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Abstract The mitotic deacetylase complex (MiDAC) is a recently identified histone deacetylase

(HDAC) complex. While other HDAC complexes have been implicated in neurogenesis, the

physiological role of MiDAC remains unknown. Here, we show that MiDAC constitutes an

important regulator of neural differentiation. We demonstrate that MiDAC functions as a

modulator of a neurodevelopmental gene expression program and binds to important regulators

of neurite outgrowth. MiDAC upregulates gene expression of pro-neural genes such as those

encoding the secreted ligands SLIT3 and NETRIN1 (NTN1) by a mechanism suggestive of H4K20ac

removal on promoters and enhancers. Conversely, MiDAC inhibits gene expression by reducing

H3K27ac on promoter-proximal and -distal elements of negative regulators of neurogenesis.

Furthermore, loss of MiDAC results in neurite outgrowth defects that can be rescued by

supplementation with SLIT3 and/or NTN1. These findings indicate a crucial role for MiDAC in

regulating the ligands of the SLIT3 and NTN1 signaling axes to ensure the proper integrity of

neurite development.

Introduction
Epigenetic regulators often constitute chromatin-modifying enzymes which catalyze the addition and

removal of posttranslational modifications on histones and are involved in the control of gene

expression by modulating chromatin structure and function. Among them, the families of histone

acetyltransferases (HATs) and histone deacetylases (HDACs) acetylate and deacetylate lysine resi-

dues on histones and other proteins, respectively (Shahbazian and Grunstein, 2007). Based on ini-

tial studies, a model emerged in which nuclear HDACs were thought to be recruited by transcription

factors to facilitate transcriptional repression by creating a more condensed chromatin landscape at

their target genes (Kadosh and Struhl, 1998; Rundlett et al., 1998; Yang et al., 1996; Yang et al.,

1997). However, more recently it was shown that HDACs tend to localize to transcriptionally active

loci including promoters, gene bodies and enhancers (Wang et al., 2009). Additionally, gene

expression profiling studies also demonstrated that knockout of individual HDACs resulted not only

in upregulation but also downregulation of a significant number of genes suggesting both activating
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and repressive roles for HDACs in regulating gene transcription (Bernstein et al., 2000;

Harrison et al., 2011; Yamaguchi et al., 2010; Zupkovitz et al., 2006).

HDAC1 and HDAC2 belong to the family of class I HDACs, are highly similar (83% identity) and

are involved in the control of gene expression by modulating chromatin structure and function. Their

vital and often redundant roles in neurogenesis are well established (Chen et al., 2011; Gräff et al.,

2012; Guan et al., 2009; Jacob et al., 2011; Kim et al., 2010; Montgomery et al., 2009; Ye et al.,

2009). They form the catalytic core of the SIN3, NuRD, CoREST and mitotic deacetylase (MiDAC)

complexes (Kelly and Cowley, 2013; Millard et al., 2017). HDAC1/2 activity and targeting to spe-

cific gene loci strongly depends on their incorporation into these complexes (Kelly and Cowley,

2013; Millard et al., 2017). At least one of the scaffolding proteins within the NuRD, CoREST and

MiDAC complexes contains an ELM2-SANT domain which is instrumental in recruiting and activating

HDAC1/2 (Millard et al., 2017). While the molecular function of the SIN3, NuRD and CoREST com-

plexes have been studied in greater detail little is known about the molecular function of MiDAC

(Kelly and Cowley, 2013; Millard et al., 2017).

MiDAC is conserved from nematodes to humans (Bantscheff et al., 2011; Hao et al., 2011). In

humans, MiDAC is composed of HDAC1/2, the scaffolding protein DNTTIP1, and the ELM2-SANT

domain containing scaffolding protein ELMSAN1 (also known as MIDEAS) and/or the closely ELM-

SAN1-related proteins TRERF1 and ZNF541 (ZFP541 or SHIP in mice) (Figure 1A; Banks et al.,

2018; Bantscheff et al., 2011; Choi et al., 2008; Hao et al., 2011; Joshi et al., 2013). MiDAC con-

stitutes a stoichiometric tetrameric complex that requires the N-terminal dimerization domain of

DNTTIP1 for assembly. The C-terminus of DNTTIP1 mediates MiDAC recruitment to nucleosomes in

vitro (Itoh et al., 2015). MiDAC specifically associates with cyclin A2 (CCNA2) and cyclin dependent

kinase 2 (CDK2) and interacts more prominently with certain HDAC inhibitors in mitotically arrested

versus non-synchronized proliferating cells, suggesting a role in cell cycle regulation

(Bantscheff et al., 2011; Hein et al., 2015; Huttlin et al., 2015; Pagliuca et al., 2011). Before

MiDAC was described as a complex its individual subunits DNTTIP1 and TRERF1 were reported to

function predominantly as transcriptional activators for select genes of the steroidogenesis and ossi-

fication pathways, respectively (Gizard et al., 2001; Gizard et al., 2002; Gizard et al., 2005;

Gizard et al., 2006; Gizard et al., 2004; Koiwai et al., 2015; Kubota et al., 2013). In agreement

with these findings, ELMSAN1 was found to be associated with chromatin enriched for the histone

mark H3K27ac suggesting a role in active transcription (Ji et al., 2015). While SIN3, NuRD, and CoR-

EST have been functionally characterized as regulators of neurogenesis, the physiological role of

MiDAC remains unexplored (Andrés et al., 1999; Knock et al., 2015; Nitarska et al., 2016;

Wang et al., 2016).

To decipher the physiological function of MiDAC, we employed mESCs as an experimental model

system. We found that MiDAC is recruited to promoters and enhancers genome-wide, directly regu-

lates a set of neurodevelopmental genes, and can act as both an activator and repressor of different

gene sets to modulate gene expression by negatively regulating the repressive histone mark

H4K20ac or the active histone mark H3K27ac, respectively. Specifically, MiDAC binds to promoters

and enhancers of axon guidance ligands of the SLIT and NETRIN families and is required for their

activation. Genetic deletion of MiDAC components results in inactivation of SLIT3 and NTN1 signal-

ing during neural differentiation and severely impairs neurite outgrowth and network formation.

These findings reveal a novel function for MiDAC in regulating neural gene expression programs to

ensure proper neuronal maturation and/or neurite outgrowth during neurogenesis.

Results

DNTTIP1 interacts with ELMSAN1 and the histone deacetylase HDAC1
to form MiDAC in mESCs
We began by investigating the function of DNTTIP1 and ELMSAN1, two scaffolding components of

MiDAC, in mESCs (Figure 1A). Firstly, we generated and validated CRISPR/Cas9-mediated knock

outs (KOs) of Dnttip1 and Elmsan1 in mESCs (Figure 1B; Figure 1—figure supplement 1A-F;

Supplementary file 1). Indels in the identified Dnttip1 KO and Elmsan1 KO clones resulted in the

introduction of a premature stop codon downstream, producing KO clones with a complete loss of

DNTTIP1 or ELMSAN1 protein compared to wild-type (WT) mESCs, respectively (Figure 1B;
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Figure 1. MiDAC controls a neurodevelopmental gene expression program. (A) Subunits with domains of the human histone deacetylase complex

MiDAC. (B) WB for the indicated MiDAC components from total cell lysates of WT, Dnttip1 KO1 and Dnttip1 KO2 mESCs. Actin is the loading control.

(C) IPs were carried out with IgG and ELMSAN1 antibodies from nuclear extracts of WT and Dnttip1 KO1 mESCs followed by WB for the indicated

MiDAC components. The asterisk marks the IgG heavy chain. (D) Scatter plot comparing all DEGs in Dnttip1 KO (KO1 and KO2) versus WT mESCs from

Figure 1—figure supplement 2A (x-axis) with DEGs in Elmsan1 KO (KO1 and KO2) versus WT mESCs from Figure 1—figure supplement 2B (y-axis).

Both axes depict normalized gene expression (log2 FC of CPM). (E) RNA-seq heatmap depicting DNTTIP1 and ELMSAN1 co-regulated (MiDAC-

regulated) genes in mESCs (fold change (FC) >1.5 or <�1.5, p<0.01). The color scale depicts normalized gene expression (log2 CPM). (F) Reactome

analysis showing the most highly enriched gene categories of genes that are positively regulated by MiDAC (both down in Dnttip1 KO (KO1 and KO2)

and Elmsan1 KO (KO1 and KO2) versus WT mESCs, FC <�1.5, p<0.01). Pathways associated with neural differentiation and function are highlighted in

red. (G) RNA-seq heatmaps depicting down- and upregulated genes from a gene set of neurodevelopmental genes that is mutually regulated by

DNTTIP1 and ELMSAN1 (FC <�1.5 or >1.5, p<0.05). The color scale depicts the z-score of normalized gene expression (log2 CPM). (D) DEGs, (E)

MiDAC-regulated genes, (F) Reactome gene categories and (G) differentially expressed neurodevelopmental genes were determined based on two

biological replicates each from WT mESCs and two Dnttip1 KO and two Elmsan1 KO clones, respectively.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Characterization of Dnttip1 KO and Elmsan1 KO mESCs.

Figure supplement 2. MiDAC controls a neurodevelopmental gene expression program.

Figure 1 continued on next page
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Figure 1—figure supplement 1A,B,F). To determine whether DNTTIP1 and ELMSAN1 function

within MiDAC in mESCs, we examined the mRNA and protein levels of other MiDAC components in

Dnttip1 KO and Elmsan1 KO mESCs (Bantscheff et al., 2011; Choi et al., 2008; Hao et al., 2011).

Elmsan1 and Hdac1 mRNA levels were unchanged, Hdac2 mRNA levels slightly reduced and Dnttip1

mRNA levels more strongly reduced in Dnttip1 KO versus WT mESCs (Figure 1—figure supplement

1C and E). However, ELMSAN1 protein levels were severely reduced with no significant effects on

HDAC1 or HDAC2 protein levels in Dnttip1 KO versus WT mESCs (Figure 1B). Compared to WT

mESCs, Elmsan1 KO mESCs showed no significant differences in Elmsan1, Dnttip1, Hdac1, or Hdac2

mRNA levels (Figure 1—figure supplement 1D and E); at the protein level, HDAC1 and HDAC2

appeared unaltered, but DNTTIP1 levels were significantly lower (Figure 1—figure supplement 1F).

These results suggest that in mESCs MiDAC becomes destabilized upon loss of its core subunits,

DNTTIP1 or ELMSAN1. Immunoprecipitation (IP) of ELMSAN1 in WT and Dnttip1 KO mESCs con-

firmed the existence of an HDAC1-containing MiDAC complex (Figure 1C). Furthermore, consistent

with the ELMSAN1 IP in WT and Dnttip1 KO mESCs, IP of DNTTIP1 in WT and Elmsan1 KO mESCs

corroborated the presence of an HDAC1-containing MiDAC complex in mESCs (Figure 1—figure

supplement 1G). However, we did not observe an interaction between ELMSAN1 and HDAC2 and

DNTTIP1 and HDAC2 in mESCs, suggesting that only DNTTIP1, ELMSAN1 and HDAC1 interact to

form MiDAC in mESCs (Figure 1C; Figure 1—figure supplement 1G).

MiDAC controls a neurodevelopmental gene expression program
To determine transcriptional targets of MiDAC, we performed RNA sequencing (RNA-seq) in WT,

Dnttip1 KO and Elmsan1 KO mESCs. We identified 493 downregulated and 368 upregulated genes

in Dnttip1 KO versus WT mESCs (Figure 1—figure supplement 2A; Supplementary file 2). Differ-

ential gene expression analysis via RNA-seq revealed 467 downregulated and 306 upregulated

genes in Elmsan1 KO versus WT mESCs (Figure 1—figure supplement 2B; Supplementary file 2).

The gene expression patterns between Dnttip1 KO and Elmsan1 KO mESCs were highly correlated

(R2 = 0.88) with many differentially expressed genes (DEGs) shared between Dnttip1 KO and Elm-

san1 KO mESCs (Figure 1D; Supplementary file 2). Of the DEGs in Dnttip1 KO and Elmsan1 KO

mESCs a common set of 114 upregulated and 224 downregulated genes was identified (Figure 1E;

Figure 1—figure supplement 2C). Pathway analysis of this MiDAC-regulated gene set revealed an

enrichment for axon guidance signaling and neural development related genes among the downre-

gulated category (Figure 1F). Similar results were also obtained when DEGs in only Dnttip1 KO or

only Elmsan1 KO mESCs were analyzed independently of each other (Figure 1—figure supplement

2D-G). Downregulated gene classes were generally associated with promoting neural differentiation

(e.g., nervous system, axon guidance and GABAergic neurogenesis), whereas upregulated genes

showed enrichment for pathways associated with repression of neuronal development (e.g., antago-

nists of nerve growth factor (NGF) signaling) (Figure 1—figure supplement 2D-G;

Supplementary file 2). Importantly, we identified a set of neurodevelopmental genes that is associ-

ated with neurogenesis, axon guidance, and neurotransmitter receptor signaling and co-regulated

by both ELMSAN1 and DNTTIP1 (Figure 1D and G). However, loss of MiDAC function did not affect

self-renewal or pluripotency as evaluated by assessing the mRNA levels of the pluripotency factors

Sox2, Pou5f1, and Nanog (Figure 1—figure supplement 3A and B), nor did it alter the percentage

of alkaline phosphatase (AP)-positive colonies (Figure 1—figure supplement 3C). Furthermore,

DNTTIP1 or ELMSAN1 loss in mESCs did not alter the proliferation rate or cell cycle profile (Fig-

ure 1—figure supplement 3D and E), in contrast to the reported growth-promoting function of

DNTTIP1 in oral and non-small cell lung cancer (Sawai et al., 2018; Zhang et al., 2018). Gene

expression of Ccna2 and the cell cycle inhibitors Cdkn1a (p21) and Cdkn1b (p27) whose protein

products were reported to interact with and/or be regulated by DNTTIP1 were also unaffected in

Dnttip1 KO and Elmsan1 KO mESCs (Figure 1—figure supplement 3F; Hein et al., 2015;

Huttlin et al., 2015; Pagliuca et al., 2011; Sawai et al., 2018). Together, this suggests that loss of

MiDAC function does not impair self-renewal and pluripotency in mESCs and that MiDAC’s role in

Figure 1 continued

Figure supplement 3. MiDAC is dispensable for self-renewal, pluripotency and cell cycle distribution of mESCs.
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controlling proliferation and the cell cycle is largely cell type or context-dependent. Rather, our find-

ings indicate that DNTTIP1 and ELMSAN1 regulate a highly similar set of target genes in mESCs and

that MiDAC controls a neurodevelopmental gene expression program, including genes that are

important regulators of neurite outgrowth and morphogenesis.

MiDAC regulates neurite outgrowth
To investigate the function of MiDAC in neuronal development, we differentiated mESCs into neuro-

ectoderm (NE) (Figure 2A; Li et al., 2009). We evaluated WT, Dnttip1 KO and Elmsan1 KO NE after

8 days of differentiation, a time point that corresponds to the initiation of differentiation into neural

progenitor cells (NPCs), which is accompanied by increased expression of nestin (Nes) and Pax6 as

well as increased protein levels of the early NE differentiation markers, PAX6 and MASH1. No signifi-

cant differences in mRNA and protein levels of the above-mentioned NPC markers were detected

between WT and Dnttip1 KO or Elmsan1 KO cells at day 0 or day 8 (Figure 2—figure supplement

1A-D). Moreover, PAX6-positive cells from WT, Dnttip1 KO and Elmsan1 KO NE at day 8 displayed

a similar cell cycle profile, indicating no differences in cell cycle distribution in NPCs (Figure 2—fig-

ure supplement 1E). These results demonstrate that loss of MiDAC function in mESCs does not

affect the initiation of differentiation into the NE lineage. Upon extended differentiation through day

12, many WT cells underwent extensive morphological changes and developed into mature neurons

with long neurites while the neurite length of Dnttip1 KO and Elmsan1 KO neurons was substantially

shorter (Figure 2B). Consistent with these observations, Dnttip1 KO and Elmsan1 KO neurons

showed significantly reduced Tubb3 and Map2 mRNA levels (immature and mature neuron marker

genes, respectively) compared to WT neurons, suggesting that loss of MiDAC function affects neuro-

nal maturation and/or differentiation (Figure 2C and D). Dnttip1 KO and Elmsan1 KO neurons also

showed a significant decrease in the average neurite length per neuron as well as the total number

of neurites per neuron compared to WT neurons as assessed by MAP2 staining at day 12 of differen-

tiation (Figure 2B,E,F). However, the percentage of neurons within the total differentiated cell popu-

lation remained unchanged between WT and Dnttip1 KO or Elmsan1 KO NE (Figure 2G; Figure 2—

figure supplement 1F). We next performed qRT-PCR at day 12 for a subset of NE genes involved in

neurite outgrowth and morphogenesis. Similar to our findings in mESCs, Dnttip1 KO and Elmsan1

KO NE showed decreased expression of several positive regulators of neuronal development and

axon guidance (e.g., Slit3, Ntn1, Ncam1) as well as increased expression of repressors of neuronal

development (e.g., Spry4, Id1, Pacsin1) compared to WT neurons (Figure 2H). Overall, our data sug-

gest that MiDAC is required to transcriptionally control a gene set of regulators that are important

for neuronal maturation or neurite outgrowth but that loss of MiDAC function does not affect initia-

tion of neuronal differentiation per se.

MiDAC binds to and modulates the expression of genes that regulate
neural differentiation and neurite outgrowth
To better understand how MiDAC regulates gene expression in mESCs, we performed ChIP

sequencing (ChIP-seq) in WT, Dnttip1 KO and Elmsan1 KO mESCs to map the genome-wide occu-

pancy of DNTTIP1. This analysis identified 61,505 DNTTIP1-specific peaks, of which 22% localized

within +/- 1 kb of a transcription start site (TSS) (Figure 3A; Supplementary file 3). The remaining

78% of DNTTIP1 binding sites were located upstream of (24%), downstream of (12%), or within

(43%) a gene. Of the 47,657 non-TSS DNTTIP1 peaks, a majority (84%) was found at a distance

of >5 kb from the TSS (Figure 3A; Supplementary file 3). Interestingly, a significant number of

DNTTIP1 binding sites overlapped with the active histone marks H3K4me1 and/or H3K27ac and

TSS-associated DNTTIP1 peaks were strongly enriched for the active histone mark H3K4me3 along

with H3K27ac and H3K4me1 (Figure 3B; Figure 3—figure supplement 1A). Furthermore, low

DNTTIP1 binding at TSS correlated with increased enrichment of the repressive histone mark

H3K27me3 (Figure 3—figure supplement 1A). Non-TSS DNTTIP1 binding sites were enriched for

the enhancer marks H3K4me1 and H3K27ac, hinting at a potential role for DNTTIP1 in enhancer-

mediated processes (Figure 3—figure supplement 1A). We next correlated our DNTTIP1 ChIP-seq

data with gene expression data from Dnttip1 KO mESCs. This analysis revealed that out of 493

downregulated genes in Dnttip1 KO mESCs, 358 genes (73%) were bound by DNTTIP1, while out of

368 upregulated genes in Dnttip1 KO mESCs, 314 genes (85%) were occupied by DNTTIP1 at either
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Figure 2. MiDAC regulates neurite outgrowth. (A) Schematic outline of neuro-ectoderm (NE) differentiation protocol. (B) MAP2 immunofluorescence

(IF) staining of WT, Dnttip1 KO1 and Elmsan1 KO1 NE after 12 days of differentiation. Nuclei were stained with DAPI. For analysis the neuronal cell

body (blue) and its neurites were manually traced with ImageJ software. The white scale bar represents 20 mm. (C, D) qRT-PCR for (C) Tubb3 and (D)

Map2 mRNA in WT, Dnttip1 KO1 and Elmsan1 KO1 mESCs (day 0) and NE after 12 and 21 days of differentiation. Expression was normalized to Gapdh.

(E–G) Quantification of (E) neurite length, (F) the total number of neurites per neuron and (G) the percentage of neurons within the total cell population

from traced neurites in WT, Dnttip1 KO1 and Elmsan1 KO1 neurons after 12 days of differentiation as determined by MAP2 IF. (E, F) The neurites of 200

neurons within the total cell population were assessed per genotype. (H) Gene expression levels of the indicated neurodevelopmental genes in WT,

Dnttip1 KO1 and Elmsan1 KO1 NE after 12 days of differentiation as analyzed by qRT-PCR. Expression was normalized to Gapdh. Unpaired t-test was

performed throughout where ***, p�0.001; **, p�0.01; *, p�0.05; and ns, p>0.05 is not significant.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Loss of MiDAC function does not alter the differentiation and cell cycle distribution of neural progenitor cells.
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Figure 3. MiDAC binds to and modulates the expression of genes that regulate neural differentiation and neurite outgrowth. (A) Pie charts displaying

the genome-wide distribution (left) and promoter distal distribution (right) of DNTTIP1 in WT mESCs. DNTTIP1 peaks within 1 kb of the transcription

start site (TSS) were assigned to TSS. (B) Venn Diagram depicting the overlap between DNTTIP1, H3K4me1 and H3K27ac peaks in WT mESCs. (C) Venn

diagram showing the number of downregulated and upregulated genes in Dnttip1 KO (KO1 and KO2) versus WT mESCs that are bound by DNTTIP1 in

WT mESCs. (D) Heatmaps displaying the genome-wide distribution of all DNTTIP1 binding sites in WT, Dnttip1 KO1 and Elmsan1 KO1 mESCs sorted

by enrichment in descending order in WT mESCs and compared to HDAC1 occupancy in WT mESCs. The color scale depicts the normalized ChIP-seq

Figure 3 continued on next page
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their promoters or other gene regulatory regions such as enhancers (Figure 3C; Figure 3—figure

supplement 1B and C; Supplementary file 4). Importantly, an even higher proportion of differen-

tially expressed neurodevelopmental genes was also bound by DNTTIP1 (36 out of 39 (92%) in the

downregulated and 22 out of 23 (96%) in the upregulated category) (Supplementary file 4). This

overlap is highly significant and indicates that the majority of DEGs in Dnttip1 KO mESCs constitute

direct targets of DNTTIP1, including important regulators of neuronal differentiation and neurite out-

growth. Moreover, motif analysis of DNTTIP1 peaks revealed that DNTTIP1 binding sites associated

with down- or upregulated genes in Dnttip1 KO mESCs are selectively enriched for transcription fac-

tor (TF) binding motifs, including some that have been implicated in neurogenesis (Figure 3—figure

supplement 1D). These TFs include RBFOX2 (associated with genes upregulated in Dnttip1 KO

mESCs) and ELK1, a member of the ETS TF family (associated with genes downregulated in Dnttip1

KO mESCs) (Figure 3—figure supplement 1D; Besnard et al., 2011; Gehman et al., 2012). We fur-

ther assessed the relationship between DNTTIP1 and ELMSAN1 by determining the genome-wide

occupancy pattern of DNTTIP1 in Elmsan1 KO mESCs. While no DNTTIP1 binding to chromatin

could be detected in Dnttip1 KO mESCs, DNTTIP1 association with chromatin was strongly reduced

in the absence of ELMSAN1 (Figure 3D). However, some DNTTIP1 enrichment in Elmsan1 KO

mESCs could still be observed, suggesting that DNTTIP1 retains the ability to bind to chromatin

when ELMSAN1 is depleted (Figure 3D). To study the genome-wide MiDAC binding landscape in

mESCs, we compared the occupancy patterns of DNTTIP1 and HDAC1. We found that many

DNTTIP1-bound regions (58%) also displayed considerable enrichment for HDAC1, and that 40% of

all HDAC1 peaks colocalized with DNTTIP1 (Figure 3E). Considering that HDAC1 also exists within

several other complexes, including SIN3, NuRD, and CoREST, this finding suggests that a significant

number of HDAC1-occupied loci is bound by MiDAC. Collectively, our findings suggest that MiDAC

localizes genome-wide to enhancers and promoters in mESCs, thereby transcriptionally activating or

inhibiting neurodevelopmental genes. We next examined activators and repressors of neurite out-

growth more specifically. We investigated SLIT3 and NETRIN1 (NTN1), which are key ligands of the

SLIT/ROBO and NETRIN/DCC/UNC signaling pathways, and are regulators of neuron maturation

and neurite outgrowth but are also playing roles in angiogenesis, lung morphogenesis, mammary

gland development and cancer progression involving processes such as cell migration, cell interac-

tion and cell adhesion (Bashaw and Klein, 2010; Blockus and Chédotal, 2016; Lai Wing Sun et al.,

2011; Seiradake et al., 2016). Both Slit3 and Ntn1 mRNA levels were decreased in Dnttip1 KO and

Elmsan1 KO versus WT mESCs and NE (Figures 1G and 2H; Supplementary file 2). Furthermore,

DNTTIP1 was directly bound to the promoters and putative intra- and intergenic enhancers of Slit3

and Ntn1 in mESCs and many of these gene regulatory elements were also co-bound by HDAC1

(Figure 3F; Figure 3—figure supplement 1E). Conversely, a repressor of neurite outgrowth and

morphogenesis, sprouty4 (Spry4), and an inhibitor of neural differentiation, Id1, were both transcrip-

tionally upregulated in mESCs and NE upon loss of DNTTIP1 or ELMSAN1 (Figures 1G and

2H; Supplementary file 2; Alsina et al., 2012; Lyden et al., 1999; Nam and Benezra, 2009).

DNTTIP1 and HDAC1 co-occupied the promoters and putative enhancers of Spry4 and Id1

(Figure 3G; Figure 3—figure supplement 1F). In summary, these results indicate that MiDAC binds

to regulatory regions of activators and repressors of neural differentiation and neurite outgrowth,

thereby positively or negatively modulating their transcriptional output, which is in accordance with

Figure 3 continued

signal intensity (log2 CPM per 20 bp bin). (E) Venn diagram showing the co-occupancy between DNTTIP1 and HDAC1 peaks in WT mESCs. (A–E)

DNTTIP1, H3K4me1 and H3K27ac ChIP-seq peaks were determined based on the average of two replicates each from WT mESCs and where

applicable based on the average of two replicates each from Dnttip1 KO1 and Elmsan1 KO1 mESCs, respectively. HDAC1 ChIP-seq data were

obtained from GSE55437. Downregulated and upregulated genes were determined based on two biological replicates each from WT mESCs and two

Dnttip1 KO (KO1 and KO2) clones. (F, G) ChIP-seq profiles of the (F) Slit3 and (G) Spry4 loci for DNTTIP1 in WT, Dnttip1 KO1 and Elmsan1 KO1 mESCs

and for HDAC1 in WT mESCs. Promoter and putative enhancer regions used for manual ChIP experiments in Figure 4 are highlighted by orange

boxes. The track files depict the average of two ChIP-seq replicates each from WT mESCs and the average of two replicates each from the Dnttip1 KO1

and Elmsan1 KO1 clone, respectively. (H) WB for the specified histone acetylation marks from total cell lysates of WT, Dnttip1 KO1 and Elmsan1 KO1

mESCs. H3 and H4 are loading controls.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. MiDAC binds to and modulates the expression of genes that regulate neural differentiation and neurite outgrowth.
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the phenotypic defects observed in Dnttip1 KO and Elmsan1 KO neurons (Figure 2B,E,F). We next

sought to identify potential histone substrates of MiDAC by screening for global changes of several

histone acetylation marks in WT, Dnttip1 KO, and Elmsan1 KO mESCs. Of the histone acetylation

marks tested, only H4K20ac was found to be consistently increased in Dnttip1 KO and Elmsan1 KO

mESCs, suggesting that H4K20ac could be a major MiDAC substrate (Figure 3H). Interestingly,

H4K20ac has been recently described as a repressive histone acetylation mark, and its targeting by

MiDAC might explain why we observed a greater number of downregulated compared to upregu-

lated genes in Dnttip1 KO and Elmsan1 KO mESCs versus WT mESCs (Kaimori et al., 2016).

MiDAC directly targets positive and negative regulators of neurite
outgrowth during neural differentiation
To further decipher the role of MiDAC in regulating select target genes during neurogenesis, we

performed ChIP analysis of DNTTIP1, ELMSAN1, HDAC1 and the histone acetylation marks H3K27ac

(active) and H4K20ac (repressive) in NE after 12 days of differentiation. We focused our attention on

the four previously described neurodevelopmental genes– Slit3, Ntn1, Spry4, and Id1– that we had

identified as being bound by MiDAC in mESCs and transcriptionally regulated in mESCs and NE

amongst other target genes (Figures 1G, 2H and 3F and G; Figure 3—figure supplement 1E and

F). In WT NE, DNTTIP1, ELMSAN1, and HDAC1 occupied the promoter regions and putative

enhancer regions of all four genes, and MiDAC binding was abrogated in Dnttip1 KO and Elmsan1

KO NE (Figure 4A–C and F–H; Figure 4—figure supplement 1A-C and F-H). Interestingly, we

observed gene-specific changes in the active histone mark H3K27ac and the repressive histone mark

H4K20ac depending on whether a gene was upregulated or downregulated in Dnttip1 KO and Elm-

san1 KO compared to WT mESCs and NE. For example, genes that were positively regulated by

MiDAC in NE, such as Slit3 and Ntn1, displayed a strong increase in H4K20ac in Dnttip1 KO and

Elmsan1 KO versus WT NE on promoter and associated enhancer regions without major changes in

H3K27ac (Figure 4D and E; Figure 4—figure supplement 1D and E). The reverse scenario was

observed for genes that were repressed by MiDAC in NE cells, such as Spry4 and Id1, which showed

a higher enrichment of H3K27ac at their promoter and putative enhancer regions without any alter-

ation in H4K20ac in Dnttip1 KO and Elmsan1 KO compared to WT NE (Figure 4I and J; Figure 4—

figure supplement 1I and J). In summary, our data indicate that MiDAC differentially regulates the

active H3K27ac and repressive H4K20ac marks on neurodevelopmental genes during neurogenesis.

Furthermore, genes that are positively regulated by MiDAC tend to be activators of neurite out-

growth and morphogenesis, whereas genes that are under negative control of MiDAC appear to be

repressors of neural differentiation.

MiDAC regulates neurite outgrowth via the SLIT3/ROBO3 and NTN1/
UNC5B signaling pathways
We noticed that several downregulated genes in Dnttip1 KO and Elmsan1 KO mESCs and NE

encoded secreted ligands of the SLIT and NETRIN families, which are important regulators of neurite

development and axon guidance signaling (Figures 1G and 2H). Furthermore, our findings also indi-

cated that MiDAC is bound to promoters and enhancers of Slit3 and Ntn1, suggesting that MiDAC

directly activates the genes encoding these secreted ligands during neurogenesis (Figure 3F; Fig-

ure 3—figure supplement 1E). However, MiDAC did not transcriptionally regulate the genes of

their cognate receptors Robo3 and Unc5b in mESCs and NE and even though it was bound to the

promoter and putative enhancer regions of Unc5b in mESCs no enrichment for MiDAC components

was detected on the promoters of Robo3 and Unc5b in NE (Figure 4—figure supplement 2A-F).

Thus, we hypothesized that the observed defect in neurite outgrowth upon loss of MiDAC might be

caused at least in part by transcriptional downregulation of Slit3 and/or Ntn1. To address this ques-

tion, we differentiated WT, Dnttip1 KO and Elmsan1 KO mESCs into NE for 12 days and supple-

mented Dnttip1 KO and Elmsan1 KO cells daily with conditioned medium (CM) from differentiating

WT cells from day 7 onward (Figure 5—figure supplement 1A). After 12 days of differentiation, NE

was stained for MAP2 followed by analysis of neurite length (Figure 5A). Consistent with our previ-

ous findings, the average neurite length per neuron was reduced in Dnttip1 KO and Elmsan1 KO

compared to WT neurons and was partly restored upon treatment with CM of WT NE (Figure 5A

and B). Interestingly, classification of the neurite length into two categories, <50 mm or �50 mm,
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Figure 4. MiDAC directly targets positive and negative regulators of neurite outgrowth during neural differentiation. (A–J) qPCR from manual ChIP

experiments against (A, F) DNTTIP1, (B, G) ELMSAN1, (C, H) HDAC1, (D, I) H3K27ac and (E, J) H4K20ac from WT, Dnttip1 KO1 and Elmsan1 KO1 NE

targeting select promoter, putative enhancer and intragenic control regions of (A–E) Slit3 or (F-J) Spry4 loci as highlighted in Figure 3F and G. IgG was

used as a control antibody. Unpaired t-test was performed throughout where **, p�0.01; and ns, p>0.05 is not significant.

Figure 4 continued on next page
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showed that only longer neurites (�50 mm in length) were significantly affected in Dnttip1 KO and

Elmsan1 KO neurons and could be selectively rescued by supplementation with WT CM (Figure 5B).

The impairment of longer neurites upon loss of MiDAC function implies that MiDAC might either

regulate neuronal maturation or neurite outgrowth at an advanced stage. In addition, the reduced

number of neurites per neuron in Dnttip1 KO and Elmsan1 KO versus WT neurons was also signifi-

cantly restored upon treatment with CM of WT NE (Figure 5C). To further validate these findings,

we used a chamber assay to co-culture granule neuron progenitor cells (GNPs) in the lower chamber

in parallel with differentiating WT, Dnttip1 KO or Elmsan1 KO NE in the upper chamber comprising

a time window from day 7–12 of differentiation to induce neuronal network formation of GNPs (Fig-

ure 5—figure supplement 1B). Co-culturing of GNPs with differentiating WT NE resulted in exten-

sive neuronal network formation, while neuronal network formation was severely impaired when

GNPs were co-cultured with Dnttip1 KO and Elmsan1 KO NE (Figure 5—figure supplement 1C and

Figure 4 continued

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. MiDAC directly targets positive and negative regulators of neurite outgrowth during neural differentiation.

Figure supplement 2. MiDAC does not transcriptionally regulate the genes of the ROBO3 and UNC5B receptors of the SLIT3 and NTN1 signaling

pathways.

Figure 5. The regulatory role of MiDAC in neural differentiation and neurite outgrowth is carried out in part by secreted components. (A) MAP2 IF

staining after 12 days of differentiation performed on WT, Dnttip1 KO1 and Elmsan1 KO1 NE supplemented daily with conditioned medium (CM) of

WT NE from day 7–12. Nuclei were stained with DAPI. For analysis the neuronal cell body (blue) and its neurites (black) were manually traced with

ImageJ software and for each sample one traced neuron is displayed in the inlet. The white scale bar represents 50 mm. (B, C) Quantification of (B)

neurite length and (C) the total number of neurites per neuron from the MAP2 IF staining in (A) using ImageJ. (B) Neurite length was divided into two

categories of short neurites <50 mm (green box plots) and longer neurites �50 mm (white box plots). (B, C) The neurites of 200 neurons were assessed

per sample. One-way ANOVA was performed throughout where ***, p�0.001; **, p�0.01; and *, p�0.05.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The regulatory role of MiDAC in neural differentiation and neurite outgrowth is carried out in part by secreted components.

Mondal et al. eLife 2020;9:e57519. DOI: https://doi.org/10.7554/eLife.57519 11 of 29

Research article Chromosomes and Gene Expression Neuroscience

https://doi.org/10.7554/eLife.57519


D). In summary, these results suggest that the loss of MiDAC function in NE results in a lack of cer-

tain secretome components that are otherwise required for proper neurite outgrowth.

To further establish the specific effects of MiDAC on the SLIT3 and NTN1 signaling pathways, we

investigated the ligand-receptor pairs SLIT3/ROBO3 and NTN1/UNC5B. Importantly, compared to

lysates from WT NE, lysates from Dnttip1 KO NE showed strong reductions in SLIT3 and NTN1,

whereas ROBO3 and UNC5B were not significantly affected (Figure 6A). Furthermore, we also

observed a significant reduction of SLIT3 and NTN1 in CM of Dnttip1 KO versus WT NE (Figure 6A).

The downstream effectors DAB1 of the NTN pathway and FAK of the SLIT/NTN signaling cascade

were also deactivated, as shown by decreased phosphorylation of DAB1 and FAK in Dnttip1 KO ver-

sus WT NE, despite no change in total protein levels (Figure 6A; Zelina et al., 2014). Having estab-

lished that the SLIT3 and NTN1 signaling cascades are directly targeted by MiDAC during

neurogenesis, we sought to test whether the loss of activity of these pathways is sufficient to explain

the neurite outgrowth defects detected in neurons that had lost MiDAC function. To address this

question, we differentiated Dnttip1 KO mESCs into NE for 12 days and supplemented the CM from

day 7 onward with recombinant SLIT3, NTN1, or a combination of SLIT3 and NTN1 (Figure 5—fig-

ure supplement 1A). To assess the specific effects of these ligands with their corresponding path-

ways, we combined the supplementation of CM with recombinant ligands with a blocking approach

involving antibodies directed against the extracellular domains of either ROBO3 (SLIT3 pathway),

UNC5B (NTN1 pathway), or a combination of ROBO3/UNC5B (Figure 5—figure supplement 1A).

We found that SLIT3, NTN1, and SLIT3/NTN1 were all able to largely restore the neurite outgrowth

defects observed in Dnttip1 KO neurons and that the restoration of the phenotype was directly

mediated by signaling through the ROBO3 and UNC5B signaling receptors (Figure 6B–D). We also

obtained similar results using a modified version of the chamber assay described above, in which

GNPs were treated with CM of WT or Dnttip1 KO NE and identical combinations of recombinant

ligands and blocking antibodies (Figure 5—figure supplement 1B). The reduced neuronal network

formation, that was observed when GNPs were treated with CM of Dnttip1 KO NE, was largely res-

cued in the presence of SLIT3, NTN1, or SLIT3/NTN1, and the restoration of network formation was

significantly abrogated by pre-blocking GNP-derived neurons with neutralizing antibodies against

ROBO3 and/or UNC5B before ligand-containing CM of Dnttip1 KO NE was added (Figure 6—fig-

ure supplement 1A and B). Taken together, these findings indicate that the loss of MiDAC function

in NE during neural differentiation results in strongly reduced SLIT3 and NTN1 signaling which

accounts for the majority of the observed neurite outgrowth defects.

Discussion
Here, we report that in mESCs, DNTTIP1 in association with ELMSAN1 and HDAC1, form a chroma-

tin-associated mitotic deacetylase complex called MiDAC. We provide evidence that MiDAC is

enriched at promoters and enhancers genome-wide and can function as an activator and repressor

of transcription in mESCs. More specifically, we uncover a crucial role for MiDAC in regulating a neu-

rodevelopmental gene expression program that controls neurite outgrowth and network formation

during neurogenesis. MiDAC achieves this by positively regulating a set of neurodevelopmental

genes including genes of the axon guidance ligands SLIT3 and NTN1, while at the same time sup-

pressing negative regulators of neurogenesis such as Spry4 and Id1. The results presented here sup-

port a model in which MiDAC is required to activate the promoters and enhancers of pro-neural

genes such as Slit3 and Ntn1 by H4K20 deacetylation while in parallel repressing negative regulators

of neurogenesis by removing H3K27ac from promoters and enhancers of genes such as Spry4 and

Id1 to allow neurons to attain their required neurite length during differentiation (Figure 7).

MiDAC originally obtained its name from a chemoproteomic profiling study due to its increased

association with certain HDAC inhibitors in protein extracts from mitotically arrested versus non-syn-

chronized proliferating cells that otherwise displayed comparable levels of DNTTIP1

(Bantscheff et al., 2011). Individual MiDAC subunits have been shown to interact with CCNA2 and/

or the cyclin dependent kinase CDK2, and were reported to positively regulate the cell cycle inhibi-

tors CDKN1A and CDKN1B and cell growth in various cancer cell lines, thus implying a potential role

for MiDAC in cell cycle regulation (Gizard et al., 2005; Gizard et al., 2006; Hein et al., 2015;

Huttlin et al., 2015; Pagliuca et al., 2011; Sawai et al., 2018; Zhang et al., 2018). However, we

did not observe any effect on cell proliferation, cell cycle distribution, or any transcriptional changes

Mondal et al. eLife 2020;9:e57519. DOI: https://doi.org/10.7554/eLife.57519 12 of 29

Research article Chromosomes and Gene Expression Neuroscience

https://doi.org/10.7554/eLife.57519


Figure 6. MiDAC regulates neurite outgrowth via the SLIT3/ROBO3 and NTN1/UNC5B signaling pathways. (A) WB for signaling components of the

SLIT3/ROBO3 and NTN1/DCC/UNC5B signaling axes from CM and total cell lysates of WT and Dnttip1 KO1 NE after 12 days of differentiation. To

enrich SLIT3 and NTN1 from CM, IPs were performed with SLIT3 and NTN1 antibodies from CM of WT and Dnttip1 KO1 NE. Actin is the loading

control for the total cell lysates. (B) Assay to rescue the neurite outgrowth defects in Dnttip1 KO1 NE. CM of Dnttip1 KO1 NE was supplemented with

the recombinant signaling ligands SLIT3 and/or NTN1 from day 7–12 without or with preblocking of Dnttip1 KO1 NE with IgG or signaling receptor

antibodies against ROBO3 and/or UNC5B. MAP2 IF staining was performed after 12 days of differentiation. Nuclei were stained with DAPI. To facilitate

analysis the neuronal cell body (blue) and its neurites were manually traced with ImageJ software and for each sample one traced neuron is displayed in

the inlet. The white scale bar represents 50 mm. (C, D) Quantification of (C) neurite length and (D) the total number of neurites per neuron from the

MAP2 IF staining in (B) using ImageJ. (C) Neurite length was divided into two categories of short neurites <50 mm (green box plots) and longer

neurites �50 mm (white box plots). (C, D) The neurites of 200 neurons were assessed per sample. One-way ANOVA was performed throughout where

***, p�0.001; and ns, p>0.05 is not significant.

Figure 6 continued on next page
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in the above-mentioned cell cycle-related genes (Ccna2, Cdkn1a, Cdkn1b) in mESCs with a loss in

MiDAC function, arguing in favor of a cell- and/or context-specific role for MiDAC in controlling cell

proliferation and the cell cycle.

The C-terminus of DNTTIP1 has been reported to bind to a specific DNA binding motif following

ChIP-seq studies utilizing a FLAG-tagged version of DNTTIP1 in HEK293 cells (motif: TGCAGTG-(14

bp)-CACTGCA flanked by AT-tracts) (Koiwai et al., 2015). In concordance with these results, our

study confirms a chromatin-associated function and binding of DNTTIP1 to both promoter-proximal

and -distal elements in mESCs. Although we did not find evidence of a clear DNTTIP1 consensus

binding motif, we did detect a significant enrichment of several TF motifs at DNTTIP1-bound sites

(data not shown). This implies that MiDAC is specifically recruited to chromatin by TFs and that its

ability to bind nucleosomes might aid in MiDAC spreading from its initial recruitment site to carry

out histone deacetylation. Furthermore, motif analysis of differentially expressed genes that display

DNTTIP1 enrichment at their promoters or enhancers revealed the binding motifs of several TFs with

previously reported roles in neurogenesis. We postulate that MiDAC upregulates a transcriptional

program that is driven by ELK1, a member of the ETS family of pioneer transcription factors, while

downregulating genes through RBFOX2, which negatively affects neurodevelopmental processes

(Besnard et al., 2011; Gehman et al., 2012). However, it remains to be determined whether these

Figure 6 continued

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. MiDAC regulates neurite outgrowth via the SLIT3/ROBO3 and NTN1/UNC5B signaling pathways.

Figure 7. Model of MiDAC function in neurite outgrowth and morphogenesis. MiDAC directly binds to and deacetylates H4K20ac on regulatory

elements of pro-neural genes such as those of the axon guidance ligands SLIT3 and NTN1 resulting in the activation of these genes. Conversely,

MiDAC inhibits the gene expression of negative regulators of neurogenesis such as SPRY4 and ID1 by binding and removing H3K27ac from their

promoters and enhancers. SLIT3 and NTN1, the downstream targets of MiDAC, bind to their cognate receptors ROBO3 and UNC5B respectively

thereby activating the signaling cascade responsible for promoting neurite outgrowth.
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TFs affect MiDAC recruitment and/or function during neurogenesis. Although DNTTIP1 levels are

strongly reduced in Elmsan1 KO mESCs, we still observed some DNTTIP1 recruitment to chromatin.

With TRERF1 and ZFP541 (ZNF541 in humans) two ELMSAN1-related proteins have been described

that could also potentially be incorporated into MiDAC (Choi et al., 2008; Gizard et al., 2001).

While ZFP541 is expressed in a tissue-specific manner during spermatogenesis and not in mESCs,

TRERF1 expression can be detected in mESCs (data not shown) (Choi et al., 2008). Thus, the

remaining DNTTIP1 in Elmsan1 KO mESCs might form an alternative MiDAC complex with the ELM-

SAN1 paralog TRERF1 which could account for the residually detected DNTTIP1 recruitment in the

absence of ELMSAN1.

HDAC1/2-containing complexes are generally considered repressors of transcription

(Kadosh and Struhl, 1998; Rundlett et al., 1998; Yang et al., 1996). However, accumulating evi-

dence suggests that HDAC1/2 might also be involved in transcriptional activation (Bernstein et al.,

2000; Harrison et al., 2011; Yamaguchi et al., 2010). Moreover, genome-wide studies have shown

that HDAC1/2 localize to promoters, gene bodies, and enhancers of actively transcribed genes, thus

implicating HDAC1/2 as positive regulators of transcription (Wang et al., 2009). Here, our finding

that a high percentage of DNTTIP1-bound loci is associated with both down- and upregulated DEGs

in Dnttip1 KO versus WT mESCs and NE shows for the first time a direct role for MiDAC in both

transcriptional activation and repression. The exact mode of action whereby MiDAC achieves activa-

tion or repression has yet to be elucidated in greater detail, but our studies provide evidence for at

least two possible scenarios. First, MiDAC could control gene activation and repression by deacety-

lating histones. Most histone acetylation marks, including H3K27ac, correlate with transcriptional

activation, but recently H4K20ac has been reported as a mark that is associated with silenced genes

(Kaimori et al., 2016). Our data indicate that MiDAC might function as a repressor of genes that

are marked by H3K27ac and more broadly as an activator on repressed genes by mediating deacety-

lation of H4K20. However, the relationship between H4K20ac and MiDAC in regulating gene expres-

sion is currently only restricted to correlative evidence and it remains to be determined to which

degree H4K20ac is instructive in mediating gene repression and whether this mark constitutes a

direct substrate of MiDAC. As a second possibility, MiDAC might exert its function by deacetylating

TFs or other chromatin-modifying proteins such as histone acetyltransferases (HATs). If specific TFs

or HATs are negatively regulated by deacetylation through MiDAC at distinct target sites, this could

also potentially explain the increase in H3K27ac (through CBP/p300) or other histone acetylation

marks on enhancers and promoters of up- or downregulated genes between WT, Dnttip1 KO and

Elmsan1 KO mESCs and NE.

HDAC1 and HDAC2 are important regulators of many developmental processes including neuro-

genesis (Kelly and Cowley, 2013). But their function remains enigmatic as they can be recruited

into at least four independent HDAC1/2-containing complexes (Millard et al., 2017). While the

HDAC1/2-containing SIN3, NuRD and CoREST complexes have been implicated in neurogenesis,

the physiological function of MiDAC has been unexplored to date (Andrés et al., 1999;

Knock et al., 2015; Nitarska et al., 2016; Wang et al., 2016). Here, we report that MiDAC directly

controls a neurodevelopmental gene expression program and specifically targets enhancers and pro-

moters of positive and negative regulators that are involved in neurite outgrowth during neural dif-

ferentiation. While this study emphasizes the role of MiDAC in neural differentiation and neurite

outgrowth, it is evident from our gene expression analyses that this neurodevelopmental gene

expression program only constitutes a fraction of the MiDAC-regulated transcriptome in mESCs

pointing to other biological roles of MiDAC. SLIT/ROBO, EPHRIN/EPH, NETRIN/DCC/UNC, and

SEMAPHORIN/PLEXIN signaling represent the four major canonical axon guidance pathways

(Bashaw and Klein, 2010). Integration of our gene expression and ChIP data showed that MiDAC

directly activates the genes of the axon guidance ligands SLIT3 and NTN1 while repressing the

genes of the negative regulators SPRY4 and ID1. SLIT3 and NTN1 are ligands for their cognate

receptors ROBO3 and UNC5B, respectively. Recombinant SLIT3 and NTN1 either alone or in combi-

nation were able to largely rescue the neurite outgrowth defects in neurons that have lost MiDAC

subunits. Interestingly, blocking only ROBO3 or only UNC5B signaling was sufficient to inhibit the

rescue effects of SLIT3 in combination with NTN1, suggesting that a heteromeric ROBO3/UNC5B

axis is required for efficient transduction of SLIT3/NTN1 signaling to ensure proper neurite out-

growth. While evidence exists that heteromeric receptor association and signaling of ROBO3/

UNC5B occurs, it has yet to be determined whether this also applies to the role of MiDAC in an in
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vivo system (Zelina et al., 2014). In summary, while individual TFs have been reported to transcrip-

tionally regulate select axon guidance ligands or receptors little is known about their regulation

through chromatin-modifying components (Kim et al., 2016; Labrador et al., 2005). Here, we

describe how the axon guidance ligands SLIT3 and NTN1 are transcriptionally controlled by an epi-

genetic regulator, the MiDAC complex. Finally, neurite outgrowth defects are observed in several

neurodevelopmental disorders such as autism, epilepsy, fragile X-syndrome and psychiatric disorders

(Gilbert and Man, 2017; Huang and Song, 2019; Krejčı́ et al., 2017; Wen et al., 2017). However,

the underlying molecular mechanisms remain unclear. Our study implicates MiDAC as an essential

regulator of neurite outgrowth which suggests that it might be playing an important role in certain

neurodevelopmental disorders. Interestingly, a recent study reported noncoding mutations in several

MiDAC components among autism patients, thus supporting a potential role for MiDAC in certain

neurodevelopmental disorders (Zhou et al., 2019). Future studies of MiDAC in this context are thus

likely to yield insightful mechanistic details about disease pathogenesis.

Materials and methods

Cell lines
Male C57/BL6 Bruce-4 mESCs were purchased from Millipore (Millipore, SF-CMTI-2). WT mESCs and

their Dnttip1 KO and Elmsan1 KO derivatives were originally cultured under feeder free culture con-

ditions (KnockOut DMEM medium) on 0.1% gelatin-coated flasks or plates. After CRISPR/Cas9

genome-editing mESCs were transitioned to chemically defined naı̈ve culture conditions (2iL) on

0.1% gelatin-coated flasks or plates. mESC identity was authenticated by various methods including

alkaline phosphatase staining, staining and cytometry analysis of the pluripotency marker FUT4

(SSEA-1) and the ability to differentiate into the three main germ layers. All mESC lines tested nega-

tive for mycoplasma contamination.

Feeder-free culture conditions (SL):
KnockOut DMEM (no L-Glutamine); 15% FBS (ES cell qualified); 2 mM L-Glutamine or Glut-
MAX (1:100); 1 mM Sodium Pyruvate (1:100); 0.1 mM MEM Non-Essential Amino Acids
(1:100); Embryomax Nucleosides (1:100); 0.1 mM b-Mercaptoethanol (1:500); 1000 U/ml LIF
(1:10000 from 107 U/ml stock); 50 U/ml Pen/Strep (1:100).

Chemically defined naı̈ve culture conditions (2iL):
50% DMEM/F-12; 50% Neurobasal Medium (no L-Glutamine); B-27 Supplement, minus vita-
min A (1:100); N-2 Supplement (1:200); 2 mM L-Glutamine or GlutaMAX (1:100); 0.1 mM b-
Mercaptoethanol (1:500); 3 mM CHIR 99021 (GSK3b inhibitor) (1:1000 from 3 mM stock in
DMSO); 1 mM PD 0325901 (MEK inhibitor) (1:1000 from 1 mM stock in DMSO); 1000 U/ml
LIF (1:10000 from 107 U/ml stock); 50 U/ml Pen/Strep (1:100).

Neural differentiation
Directed differentiation into neuro-ectoderm
WT, Dnttip1 KO and Elmsan1 KO mESCs were dissociated by trypsinization, resuspended in differ-

entiation medium 1 and pelleted by centrifugation. 106 mESCs were resuspended in 3 ml differentia-

tion medium 1 and then transferred into one well of 6-well ultra-low attachment plate (Corning,

3471). Cells were grown in differentiation medium 1 for 3 days. Differentiation medium 1 was

changed every day. After 3 days the emerging embryoid bodies (EBs) were cultured in differentia-

tion medium 2 containing 2 mM retinoic acid (Santa Cruz Biotechnology, sc-200898) for an additional

3 days. Differentiation medium 2 was changed every day. After 6 days the EBs were picked up

gently with a 200 ml large orifice tip and transferred into a 1.5 ml tube. The EBs were allowed to set-

tle down by gravity followed by careful aspiration of the supernatant. 1 ml differentiation medium 3

containing 20 ng/ml FGF2 and 20 ng/ml EGF was carefully added to the 1.5 ml tube containing the

EBs, and the EBs were gently picked up with a 200 ml large orifice tip and transferred onto a 0.1%

gelatin-coated well of a standard 6-well plate (Corning, 3516). Subsequently, 1 ml of additional dif-

ferentiation medium 3 was carefully added to the well containing the EBs. The EBs were allowed to

differentiate for the next 6 days, with daily changing of differentiation medium 3. The EBs will attach

slowly over time and aster-shaped neurons will emerge from the periphery of the EBs forming

increasingly longer neurite extensions and networks. Neurite outgrowth was quantified and
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visualized after 12 days of differentiation. Experiments to rescue the neurite outgrowth defects of

Dnttip1 KO and Elmsan1 KO neurons with CM from WT NE were conducted as above with the fol-

lowing alterations. After 6 days of differentiation all Dnttip1 KO and Elmsan1 KO CM was removed

and replaced daily with 50% fresh differentiation medium 3 and 50% CM from WT NE for the next 6

days. Experiments to rescue the neurite outgrowth defects of Dnttip1 KO neurons with axon guid-

ance ligands were carried out as described above except that recombinant SLIT3 (R&D Systems,

9296-SL-050), NTN1 (R&D Systems, 6419-N1-025) or a combination of SLIT3/NTN1 were added daily

to differentiation medium 3 (at a concentration of 0.5 and 0.25 mg/ml for SLIT3 and NTN1 respec-

tively) from day 7 of differentiation onward. The rescued neurite outgrowth defects of Dnttip1 KO

neurons via SLIT3, NTN1 or SLIT3/NTN1 supplementation were blocked by using antibodies

directed against the extracellular domain of the axon guidance receptors ROBO3 (R&D Systems,

AF3155), UNC5B (R&D Systems, MAB1006), a combination of ROBO3/UNC5B or IgG (Millipore, 12–

370) as a negative control. Blocking was performed daily from day 7 onward by adding 0.5 mg of

each antibody to differentiation medium 3 two hours before addition of the ligands SLIT3, NTN1 or

SLIT3/NTN1.

Differentiation medium 1:
50% DMEM/F-12; 50% Neurobasal Medium (no L-Glutamine); B-27 Supplement with vitamin
A, serum free (1:100); N-2 Supplement (1:200); 0.1 mM b-Mercaptoethanol (1:500); 50 U/ml
Pen/Strep (1:100).

Differentiation medium 2:
Differentiation medium 1; 2 mM retinoic acid.

Differentiation medium 3:
Differentiation medium 1; 20 ng/ml FGF2; 20 ng/ml EGF.

Chamber assay to assess neuronal network formation from granule
neuron progenitor cells (GNPs)
GNPs were isolated from mouse cerebella from postnatal day 6–7 (a gift from Martine Roussel)

(Vo et al., 2016). GNPs were grown as neurospheres in GNP medium in 6-well ultra-low attachment

plates (Corning, 3471). GNP neurospheres were dissociated by trypsinization, resuspended in GNP

culture medium and pelleted by centrifugation. 105 GNPs were resuspended in 600 ml GNP culture

medium and seeded into one well of a 24-well ultra-low attachment plate (Corning, 3473) and

allowed to form neurospheres for 3 days. GNP culture medium was changed every day. From this

point onward GNPs were differentiated in the same fashion as described in ‘Directed differentiation

into neuro-ectoderm’ by sequential culturing in differentiation medium 2 and 3 and adjustment of

media volumes to a 24-well format (one fifth of a 6-well format) with the following alterations. After

culturing in differentiation medium 2 GNPs were plated into one well of a 24-well transwell chamber

(pre-coated with 1% gelatin) in differentiation medium 3 (Corning, 354480) and differentiated for

another 6 days. WT, Dnttip1 KO and Elmsan1 KO mESCs were differentiated according to the

‘Directed differentiation into neuro-ectoderm’ protocol for the first 6 days but experiments were

scaled down so that EBs were grown in one well of a 24-well ultra-low attachment plate (Corning,

3473) and all media volumes were adjusted to one fifth of the 6-well protocol. The EBs were carefully

transferred into a matrigel-coated insert and allowed to differentiate for the next 6 days, with daily

changing of differentiation medium 3 in the insert and GNP medium in the bottom chamber. In par-

allel, GNP medium and MEF CM was added to separate inserts as positive and negative controls,

respectively and media changes were carried out in the same way as for differentiation medium 3.

Experiments to rescue the network formation defects of GNP-derived neurons caused by culturing

in CM of Dnttip1 KO NE were carried out as described above for the first 6 days of differentiation.

However, instead of co-culturing GNPs with Dnttip1 KO NE, GNPs were supplemented daily with

CM of Dnttip1 KO NE (50%), 50% fresh differentiation medium 3 and recombinant SLIT3 (R&D Sys-

tems, 9296-SL-050), NTN1 (R&D Systems, 6419-N1-025) or a combination of SLIT3/NTN1 for 6 days

from the day of GNP seeding. Network formation of GNP-derived neurons grown in CM of Dnttip1

KO NE and differentiation medium 3 supplemented with SLIT3, NTN1 or SLIT3/NTN1 was blocked

by using antibodies directed against the extracellular domain of the axon guidance receptors

ROBO3 (R&D Systems, AF3155), UNC5B (R&D Systems, MAB1006), a combination of ROBO3/

UNC5B or IgG (Millipore, 12–370) as a negative control. Blocking was performed daily for 6 days
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from the day of GNP seeding by aspirating the old medium and adding 0.1 mg of each blocking anti-

body in fresh differentiation medium 3 two hours before adding CM of Dnttip1 KO NE (50%), 50%

fresh differentiation medium 3 with either the ligands SLIT3, NTN1 or SLIT3/NTN1. Network forma-

tion of GNP-derived mature neurons was quantified and visualized 6 days after GNPs were seeded.

A neuronal network was scored when all neurite projections of an individual neuron were well con-

nected with the neurites of neighboring neurons and formed a closed local circuit as assessed by

TUBB3 staining (Doetsch and Alvarez-Buylla, 1996; Shepherd, 1998). The percentage of network

formation was scored as follows: =total number of complete networks per TUBB3-positive neuron/

total number of DAPI-positive cells) x 100. The different groups were statistically analyzed using

ONE-way ANOVA t-test.

GNP medium:
Neurobasal medium (no L-Glutamine); 2 mM L-Glutamine; B-27 Supplement with vitamin A,
serum free (1:100); N-2 Supplement (1:200); 20 ng/ml FGF2; 20 ng/ml EGF; 50 U/ml Pen/
Strep (1:100).

Alkaline Phosphatase staining and quantification
Alkaline phosphatase staining of mESCs was carried out with the Alkaline Phosphatase Detection Kit

(Millipore, SCR004) following the manufacturer’s instructions. 100 mESC colonies were assessed per

genotype.

ChIP-seq library preparation and sequencing
DNA was quantified using the Quant-iT PicoGreen dsDNA Assay (Thermo Fisher Scientific, P11496).

Libraries were prepared with the KAPA HyperPrep Library Kit (Roche, 07962363001) and analyzed

for insert size distribution with the High Sensitivity DNA Kit (Agilent, 5067–4626) on a 2100 Bioana-

lyzer or the High Sensitivity D1000 ScreenTape Assay (Agilent, 5067–5584, 5067–5585, 5067–5587,

5067–5603) on a 4200 TapeStation. Libraries were quantified using the Quant-iT PicoGreen dsDNA

Assay. Single end 50 cycle sequencing was performed on a HiSeq 2500, HiSeq 4000, or NovaSeq

6000 System (all from Illumina).

Chromatin immunoprecipitation (ChIP)
ChIPs were performed according to a modified version of Lee et al. (2006). For ChIP-seq applica-

tions of non-histone proteins ChIP was carried out with 5 � 107 mESCs and for histone ChIPs with 2–

2.5 � 107 mESCs. For manual ChIP applications of non-histone proteins ChIP was carried out with 2

� 106 NE cells and for histone ChIPs with 106 NE cells. For non-histone ChIPs dual crosslinking was

performed at room temperature (RT) for 30 min with 2 mM disuccinimidyl glutarate (DSG) in DPBS

followed by addition of paraformaldehyde to a final concentration of 1% and further crosslinking for

15 min. For histone ChIPs crosslinking was performed at RT for 15 min with 1% paraformaldehyde.

Crosslinking was quenched with 150 mM glycine for 5 min at RT. After quenching the cells were pel-

leted, the supernatant aspirated and the cell pellet washed once in DPBS and then snap-frozen and

stored at �80˚C or immediately further processed. The crosslinked cell pellet was carefully resus-

pended in Lysis Buffer 1 with a transfer pipet and the cell suspension incubated for 10 min on a nuta-

tor at 4˚C. Nuclei were then pelleted and the supernatant aspirated. The pelleted nuclei were

carefully resuspended in Lysis Buffer 2 with a transfer pipet and the cell suspension incubated for 10

min on a nutator at 4˚C. Nuclei were then pelleted again and the supernatant aspirated. The nuclear

pellet was then resuspended in Lysis Buffer 3 and the suspension sonicated with a probe sonicator

(Fisher Scientific Model 705 Sonic Dismembrator) at output setting 55 (27–33 W) for 12 cycles with

each cycle constituting a 30 sec sonication burst followed by a 60 sec pause. After sonication 1/20

volume of 20% Triton X-100 was added and the sample was mixed. The chromatin was cleared by

centrifugation for 10 min at 20000 g at 4˚C and the supernatant was transferred to a fresh tube. The

cleared chromatin was then stored at 4˚C. For each ChIP 100 ml Protein A/G-Plus agarose (Santa

Cruz Biotechnology, sc-2003) slurry was used. The beads were washed in 1 ml Blocking Solution, pel-

leted and the supernatant was removed. The bead wash step was repeated another time. The beads

were resuspended in 1 ml Blocking Solution followed by addition of the appropriate antibody and

were incubated on a nutator at 4˚C overnight. For ChIP-seq applications of non-histone proteins and

histones 10 mg of antibody was used. For manual ChIP applications of non-histone proteins and
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histones 3 mg of antibody was used. On the next day the stored chromatin was cleared another time

by centrifugation for 10 min at 20000 g at 4˚C and the supernatant was transferred to a fresh tube.

A small chromatin aliquot of 50 ml was reserved as input control and was kept on ice until further

processing (see below). The beads were washed twice with 1 ml Blocking Solution as on the previous

day and resuspended in 100 ml Blocking Solution. The cleared chromatin was added and incubated

with the beads on a nutator for 3 hr at 4˚C. After the incubation the beads were pelleted and the

supernatant aspirated. 1 ml Wash Buffer was added and the sample was mixed gently by inverting

the tube several (8-10) times to ensure that all beads were fully resuspended. The beads were then

pelleted and the supernatant aspirated. This wash step was repeated another four times (five washes

total). A final wash with 1 ml TE buffer (10 mM Tris HCl pH 8.0; 1 mM EDTA) was added (including

mixing, pelleting of beads and aspiration of supernatant). Chromatin was eluted with 200 ml Elution

Buffer and the samples were incubated with shaking at 900 rpm for 30 min at 65˚C in a ThermoMixer

(Eppendorf, 5382000023 with a ThermoTop (Eppendorf, 5308000003). The beads were then pel-

leted and the supernatant transferred to a fresh tube. The input sample was brought up to 200 ml

with Elution Buffer and all samples (input and ChIP samples) incubated overnight at 65˚C (in a Ther-

moMixer with a ThermoTop) to reverse crosslinks. On the next day 200 ml TE and 8 ml of 10 mg/ml

RNaseA were added followed by incubation in a ThermoMixer with a ThermoTop for 1 hr at 37˚C.

Next, 10 ml 20 mg/ml Proteinase K was added and the sample was incubated for an additional 2 hr

at 55˚C in a ThermoMixer with a ThermoTop. DNA was purified following the instructions of the QIA-

quick PCR Purification Kit from Qiagen (Qiagen, 28106). Elution of DNA was performed with 50 ml of

prewarmed (55˚C) EB buffer.

Lysis Buffer 1:
50 mM HEPES KOH pH 7.5; 140 mM NaCl; 1 mM EDTA; 10% Glycerol; 0.5% NP-40 (Igepal
CA-630); 0.25% Triton X-100; protease inhibitors (Sigma, P8340) (1:200).

Lysis Buffer 2:
10 mM Tris HCl pH 8.0; 200 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; protease inhibitors
(Sigma, P8340) (1:200).

Lysis Buffer 3:
10 mM Tris HCl pH 8.0; 100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 0.1% Na-deoxycholate;
0.5% N-lauroylsarcosine; protease inhibitors (Sigma, P8340) (1:200).

Blocking Solution:
DPBS (Thermo Fisher Scientific, 14190144); 0.5% BSA (Sigma, A7906); 0.1% Triton X-100;
protease inhibitors (Sigma, P8340) (1:500).

Wash Buffer:
50 mM HEPES KOH pH 7.5; 500 mM LiCl; 1 mM EDTA; 1% NP-40 (Igepal CA-630); 0.7% Na-
deoxycholate; protease inhibitors (Sigma, P8340) (1:500).

Elution Buffer:
50 mM Tris HCl pH 8.0; 10 mM EDTA; 1% SDS.

Flow cytometry
mESC colonies were dissociated by trypsinization, resuspended in 2iL medium and pelleted by cen-

trifugation. Cells were washed once in DPBS followed by aspiration of the supernatant. While the

cells were gently vortexed to avoid clumping, fixation was performed by dropwise addition of cold

70% ethanol. After fixation for 30 min on ice, the cells were pelleted by centrifugation and the super-

natant aspirated. The cell pellet was then washed in DPBS and pelleted by centrifugation followed

by aspiration of the supernatant. The cell pellet was resuspended in 50 ml of a 100 mg/ml RNase solu-

tion to ensure that only DNA, not RNA, is stained. 200 ml propidium iodide (PI) from a 50 mg/ml

stock solution was added to each sample to stain the DNA. Cell cycle analysis of mESCs was carried

out on a BD LRPFortessa cell analyzer. For cytometry analysis of PAX6-positive neural progenitor

cells and TUBB3-positive neurons from 8 and 12 day old NE respectively, PAX6/DAPI and TUBB3/

DAPI IF staining of NE was carried out as described under ‘Immunofluorescence (IF)’ followed by

trypsinization and FACS analysis. PAX6- and TUBB3-positive cells were sorted with a BD FACSAria III

cell sorter and the DNA content of individual cells was determined as a readout of DAPI intensity.

Bar plots were generated from the raw data. Experiments were conducted in triplicate for cell cycle

analysis of mESCs.
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Immunofluorescence (IF)
Neural differentiation was carried out in wells of a 6-well or 24-well plate as described under ‘Neural

differentiation’. Fixation Solution containing 8% paraformaldehyde was prepared from 16% parafor-

maldehyde (Electron Microscopy Sciences, 15710) and 10 x DPBS (Thermo Fisher Scientific,

14200075) and adjusted with H2O to achieve a final concentration of 1 x DPBS. 1 ml/200 ml (6-well/

24-well) Fixation Solution was added to 1 ml/200 ml (6-well/24-well) of remaining culture medium

and cells were incubated for 20 min at RT. The fixative was aspirated and rinsed with 2 ml/400 ml (6-

well/24-well) DPBS (Thermo Fisher Scientific, 14190144) and the DPBS aspirated again. Permeabiliza-

tion was performed with 1 ml/200 ml (6-well/24-well) Permeabilization Solution for 10 min at RT. Fol-

lowing aspiration of the Permeabilization Solution the cells were rinsed three times with 1 ml Wash

Buffer and aspiration of the Wash Buffer after each rinse. Blocking was performed with 1 ml/200 ml

(6-well/24-well) Blocking Buffer for one hour at RT. Blocking Buffer was aspirated and 500 ml/100 ml

(6-well/24-well) Wash Buffer containing the primary antibody was added and the sample was incu-

bated in a humidified light-tight chamber at 4˚C overnight. On the next day Wash Buffer containing

the primary antibody was aspirated. The sample was then washed three times for 5 min with 2 ml/

400 ml (6-well/24-well) Wash Buffer with gentle shaking on a rotator at RT and aspiration of the Wash

Buffer after each step. 500 ml/100 ml (6-well/24-well) Wash Buffer containing the fluorochrome-conju-

gated secondary antibody and DAPI (1 mg/ml final concentration) was added and the sample was

incubated with gentle shaking on a rotator in a humidified light-tight chamber for one hour at RT.

The sample was again washed three times for 5 min with 2 ml/400 ml (6-well/24-well) Wash Buffer

with gentle shaking on a rotator at RT and aspiration of the Wash Buffer after each step. 1 ml/200 ml

(6-well/24-well) DPBS was added and the sample was imaged with an inverted widefield microscope

platform (Leica, DMi8).

Antibody dilutions for IF:
Mouse a-MAP2 (Sigma, M9942); 1:1000. Mouse a-TUBB3 (BioLegend, 801201); 1:1000.

Fixation Solution:
DPBS; 8% paraformaldehyde.

Permeabilization Solution:
DPBS; 0.2% Triton X-100.

Blocking Buffer:
DPBS; 50 mg/ml BSA (5%); 0.1% goat serum.

Wash Buffer:
DPBS; 5 mg/ml BSA (0.5%).

Immunoprecipation (IP)
2 � 107 mESCs were used for each IP. mESCs were scraped off with a cell scraper and pelleted by

centrifugation. The cell pellet was resuspended in DPBS and pelleted again. Cytoplasmic lysis was

performed in 1 ml Lysis Buffer 1 by resuspending the cell pellet followed by incubation on a nutator

for 5 min at 4˚C. Nuclei were centrifuged for 5 min at 1500 g at 4˚C, the supernatant (cytoplasmic

fraction) aspirated and the nuclear pellet resuspended in 500 ml Lysis Buffer 2. The protein concen-

trations of the nuclear extracts were determined by a protein assay (BioRad, 5000006) with a spec-

trophotometer (Eppendorf, 6133000010) using disposable cuvettes (Eppendorf, 0030079353). Equal

protein amounts were used for all samples of the same IP experiment and volumes were adjusted to

545 ml with Lysis Buffer 2. 45 ml of each sample was removed and used as Input. For each IP 50 ml

Dynabeads Protein G (Thermo Fisher Scientific, 10004D) slurry was used. The beads were washed in

1 ml Lysis Buffer 2, collected with a magnetic stand (Thermo Fisher Scientific, 12321D) and the

supernatant was removed. The bead wash step was repeated another time. The beads were resus-

pended in 500 ml Lysis Buffer 2 followed by addition of 5 mg of the appropriate antibody and were

incubated for 2 hr on a nutator at 4˚C. The beads were collected with a magnetic stand and the

supernatant was aspirated followed by two wash steps in 500 ml Lysis Buffer 2. The nuclear extracts

were added to the beads and incubated with the beads on a nutator at 4˚C overnight. After the incu-

bation the beads were collected with a magnetic stand and the supernatant aspirated. 1 ml Lysis

Buffer 2 was added and the sample was mixed gently by inverting the tube until all beads were fully

resuspended. The beads were then collected with a magnetic stand and the supernatant aspirated.

This wash step was repeated another two times (three washes total). The beads were resuspended

Mondal et al. eLife 2020;9:e57519. DOI: https://doi.org/10.7554/eLife.57519 20 of 29

Research article Chromosomes and Gene Expression Neuroscience

https://doi.org/10.7554/eLife.57519


in 50 ml of 1 x SDS Laemmli Buffer and the inputs with 15 ml 4 x SDS Laemmli Buffer and all samples

were boiled for 5 min at 95˚C on a heating block (Thermo Fisher Scientific, 88870003). Inputs were

centrifuged in a table top centrifuge for 5 min at full speed while bead IP samples were centrifuged

for 2 min at 850 g at RT. Equal volumes of Input and IP samples were loaded and separated on a 4–

20% gradient SDS-PAGE gel (Bio-Rad, 4561096 and 4561093) in running buffer (Bio-Rad, 1610772)

using a Bio-Rad electrophoresis and blotting system (Bio-Rad, 1658033). Western blotting was car-

ried out as described under ‘Western blotting’.

Lysis Buffer 1:
10 mM HEPES pH 7.9; 10 mM KCl; 1.5 mM MgCl2; 0.5% Igepal CA-630 (NP-40); 0.5 mM
DTT; protease inhibitors (Sigma, P8340) (1:200).

Lysis Buffer 2:
20 mM HEPES pH 7.9; 420 mM NaCl; 1.5 mM MgCl2; 0.2 mM EDTA; 10% glycerol; 0.5 mM
DTT; protease inhibitors (Sigma, P8340) (1:200).

4 x SDS Laemmli Buffer:
250 mM Tris pH 6.8, 50% Glycerol, 8% SDS, 0.008% Bromophenol blue.

1 x SDS Laemmli Buffer:
900 ml 4 X SDS Laemmli Buffer Stock + 100 ml b-Mercaptoethanol.

Proliferation assay
5 � 104 mESCs (WT, Dnttip1 KO and Elmsan1 KO) per well were plated in a 24-well plate and prolif-

eration was monitored over a period of 5 days. From day 2 onward mESCs were harvested and

counted with an automated cell counter (Thermo Fisher Scientific, Countess II FL Automated Cell

Counter). For each time point and clone experiments were repeated in triplicate. For statistical anal-

ysis unpaired Student’s t-test was performed between WT and Dnttip1 KO/Elmsan1 KO mESCs.

qPCR
qPCR reactions were carried out with SYBR Green PCR Master Mix (Thermo Fisher Scientific,

4309155) on a QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific) in 384-well for-

mat (Thermo Fisher Scientific, 4309849) in a total reaction volume of 10 ml with 1 ml of undiluted

eluted ChIP DNA and a final primer concentration of 200 nM. qPCR primers used in this study are

shown in Supplementary file 6. The calculation and analysis for % Input was as follows Dahl and

Collas (2008): % Input=[(Amount of ChIP DNA)/(Amount of Input DNA x Dilution Factor)] x 100.

RNA isolation
RNA was isolated from 3 � 106 cells with the RNeasy Mini Kit (Qiagen, 74106) following the manu-

facturer’s instructions with the following alterations. Cells were resuspended in 600 ml RLT buffer

(with 2-Mercaptoethanol) and the homogenate further passed through a QiaShredder column (Qia-

gen, 79656) by centrifugation in a table top centrifuge for 2 min at full speed at RT. The optional

step after the second wash with RPE buffer was applied to dry the membrane. RNA was eluted with

85 ml H2O and supplied with 10 ml 10 x DNAase buffer and 5 ml DNAse I (NEB, M0303S), mixed and

incubated at RT for 20 min. After incubation RNA was purified by following the ‘RNA Cleanup’ pro-

tocol in the RNeasy Mini Handbook. The optional step after the second wash with RPE buffer was

applied to dry the membrane. RNA was eluted in 50 ml H2O and concentration determined with a

NanoDrop 8000 Spectrophotometer.

RNA-seq library preparation and sequencing
RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher Scientific, R11490)

and quality-checked with the RNA 6000 Nano Kit (Agilent, 5067–1511) on a 2100 Bioanalyzer (Agi-

lent, G2939BA) or High Sensitivity RNA ScreenTape Assay (Agilent, 5067–5579, 5067–5580, 5067–

5581) on a 4200 TapeStation (Agilent, G2991AA) prior to library generation. Libraries were prepared

from total RNA with the TruSeq Stranded Total RNA Library Prep Gold Kit (Illumina, 20020599)

according to the manufacturer’s instructions. Libraries were analyzed for insert size distribution with

the High Sensitivity DNA Kit (Agilent, 5067–4626) on a 2100 Bioanalyzer or the High Sensitivity

D1000 ScreenTape Assay (Agilent, 5067–5584, 5067–5585, 5067–5587, 5067–5603) on a 4200

TapeStation. Libraries were quantified using the Quant-iT PicoGreen dsDNA Assay (Thermo Fisher
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Scientific, P11496). Paired end 100 cycle sequencing was performed on a HiSeq 2500, HiSeq 4000,

or NovaSeq 6000 System (all from Illumina) according to the manufacturer’s instructions.

qRT-PCR
qRT-PCR reactions were carried out with the Power SYBR Green RNA-to-CT 1-Step Kit (Thermo

Fisher Scientific, 4389986) on a QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific)

in 384-well format (Thermo Fisher Scientific, 4309849) in a total reaction volume of 10 ml with 40 ng

of RNA and a final primer concentration of 200 nM. qRT-PCR primers used in this study are shown in

Supplementary file 5. Analysis was performed applying the delta-delta Ct method (2-DDCt) as previ-

ously described (Livak and Schmittgen, 2001).

Western blotting
Whole cell lysates from mESCs or differentiated neuroectoderm were obtained according to the fol-

lowing protocol. Medium was aspirated, DPBS was added and cells were detached by resuspension

with a pipet or a cell scraper and transferred into a fresh tube. After centrifugation the supernatant

was aspirated and the pellet resuspended in 1 ml ice cold DPBS. After repelleting in a cooled table

top centrifuge and aspiration of the supernatant the cell pellet was resuspended in RIPA buffer fol-

lowed by incubation on a nutator for 30 min at 4˚C. The resulting cell lysate was centrifuged in a

cooled table top centrifuge for 5 min at full speed and transferred to a new tube. The protein con-

centration of the supernatant was determined by a protein assay (BioRad, 5000006) with a spectro-

photometer (Eppendorf, 6133000010) using disposable cuvettes (Eppendorf, 0030079353). The

protein concentration was adjusted to a desired final protein concentration of 1–2 mg/ml with 4 x

SDS Laemmli Buffer and additional RIPA Buffer to achieve a final 1 x SDS Laemmli Buffer concentra-

tion. 1 x SDS Laemmli Buffer samples were boiled for 5 min at 95˚C on a heating block (Thermo

Fisher Scientific, 88870003) and centrifuged in a table top centrifuge for 5 min at full speed at RT.

From the supernatant equal amounts of protein (usually 10–30 mg) were loaded and separated on a

4–20% gradient SDS-PAGE gel (Bio-Rad, 4561096 and 4561093) in running buffer (Bio-Rad,

1610772) using a Bio-Rad electrophoresis and blotting system (Bio-Rad, 1658033). Proteins were

transferred to either a PVDF or nitrocellulose membrane (Santa Cruz Biotechnology, sc-3723 and sc-

3724) with the same Bio-Rad system using Western Transfer Buffer (Bio-Rad, 1610771 and 20%

methanol) for 90 min at 400 mA. The membranes were blocked for 1 hr at RT with gentle rocking in

5% dry milk in TBST buffer. Primary antibody incubation was performed overnight at 4˚C with gentle

rocking in 5% dry milk in TBST Buffer. On the next day the membranes were washed three times for

5 min with 10 ml TBST Buffer with gentle rocking and then incubated with horse radish peroxidase

coupled secondary IgG-specific antibodies in TBST Buffer for 1 hr at room temperature with gentle

rocking. After an additional three washes for 5 min with 10 ml TBST Buffer with gentle rocking the

membranes were developed using Immobilon Crescendo Western HRP Substrate (Millipore,

WBLUR0500) and imaged on an Odyssey Fc imaging system (LI-COR, Model: 2800). Buffer composi-

tions and antibodies that were used and their concentrations are listed below. For histone western

blots cells were trypsinized, resuspended in growth medium and pelleted by centrifugation. The pel-

let was resuspended in DPBS and cells were counted with an automated cell counter (Thermo Fisher

Scientific, Countess II FL Automated Cell Counter). Equal numbers of cells were pelleted, resus-

pended in 1 x SDS Laemmli Buffer, boiled for 10 min at 95˚C on a heating block and centrifuged in a

table top centrifuge for 5 min at full speed at RT. From the supernatant equal volumes (usually 5–15

ml) were loaded and separated on a 4–20% gradient SDS-PAGE gel. The remainder of the workflow

was identical to the one for the RIPA buffer extracted samples described above.

Antibody dilutions for western blot applications:
Mouse a-Actin (Developmental Studies Hybridoma Bank [DSHB], JLA20); 1:1000 (superna-
tant). Mouse a-DNTTIP1 (Novus Biologicals, NBP2-02507); 1:500. Rabbit a-DNTTIP1 (Bethyl
Laboratories, A304-048A); 1:2000. Rabbit a-DAB1 (Cell Signaling Technology, 3328); 1:5000.
Rabbit a-pDAB1 (Cell Signaling Technology, 3327); 1:1000. Rabbit a-ELMSAN1 (This study,
34421); 1:5000. a-FAK (Thermo Fisher Scientific, 39–6500); 1:1000. a-pFAK (Thermo Fisher
Scientific, 700255); Rabbit a-H3 (Abcam, ab1791); 1:50000. Rabbit a-H3K4ac (RevMAb, 31-
1063-00); 1:1000. Rabbit a-H3K27ac (RevMAb, 31-1056-00); 1:1000. Rabbit a-H3K79ac
(RevMAb, 31-1052-00); 1:1000. Rabbit a-H4 (Abcam, ab10158); 1:50000. Rabbit a-H4K20ac
(RevMAb, 31-1084-00); 1:1000. Rabbit a-HDAC1 (Cell Signaling Technology, 34589); 1:2000.
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Rabbit a-HDAC2 (Cell Signaling Technology, 57156); 1:2000. Rabbit a-MASH1 (Abcam,
ab74065); 1:5000. Sheep a-NETRIN1 (R&D Systems, AF6419); 1:1000. Mouse a-PAX6 (DSHB,
AB_528427); 1:500. Goat a-ROBO3 (R&D Systems, AF3155); 1:500. Rabbit a-SLIT3 (Abcam,
ab186706); 1:1000. Mouse a-UNC5B (R&D Systems, MAB1006); 1:1000.

Western blotting buffers:
RIPA Buffer:

25 mM Tris pH 7.5; 150 mM NaCl; 1 mM EDTA; 1% Triton X-100; 0.1% SDS; 0.1% Na-deoxy-
cholate; protease inhibitors (Sigma, P8340) (1:100).

SDS-PAGE Running Buffer:
25 mM Tris pH 8.3, 192 mM glycine, 0.1% SDS.

Western Transfer Buffer:
25 mM Tris pH 8.3, 192 mM glycine, 20% methanol.

TBST Buffer:
20 mM Tris pH 7.5, 150 mM NaCl, 0.1% Tween 20.

4 x SDS Laemmli Buffer Stock:
250 mM Tris pH 6.8, 50% Glycerol, 8% SDS, 0.008% Bromophenol blue.

1 x SDS Laemmli Buffer:
900 ml 4 X SDS Laemmli Buffer Stock + 100 ml b-Mercaptoethanol.

CRISPR/Cas9 genome editing
Genetically modified C57/BL6 Bruce-4 mESCs were generated using CRISPR/Cas9 technology.

Briefly, 400000 C57/BL6 Bruce-4 mESCs grown in feeder free culture conditions (KnockOut DMEM

medium) were transiently co-transfected with 500 ng of gRNA expression plasmid (Addgene,

43860), 1 mg Cas9 expression plasmid (Addgene, 43945), and 200 ng of pMaxGFP via nucleofection

(Lonza, 4D-Nucleofector X-unit) using solution P3 and program CA137 in small (20 ml) cuvettes

according to the manufacturer’s recommended protocol. Cells were single cell sorted by FACS to

enrich for GFP-positive (transfected) cells, clonally selected and verified for the desired targeted

modification via targeted deep sequencing. Three clones were identified for each modification,

assessed in relevant assays and then transitioned to chemically defined naı̈ve culture conditions (2iL).

Two clones for each gene knock-out were further used for more specific assays in this study. The

sequences for each gRNA and relevant primers are listed in Supplementary file 1.

Quantification and statistical analysis
ChIP-seq analysis
Mapping reads and visualizing data
ChIP-seq raw reads were aligned to the mouse and Drosophila melanogaster hybrid reference

genomes (mm9+dm3) using BWA (version 0.7.12; default parameters) and duplicated reads were

then marked with Picard (version 1.65), with only nonduplicated reads kept by samtools (version

1.3.1, parameter ‘‘-q 1 -F 1024’’). Mapped reads were then split into two bam files (mapped to mm9

and dm3 respectively). For data quality control and to estimate the fragment size, the nonduplicated

version of SPP (version 1.11) was used to calculate the relative strand correlation value with support

of R (version 3.3.1). To visualize ChIP-seq data on the integrated genome viewer (IGV) (version

2.3.82), we utilized genomeCoverageBed (bedtools 2.25.0) to obtain genome-wide coverage in

BEDGRAPH file format and then converted it to bigwig file format by bedGraphToBigWig. The big-

wig files were scaled to 15 million reads to allow comparison across samples.

Peak calling, annotation and motif analysis
MACS2 (version 2.1.1 20160309) was used to call narrow peaks (DNTTIP1, HDAC1, H3K27ac and

H3K4me3) with option ‘nomodel’ and ‘extsize’ defined as fragment size estimated by SPP and a

FDR corrected p-value cutoff of 0.05.SICER (version 1.1, with parameters of redundancy threshold 1,

window size 200 bp, effective genome fraction 0.86, gap size 600 bp, FDR 0.00001 with fragment

size defined above) was used for broad peak/domain calling (H3K4me1 and H3K27me3). Enriched

regions were identified by comparing the ChIP library file to input library file. Peak regions were

defined to be the union of peak intervals from two ChIP replicates of WT, Dnttip1 KO or Elmsan1

KO mESCs, respectively. Promoter regions were defined as ±1000 bp from a TSS based on the
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mouse RefSeq annotation. Genomic feature annotation of peaks was carried out by annotatePeaks.

pl, a program from HOMER suite (v4.8.3, http://homer.salk.edu/homer/). HOMER software was used

to perform de novo motif discovery and to check for enrichment of known motifs from a set of

DNTTIP1 peaks (associated with up- or downregulated genes in Dnttip1 KO versus WT mESCs) or all

DNTTIP1 peaks.

Spike-in normalization and differential analysis
ChIP-seq raw read counts were reported for each region/each sample using bedtools 2.25.0. Spike-

in normalization was performed by counting Drosophilar eads and mouse reads in each ChIP sample

and corresponding input sample and using those counts to generate a normalization factor for each

sample, which was calculated as (ChIP_dm3.reads/ChIP_mm9.reads)/(Input_dm3.reads/Input_mm9.

reads). Raw read counts were voom normalized and statistically contrasted using the pipeline limma

in R (version 3.3.1). The normalization factor defined above was used to modify the mouse library

size in edgeR (version 3.16.5) for CPM calculation and differential analysis. An empirical Bayes fit was

applied to contrast Dnttip1 KO and Elmsan1 KO samples to WT samples and to generate log2 fold

changes, p-values and false discovery rates for each peak region. Histograms showing average ChIP-

seq intensity over gene bodies were generated using ngsplot (v2.61).

RNA-seq analysis
Total stranded RNA sequencing data were generated and mapped against mouse genome assembly

NCBIM37.67 using the StrongArm pipeline described previously (Wu et al., 2016). Gene level quan-

tification values were obtained with HT-seq based on the GENCODE annotation (vM20) and normal-

ized by the TMM method with edgeR (version 3.16.5). Differential expression analysis was

performed with the voom method applying the limma pipeline in R (version 3.3.1). Significantly up-

and down- regulated genes were defined by at least a 1.5 fold change in gene expression and a

p-value<0.01. Reactome and gene set enrichment analysis (GSEA) were carried out using GSEA or

EnrichR, respectively. Gene expression log2 CPM (counts per million) values were computed for

heatmap and box plot visualization. Log2 FPKM gene expression values were applied for bar plot

diagrams.

Neurite and neuron analysis
The neuron-specific markers TUBB3 and MAP2 were used to identify neurons by IF as described

under ‘Neural differentiation’. NeuriteTracer, a plugin of ImageJ (version 1.52a), was used to manu-

ally trace the length and number of neurites per neuron and to automatically detect nuclei based on

DAPI staining using the IF raw image data for each genotype. The length of neurites was determined

from 200 neurons for each genotype. The number of neurites per neuron was determined manually

for a total of 200 neurons per genotype. The percentage of neurons within the total cell population

in NE was calculated manually by determining the number of MAP2-positive neurons in relation to

the total number of cells as determined by DAPI staining or alternatively by flow cytometry analysis

of TUBB3/DAPI-stained NE cell populations. Neurite length was classified into shorter neurites (<50

mm) and longer neurites (�50 mm) and the mean length was compared amongst relevant conditions

by applying the Student’s t-test. % of neurons = (number of neurons per image as assessed by

MAP2 staining/total number of cells per image as assessed by DAPI staining) x 100. For each analy-

sis, experiments were carried out in triplicate. An unpaired Student’s t-test as well as ONE-way

ANOVA was performed for each of the treated conditions and compared either to the WT or to their

respective controls.

Statistical analysis of qPCR and qRT-PCR data
qPCR signals for manual ChIPs were calculated as % of input (% Input) from technical duplicates.

Error bars represent the standard deviation from technical duplicates. For qRT-PCR relative gene

expression levels were calculated applying the delta-delta Ct method (2-DDCt). Error bars depict the

standard deviation from technical triplicates. Statistical significance was determined by applying the

Student’s unpaired t-test.
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Public datasets and additional bioinformatics analysis
HDAC1 ChIP-seq data from WT mESCs was obtained from gene expression omnibus (GEO):

GSE55437. Data was analyzed as described under ‘Quantification and statistical analysis’ within the

‘ChIP-seq analysis’ section if applicable.
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Mondal B, Jin H,
Kallappagoudar S,
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neurodevelopmental gene
expression to control neurite
outgrowth

https://www.ncbi.nlm.
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NCBI Gene
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The following previously published dataset was used:
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Database and
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Yamaguchi T, Matthias P, Suter U. 2011. HDAC1 and HDAC2 control the transcriptional program of
myelination and the survival of schwann cells. Nature Neuroscience 14:429–436. DOI: https://doi.org/10.1038/
nn.2762, PMID: 21423190

Ji X, Dadon DB, Abraham BJ, Lee TI, Jaenisch R, Bradner JE, Young RA. 2015. Chromatin proteomic profiling
reveals novel proteins associated with histone-marked genomic regions. PNAS 112:3841–3846. DOI: https://
doi.org/10.1073/pnas.1502971112, PMID: 25755260

Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, Cristea IM. 2013. The functional interactome landscape
of the human histone deacetylase family. Molecular Systems Biology 9:672. DOI: https://doi.org/10.1038/msb.
2013.26, PMID: 23752268

Kadosh D, Struhl K. 1998. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo.
Genes & Development 12:797–805. DOI: https://doi.org/10.1101/gad.12.6.797, PMID: 9512514

Kaimori JY, Maehara K, Hayashi-Takanaka Y, Harada A, Fukuda M, Yamamoto S, Ichimaru N, Umehara T,
Yokoyama S, Matsuda R, Ikura T, Nagao K, Obuse C, Nozaki N, Takahara S, Takao T, Ohkawa Y, Kimura H,
Isaka Y. 2016. Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Scientific
Reports 6:24318. DOI: https://doi.org/10.1038/srep24318, PMID: 27064113

Kelly RD, Cowley SM. 2013. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars
with multiple leading parts. Biochemical Society Transactions 41:741–749. DOI: https://doi.org/10.1042/
BST20130010, PMID: 23697933

Kim JY, Shen S, Dietz K, He Y, Howell O, Reynolds R, Casaccia P. 2010. HDAC1 nuclear export induced by
pathological conditions is essential for the onset of axonal damage. Nature Neuroscience 13:180–189.
DOI: https://doi.org/10.1038/nn.2471, PMID: 20037577

Kim KT, Kim N, Kim HK, Lee H, Gruner HN, Gergics P, Park C, Mastick GS, Park HC, Song MR. 2016. ISL1-based
LIM complexes control Slit2 transcription in developing cranial motor neurons. Scientific Reports 6:36491.
DOI: https://doi.org/10.1038/srep36491, PMID: 27819291

Knock E, Pereira J, Lombard PD, Dimond A, Leaford D, Livesey FJ, Hendrich B. 2015. The methyl binding
domain 3/nucleosome remodelling and deacetylase complex regulates neural cell fate determination and
terminal differentiation in the cerebral cortex. Neural Development 10:13. DOI: https://doi.org/10.1186/
s13064-015-0040-z, PMID: 25934499

Koiwai K, Kubota T, Watanabe N, Hori K, Koiwai O, Masai H. 2015. Definition of the transcription factor TdIF1
consensus-binding sequence through genomewide mapping of its binding sites. Genes to Cells 20:242–254.
DOI: https://doi.org/10.1111/gtc.12216, PMID: 25619743
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Zelina P, Blockus H, Zagar Y, Péres A, Friocourt F, Wu Z, Rama N, Fouquet C, Hohenester E, Tessier-Lavigne M,
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