBPB

FB1B SMPSLPFB1d FB5A LALCREFB5 FB7D FB7,6 P6-8P9 P6-8P9

FB1C LALNOmFB1 FB5AA SMPCREFB5_10 FB7E SMPSIPFB7_2 PEG PEG

FB1D SLPFB1d FB5AB SIPCREFB5d FB7F SMPSIPFB7_3 PEN_a
(PEN1)

PEN1

FB1E_a SIPSMPFB1d FB5B SMPSIPFB5d_1 FB7G SMPFB7,8 PEN_b
(PEN2)

PEN2

FB1E_b SLPSIPFB1d FB5C SMPCREFB5_1 FB7H SMPFB7 PFGs PFGs

FB1F SMPSIPFB1d FB5D CRESMPFB5_1 FB7I SMPSIPFB7,6 PFL1 PFLC

FB1G SMPSIPFB1d,3 FB5E CRESMPFB5_2 FB7J FB7,8 PFL2 PB1-
4FB1,2,4,5LAL

FB1H CRENO2,3FB1-4 FB5F SMPCREFB5_2 FB7K SLPSIPFB7 PFL3 PB1-
7FB1,2,4,5LAL

FB1I SMPSIPFB1d,7 FB5G SMPSIPFB5,6 FB7L SMPSIPFB7_4 PFNa PFNa

FB1J SLPSIPFB1,7,8 FB5H CRESMPFB5_3 FB7M SMPSIPFB7_5 PFNd PFNd

FB2A NOaLALFB2 FB5I SMPCREFB5_3 FB8A SLPSMPFB8_1 PFNm_a PFNm_a

FB2B_a LALCREFB2_1 FB5J SMPFB5 FB8B PLPSLPFB8 PFNm_b PFNm_b

Continued on next page
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Appendix 1—table 5 continued

Short Long Short Long Short Long Short Long

FB2B_b LALCREFB2_1 FB5K CREFB5 FB8C SMPFB8 PFNp_a PFNp_a

FB2C SMPCREFB2_1 FB5L CRESMPFB5_4 FB8D SLPSMPFB8_2 PFNp_b PFNp_b

FB2D LALCREFB2_2 FB5M CRESMPFB5_5 FB8E SMPSIPFB8_1 PFNp_c PFNp_c

FB2E SCLSMPFB2 FB5N SMPCREFB5_4 FB8F_a SIPSLPFB8 PFNp_d PFNp_d

FB2F_a SIPSMPFB2 FB5O SMPCREFB5_5 FB8F_b SIPSLPFB8 PFNp_e PFNp_e

FB2F_b SIPSMPFB2 FB5P SMPCREFB5_6 FB8G SMPSIPFB8_2 PFNv PFNv

FB2F_c SIPSMPFB2 FB5Q SMPCREFB5d FB8H SMPSLPFB8 PFR_a PFR_a

FB2G_a SMPSIPFB2 FB5R FB5 FB8I SMPSIPFB8_3 PFR_b PFR_b

FB2G_b SIPLALFB2 FB5S FB5d,6v FB9A SLPFB9_1 SA1_a SlpA

FB2H_a SIPSCLFB2 FB5T CRESMPFB5_6 FB9B_a SLPFB9_2 SA1_b SlpA

FB2H_b SIPSCLFB2 FB5U FB5d FB9B_b SLPFB9_2 SA1_c SlpA

FB2I_a SMPATLFB2 FB5V CRELALFB5 FB9B_c SLPFB9_2 SA2_a SlpA

FB2I_b SMPATLFB2 FB5W SMPCREFB5_7 FB9B_d SLPFB9_2 SA2_b SlpA

FB2J SMPPLPFB2 FB5X SMPCREFB5_8 FB9B_e SLPFB9_2 SA3 SlpA

FB2K LALSMPFB2 FB5Y SMPSIPFB5d_2 FB9C_a SLPFB9_2 SAF SlpAF

FB2L SMPCREFB2_2 FB5Z SMPCREFB5_9 FB9C_b SLPFB9_2 SpsP SpsP

FB2M SIPCREFB2 FB6A SMPSIPFB6_1 FC1 FB2CRE

FB3A LALNO2FB3 FB6B SMPSIPFB6_2 FC2A FB1-5CRE

In contrast to the FB tangential neurons, the FB columnar neurons project terminals to generally

more than one layer of the FB. In addition, unlike the nine glomeruli in the PB, there is not a fixed

number of vertical columns in the FB. Rather, column number is a function of cell type, so column

number is an important feature of each cell type. Finally, a subset of the columnar neurons is intrinsic

to the FB, whereas the remaining columnar neurons project terminals to additional neuropils.

Nomenclature rules differ for these classes of neurons.

Intrinsic columnar FB neurons have multiple arbors in the FB. While most arbors comprise a mix-

ture of dendrites and axons, one arbor type usually predominates. The predominantly input or out-

put arbors are either vertically arranged within a single column of the FB, in which case they include

the prefix ‘v’ in the short name and D0 in the anatomical name (see below), or horizontally distrib-

uted across different columns, in which case they include the prefix ‘h’ in the short name and D# in

the anatomical name (see below for details). The horizontal class of neurons includes one or more

input arbors vertically arranged within a single column that are separated by a given number of col-

umns from an output arbor on the contralateral side of the FB. The distance between the input and

output arbors, measured as the difference of column numbers, is unique to each cell type but is

always half the width of the FB. The number of columns between the input and output arbors is

referred to as ‘delta’ and is indicated in these neuron’s names by a capital ‘D’ followed by the num-

ber of skipped columns between horizontally distributed input and output arbors. Two, three, five or

seven columns have been documented to separate input from output arbors. As with the FB tangen-

tial neurons, input neuropils are indicated first in the neuron’s name, followed by output neuropils.

The total number of columns per brain for a given cell type equals (Delta + 1) x 2. For example,

FB2,3,5d,6vD3FB6v (hDeltaG) has input arbors in FB layers 2, 3 and 1 that spans the dorsal layer 5

and ventral layer 6. A gap of 3 columns (D3) separates the input arbors from the output arbor, which

is located in the ventral portion of layer 6. For this cell type, there are (3+1) x 2 or eight columns per

brain. In some instances, output arbors were easier to count than input (dendritic) arbors, so column

counts were based on output arbors. While columns for some cell types are unambiguous, in other

cases, best guesses were made based on anatomy and connectivity. For cells with arbors that over-

lap, column number was defined by the minimal number of arbors (in other words, non-overlapping)

that achieved full coverage of the cell’s layer.
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Neurons with input and output arbors that are vertically arranged within the same column have a

displacement of zero columns, or a Delta0 (D0). This vertical alignment is reflected in the neuron’s

anatomical name by D0 and in the short name with the prefix ‘v’. Column numbers were not calcu-

lated for these cell types.

The remaining columnar neurons exhibit both dendritic and axonal arbors within the FB as well as

axonal arbors in additional neuropils. Although the vast majority of synapses are in the FB, it is the

axonal synapses outside the FB that provide the best insight into gross morphology and are there-

fore indicated as the output neuropil. For example, while only 1% of the output for the FB2,5,6CRE

(FC3) neuron is in the CRE, the neurite that projects to the CRE is distinctive and informs morphol-

ogy. Column numbers were also not calculated for these cell types.

Sparse to many motifs
The attached spreadsheet ‘SparseToMany.xlsx’ describes the sparse-to-many motifs illustrated in

Figure 22(B). Shown are all instances where sparse type (N � 2) connects bidirectionally to at least

90% of all instances of an abundant type (N � 20). The two sheets have identical data, but one is

sorted by the name of the sparse type, and one the abundant type. The data contained is:

. Column A: The brain region and threshold used. All entries here are for the full brain and
threshold 1.

. Column B: The name of the sparse type.

. Column C: The number of instances of the sparse type. This is most commonly 2, as most neu-
rons are bilaterally symmetric. However there are cases where only a single instance was
reconstructed in our volume.

. Column D: The bodyID of the sparse type.

. Column E: The instance name of the sparse type. This normally distinguishes the left and right
examples.

. Column F: The name of the abundant type.

. Column G: The count of the abundant type.

. Column H: The number of connections from the sparse to the abundant type.

. Column I: The average strength of such connections.

. Column J: The number of connections from the abundant type to the sparse type.

. Column K: The average strength of such connections.

Supplementary neuron type naming tables

Appendix 1—table 6. Naming scheme for neurons.

The neuron types that are known to exist but are not yet identified conclusively in the hemibrain data

are not shown in the list.

Connectivity types

_a, _b, _c, _d, etc. at the end of the morphology type names shown below

Morphology types

Central complex neuropil neurons

Delta7 (protocerebral bridge Delta seven between glomeruli)

vDeltaA-M (fan-shaped body vertical Delta within a single column [type ID])

hDeltaA-M (fan-shaped body horizontal Delta across columns [type ID])

EL (Ellipsoid body - Lateral accessory lobe)

EPG (Ellipsoid body - Protocerebral bridge - Gall)

EPGt (Ellipsoid body - Protocerebral bridge - Gall tip)

ER1-6 (Ellipsoid body Ring neuron [type ID])

ExR1-8 (Extrinsic Ring neuron [type ID])

FB1A-9C (Fan-shaped Body [layer ID][type ID])

Continued on next page
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FC1A-3 (Fan-shaped body - Crepine [type ID])

FR1, 2 (Fan-shaped body - Rubus [type ID])

FS1A-4C (Fan-shaped body - Superior medial protocerebrum [type ID])

IbSpsP (Inferior bridge - Superior posterior slope - Protocerebral bridge)

LCNOp, pm (Lateral accessory lobe - Crepine - NOduli [compartment ID])

LNOa (Lateral accessory lobe - NOduli [compartment ID])

LNO1-3 (Lateral accessory lobe - NOduli [type ID])

GLNO (Gall - Lateral accessory lobe - Noduli)

LPsP (Lateral accessory lobe - Posterior slope - Protocerebral bridge)

P1-9 (Protocerebral bridge [glomerulus ID])

P6-8P9 (Protocerebral bridge [glomerulus ID1] Protocerebral bridge [glomerulus ID2])

PEG (Protocerebral bridge - Ellipsoid body - Gall)

PEN_a(PEN1), _b(PEN2) (Protocerebral bridge - Ellipsoid body - Noduli [subtype ID])

PFGs (Protocerebral bridge - Fan-shaped body - Gall surrounding region)

PFL1-3 (Protocerebral bridge - Fan-shaped body - Lateral accessory lobe [type ID])

PFNa, d, m, p, v (Protocerebral bridge - Fan-shaped body - Noduli [compartment ID])

PFR (Protocerebral bridge - Fan-shaped body - Round body)

SA1-3 (Superior medial protocerebrum - Asymmetrical body [type ID])

SAF (Superior medial protocerebrum - Asymmetrical body - Fan-shaped body)

SpsP (Superior posterior slope - Protocerebral bridge)

Mushroom body neuropil neurons

KCab-c, m, p, s (Kenyon Cell alpha-beta lobe - [layer ID])

KCa’b’-ap1, ap2, m (Kenyon Cell alpha’-beta’ lobe - [layer ID])

KCg-d, m, s, t (Kenyon Cell gamma lobe - [layer ID])

MBON01-35 (Mushroom Body Output Neuron [type ID])

APL (Anterior Paired Lateral)

DPM (Dorsal Paired Medial)

MB-C1 (Mushroom Body - Calyx [type ID])

PAM01-15 (MB-associated DAN, Protocerebral Anterior Medial cluster [type ID])

PPL101-106 (MB-associated DAN, Protocerebral Posterior Lateral 1 cluster [type ID])

Dopaminergic neurons (DANs)

PPL107, 08 (Protocerebral Posterior Lateral 1 cluster [type ID])

PPL201-04 (Protocerebral Posterior Lateral 2 cluster [type ID])

PPM1201-05 (Protocerebral Posterior Medial 1/2 clusters [type ID])

PAL01-03 (Protocerebral/paired Anterior Lateral cluster [type ID])

Octopaminergic neurons

OA-ASM1-3 (OctopAmine - Anterior Superior Medial [type ID])

OA-VPM3, 4 (OctopAmine - ventral paired median [type ID])

OA-VUMa1-7 (OctopAmine - ventral unpaired median anterior [type ID])

Serotonergic (5HT) neurons

5-HTPLP01 (5-HT Posterior lateral protocerebrum [type ID])

5-HTPMPD01 (Posterior medial protocerebrum, dorsal [type ID])

5-HTPMPV01, 03 (Posterior medial protocerebrum, ventral [type ID])

CSD (Serotonin-immunoreactive Deutocerebral neuron)

Peptidergic and secretory neurons

Continued on next page
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AstA1 (Allatostatin A)

CRZ01, 02 (Corazonin [type ID])

DSKMP1A, 1B, 3 (Drosulfakinin medial protocerebrum [type ID])

NPFL1-I (Neuropeptide F lateral large)

NPFP1 (Neuropeptide F dorso median)

PI1-3 (Pars Intercerebralis [type ID] Insulin Producing Cell candidates)

SIFa (SIFamide)

Circadian clock neurons

DN1a (Dorsal Neuron 1 anterior)

DN1pA, B (Dorsal Neuron 1 posterior [type ID])

l-LNv (large Lateral Neuron ventral)

LNd (Lateral Neuron dorsal)

LPN (Lateral Posterior Neuron)

s-LNv (small Lateral Neuron ventral)

Fruitless gene expressing neurons

aDT4 (anterior DeuTocerebrum [type ID])

aIPg1-4 (anterior Inferior Protocerebrum [type ID])

aSP-f1-4, g1-3B (anterior Superior Protocerebrum [type ID])

aSP8, 10A-10C (anterior Superior Protocerebrum [type ID])

pC1a-e (doublesex-expressing posterior Cells [type ID])

oviDNa, b (Oviposition Descending Neuron [type ID])

oviIN (Oviposition Inhibitory Neuron)

SAG (Sex peptide Abdominal Ganglion)

vpoDN (vaginal plate opening descending neuron)

vpoEN (vaginal plate opening excitatory neuron)

Visual projection neurons and intrinsic neurons of the optic lobe

aMe1-26 (accessory Medulla [type ID])

CT1 (Complex neuropils Tangential [type ID])

LC4, 6, 9–46 (Lobula Columnar [type ID])

LLPC1-3 (Lobula - Lobula Plate Columnar [type ID])

LPC1, 2 (Lobula Plate Columnar [type ID])

LPLC1-4 (Lobula Plate - Lobula Columnar [type ID])

LT1, 11, 33–47, 51–87 (Lobula Tangential [type ID])

MC61-66 (Medulla Columnar [type ID])

DCH (Dorsal Centrifugal Horizontal)

H1, 2 (Horizontal [type ID])

HSN, E, S (Horizontal System North, Equatorial, South)

VS (Vertical System)

VCH (Ventral Centrifugal Horizontal)

Li11-20 (Lobula intrinsic [type ID])

HBeyelet (Hofbauer-Buchner eyelet)

Descending neurons

DNa01-10 (Descending Neuron cell body anterior dorsal [type ID])

DNb01-06 (Descending Neuron cell body anterior ventral [type ID])

DNd01 (Descending Neuron outside cell cluster on the anterior surface [type ID])

Continued on next page
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DNg30 (Descending Neuron cell body in the gnathal ganglion [type ID])

DNp02-49 (Descending Neuron cell body on the posterior surface of the brain [type ID])

DNES1-3 (Descending Neuron going out to ESophagus [type ID])

Giant_Fiber descending neuron

MDN (Moonwalker Descending Neuron)

Sensory associated neurons

ORN_D, DA1-4, DC1-4, DL1-5, DM1-6, DP1l, m, V, VA1-7m, VC1-5, VL1-2p, VM1-7v (Olfactory Receptor Neuron_
[glomerulus ID])

TRN_VP1m, 2, 3 (Thermo-Receptor Neuron_ [glomerulus ID])

HRN_VP1d, 1 l, 4, 5 (Hygro-Receptor Neuron_ [glomerulus ID])

JO-ABC (Johnston’s Organ auditory receptor neuron- [AMMC zone ID])

OCG01-08 (OCellar Ganglion neuron [type ID])

Antennal lobe neuropil neurons

D_adPN, DA1_lPN, DC2_adPN, DL3_lPN, DM4_vPN, DP1l_adPN, VA1d_adPN, VC2_lPN, VL2p_vPN,
VM7d_adPN, VP2_l2PN, etc. (uniglomerular [glomerulus ID] _ [cell cluster ID] Projection Neuron)

VP1l+_lvPN, VP3+_vPN, etc. (uni+glomerular [glomerulus ID]+ _ [cell cluster ID] Projection Neuron, arborizing in a
glomerulus and a few neighboring areas)

VP1m+VP2_lvPN1, 2, VP4+VL1_l2PN, etc. (biglomerular [glomerulus ID1]+[glomerulus ID2] _ [cell cluster ID] Projec
tion Neuron, arborizing in two glomeruli)

M_smPNm1, 6t2, adPNm3-8, spPN4t9, 5t10, lPNm11A-13, l2PNm14-16, 3t17, 10t18, l19-22, m23, lvPNm24-48,
lv2PN9t49, vPNml50-89, ilPNm90, 8t91, imPNl92 (Multiglomerular_ [cell cluster ID] Projection Neuron [antennal
lobe tract ID][type ID])

MZ_lvPN, lv2PN (Multiglomerular and subesophageal Zone _ [cell cluster ID] Projection Neuron)

Z_lvPNm1, Z_vPNml1 (subesophageal Zone only _ [cell cluster ID] Projection Neuron [antennal lobe tract ID][type
ID])

lLN1, 2, 7–17, v2LN2-5, 30–50, il3LN6, l2LN18-23, vLN24-29 ([cell cluster ID] Local Neuron [type ID])

mAL1-6, B1-5, C1-6, D1-4 (mediodorsal Antennal Lobe neuron [type ID])

AL-AST1 (Antennal Lobe - Antenno-Subesophageal Tract [type ID])

AL-MBDL1 (Antennal Lobe - Median BunDLe [type ID])

ALBN1 (Antennal Lobe Bilateral Neuron [type ID])

ALIN1-3 (Antennal Lobe INput neuron [type ID])

Lateral horn neuropil neurons

LHAD1a1-4a1 (Lateral Horn Anterior Dorsal cell cluster [cell cluster ID][anatomy group ID][type ID])

LHAV1a1-9a1 (Lateral Horn Anterior Ventral cell cluster [cell cluster ID][anatomy group ID][type ID])

LHPD1a1-5f1 (Lateral Horn Posterior Dorsal cell cluster [cell cluster ID][anatomy group ID][type ID])

LHPV1c1-12a1 (Lateral Horn Posterior Ventral cell cluster [cell cluster ID][anatomy group ID][type ID])

LHCENT1-14 (Lateral Horn CENTrifugal [type ID])

LHMB1 (Lateral Horn - Mushroom Body [type ID])

Anterior optic tubercle neuropil neurons

AOTU001-065 (Anterior Optic TUbercle [type ID])

TuBu01-10, A, B (anterior optic Tubercle - Bulb [type ID])

Antler neuropil neurons

ATL001-045 (Antler [type ID])

Anterior ventrolateral protocerebrum neuropil neurons

AVLP001-596 (Anterior VentroLateral Protocerebrum [type ID])

Clamp neuropil neurons

CL001-364 (CLamp [type ID])

Crepine neuropil neurons

Continued on next page
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CRE001-108 (CREpine [type ID])

Inferior bridge neuropil neurons

IB001-119 (Inferior Bridge [type ID])

Lateral accessory lobe neuropil neurons

LAL001-204 (Lateral Accessory Lobe [type ID])

Posterior lateral protocerebrum neurons

PLP001-255 (Posterior Lateral Protocerebrum [type ID])

Posterior slope neuropil neurons

PS001-303 (Posterior Slope [type ID])

Posterior ventrolateral protocerebrum neuropil neurons

PVLP001-151 (Posterior VentroLateral Protocerebrum [type ID])

Saddle neuropil and antennal mechanosensory and motor center neurons

SAD001-095 (SADdle [type ID])

AMMC-A1 (Antennal Mechanosensory and Motor Center- [type ID])

Superior lateral protocerebrum neuropil neurons

SLP001-468 (Superior Lateral Protocerebrum [type ID])

Superior intermediate protocerebrum neuropil neurons

SIP001-90 (Superior Intermediate Protocerebrum [type ID])

Superior medial protocerebrum neuropil neurons

SMP001-604 (Superior Medial Protocerebrum [type ID])

DGI (Dorsal Giant Interneuron)

Vest neuropil neurons

VES001-84 (VESt [type ID])

Wedge neuropil neurons

WED001-183 (WEDge [type ID])

WEDPN1-19 (WEDge Projection Neuron [type ID])
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