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Abstract The blood-brain barrier (BBB) limits the entry of leukocytes and potentially harmful 
substances from the circulation into the central nervous system (CNS). While BBB defects are a hall-
mark of many neurological disorders, the cellular heterogeneity at the neurovascular interface, and 
the mechanisms governing neuroinflammation are not fully understood.

Through single-cell RNA sequencing of non-neuronal cell populations of the murine cerebral 
cortex during development, adulthood, ageing, and neuroinflammation, we identify reactive endo-
thelial venules, a compartment of specialized postcapillary endothelial cells that are characterized 
by consistent expression of cell adhesion molecules, preferential leukocyte transmigration, associ-
ation with perivascular macrophage populations, and endothelial activation initiating CNS immune 
responses. Our results provide novel insights into the heterogeneity of the cerebral vasculature and 
a useful resource for the molecular alterations associated with neuroinflammation and ageing.

Editor's evaluation
This study provides insight into an understudied cell type in the neurovascular unit involved in 
inflammatory disease and provides a resource of scRNA seq data for non-neuronal CNS cells. 
Further, it provides some interesting areas for future investigations into neuroimmune mechanisms 
used by the brain vasculature to control leukocyte transmigration in various health and disease 
conditions. This work will be of interest to vascular and neurovascular biologists, aging biologists, 
immunologists, and translational/clinical scientists interested in disease therapies.

Introduction
The blood-brain barrier (BBB) controls the entry of a wide range of molecules from the circulation 
into the central nervous system (CNS) and thereby maintains the appropriate chemical and cellular 
composition of the neuronal ‘milieu’, which is required for the correct function of synapses and 
neuronal circuits (Zlokovic, 2008; Zlokovic, 2010). The BBB also protects the brain against the entry 
of leukocytes and potentially harmful substances, a function that is compromised in conditions such as 
multiple sclerosis, cancer, after stroke, or in response to physical brain damage (Arvanitis et al., 2020; 
Lopes Pinheiro et al., 2016; Thal and Neuhaus, 2014). The neurovascular unit, the anatomical struc-
ture underlying the BBB, comprised different cell types including endothelial cells (ECs), pericytes, 
and astrocytes, which are all located in close proximity and presumably affect each other through 
reciprocal interactions (Armulik et al., 2011; Liebner et al., 2018).
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Previous work has established that leukocyte extravasation – the exit from the blood stream into 
the tissue – generally occurs in postcapillary venules of the skin, muscle, and mesentery, whereas in 
lung and liver this process is confined to microcapillaries (Strell and Entschladen, 2008). Even in the 
absence of neuroinflammation, peripherally activated circulating T cells can cross the endothelium of 
postcapillary vessels and reach the adjacent subarachnoid space. Here, T cells can encounter tissue 
resident antigen-presenting cells (APCs), but they are unable to traverse the astrocytic basement 
membrane and glia limitans (Mapunda et al., 2022). In the absence of cognate antigen presented 
by APCs, T cells undergo apoptosis or re-enter the circulation (Mastorakos and McGavern, 2019). 
Accordingly, immune surveillance and the initiation of CNS immune responses are highly dependent 
on the cellular and molecular components of the postcapillary venules and the perivascular environ-
ment, but we currently lack a comprehensive understanding of the underlying molecular mechanisms.

Transcriptional profiling has recently provided important insights into the cellular composition of 
the CNS and the arterial-venous zonation of brain vessels during postnatal development and adult 
homeostasis (Sabbagh et al., 2018; Vanlandewijck et al., 2018; Zeisel et al., 2015). On the other 
hand, brain ECs demonstrate similar gene expression changes in various BBB dysfunction models, 
suggesting a common mechanism for compromised BBB function throughout different neurolog-
ical disorders (Munji et al., 2019). Despite these important insights, the molecular heterogeneity of 
vascular cells and their dynamic modulation, which is critical for BBB function (Villabona-Rueda et al., 
2019), remains insufficiently understood. One critical technical issue is the low abundance of vascular 
cells relative to neural cell types in the brain.

In this study, we have established a protocol for the depletion of neurons and oligodendrocytes 
prior to droplet-based single-cell transcriptome analysis of non-neuronal cells in mouse cerebral 
cortex. We have generated a comprehensive resource of vascular gene expression at single-cell reso-
lution during postnatal development, adulthood, ageing, and in the demyelinating neuroinflammatory 
condition of experimental autoimmune encephalomyelitis (EAE), a mouse model of human multiple 
sclerosis (Ben-Nun et al., 2014). This resulting data, which can be interrogated at ​single-​cell.​mpi-​
muenster.​mpg.​de, provides useful insights into the cellular and molecular heterogeneity of blood 
vessels in brain and permits identification of functionally specialized reactive postcapillary venules 
(REVs), which we propose to regulate the infiltration of activated leukocytes during neuroinflamma-
tion. Using a computational framework, we have also constructed a detailed cell-to-cell intercommu-
nication map of the brain vasculature.

Results
Single-cell RNA-sequencing of non-neuronal cell population in mouse 
cerebral cortex
To enrich vascular and vessel wall-associated cell types while preserving the heterogeneity of these 
populations, we depleted myelin-associated neurons and oligodendrocytes, the most abundant cell 
types in CNS, using a bovine serum albumin (BSA)-gradient method (Figure 1—figure supplement 
1A, B). Following quality control and data trimming (Figure 1—figure supplement 1C), a total of 
29,406 single cells from three different postnatal ages, juvenile (10,796  cells, postnatal day 10), 
adult (9871 cells, 7–11 weeks), and aged (8739 cells, 18 months) were analyzed further (Figure 1—
figure supplement 2A). Analysis by a nonlinear dimensionality reduction technique, uniform mani-
fold approximation and projection (UMAP) (Figure 1A–C), and unsupervised hierarchical clustering 
(Figure 1D and E) established six different non-neuronal cell types, namely ECs, microglia (Micro), 
astroependymal cells (Astro), perivascular macrophages (PVMs), mural cells (Mural), and cerebral 
fibroblast-like cells (Fibro). Each cell type was successfully annotated by known marker genes such as 
Flt1 for ECs, Tmem119 for microglia, Folr1 for astroependymal cells, Mrc1 for PVMs, Rgs5 for mural 
cells, and Nov for the Fibro population (Figure 1E and F). All these markers are expressed specifically 
and continuously in all age groups analyzed (Figure 1—figure supplement 2B-D).

Unsupervised clustering reveals a diversity of EC subtypes
To gain insight into the heterogeneity of vascular and perivascular cell types, we first analyzed ECs 
during postnatal development using UMAP dimensionality reduction. Juvenile ECs were annotated 
to six different subclusters corresponding to arterial, capillary/precapillary arteriolar (CapA), capillary/

https://doi.org/10.7554/eLife.57520
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• Juvenile 10,796 cells
• Adult 9871 cells
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E

Figure 1. Single-cell RNA-seq analysis of non-neuronal cell types in mouse cerebral cortex. (A) Uniform manifold approximation and projection (UMAP) 
plot of 29,406 myelin-depleted single cells from murine cerebral cortex. Colors represent endothelial cells (EC), microglia (Micro), astroependymal cells 
(Astro), perivascular macrophage (PVM), mural cell (Mural), and cerebral fibroblast (Fibro). (B) Split UMAP plots showing separated cells from juvenile, 
adult, and aged samples, respectively. (C) Bar plots show the relative frequency of cell types for each age. (D) Dendrogram describing the taxonomy 

Figure 1 continued on next page
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postcapillary venular (CapV), venous, mitotic, and tip ECs (Figure  2—figure supplement 1A, B). 
Trajectory analysis indicates that there are one mitotic axis (M) and a tip cell axis (T), which are closely 
associated with venous populations (V), whereas arterial ECs (A) are found in a different branch of 
polarization (Figure  2—figure supplement 1C). Distinct transcriptional profiles reveal the expres-
sion of venous genes in tip and mitotic ECs (Figure 2—figure supplement 1D, E), while these two 
populations are also distinguished by specifically expressed transcripts such as Mcam for tip cells and 
Top2a for mitotic cells (Figure 2—figure supplement 1F). Pseudotime reconstruction analysis reveals 
a continuum of venous-to-arterial gene expression and also confirmed the presence of venous attri-
butes in tip and mitotic ECs (Figure 2—figure supplement 1G-J), consistent with previous findings 
that tip and mitotic ECs emerge from veins and are, in part, incorporated into arteries (Pitulescu 
et al., 2017; Xu et al., 2014).

Next, we analyzed adult and aged EC populations. Although there was no striking change in 
gene expression profiles between adult and aged ECs (Spearman’s correlation coefficient = 0.9852), 
407 genes were identified as differentially expressed (Padj <0.001, Figure 2—figure supplement 
2A). Gene set enrichment analysis (GSEA) indicates that genes related to ECM-receptor interaction, 
focal adhesion, and the P53 signalling pathway are enriched in adult ECs, while genes related to cell 
adhesion molecules, chemokine signalling, and T cell receptor signalling are enriched in aged ECs 
(Figure 2—figure supplement 2B, C), indicating that ECs undergo molecular changes toward a proin-
flammatory state during ageing, which is consistent with recently published work (Chen et al., 2020).

To investigate EC subtypes during homeostasis, we performed subclustering analysis of adult 
and aged ECs together. As expected, tip and mitotic EC populations are largely absent in these 
samples, whereas venous, CapV, CapA, and arterial ECs are clearly segregated (Figure 2A and B and 
Figure 2—figure supplement 3A, B). Interestingly, we found one additional minor but distinctive 
subpopulation of venous ECs (Figure 2A and B; boxed area), which we subsequently termed REV. 
These ECs are characterized by the expression of Icam1 and Vcam1, encoding intercellular adhesion 
molecules (ICAMs), and the endothelial activation or dysfunction markers Vwf and Irf1 (Figure 2C and 
D). It has been reported that endothelial expression of ICAM-1 is essential for transcellular diapedesis 
(Abadier et al., 2015) but is suppressed by sonic hedgehog signalling in the CNS during homeostasis, 
thereby limiting infiltration of circulating inflammatory leukocytes through the BBB (Alvarez et al., 
2011). However, the small subpopulation of venous ECs we found from the single-cell transcriptome 
data shows consistent expression of Icam1 even in immunologically naïve conditions both in adult and 
aged mice (Figure 2D and E). To further characterize the Icam1-expressing REVs, we performed gene 
ontology (GO) term enrichment analysis and revealed that 663 genes (Padj  <0.05) predominantly 
expressed in this cell population were significantly enriched in biological processes involving inflam-
matory/immune responses, cell adhesion, and leukocyte migration and adhesion (Figure 2F). An alter-
native, nonlinear dimensionality reduction method called Markov affinity-based graph imputation of 
cells (MAGIC) (van Dijk et al., 2018) also shows a distinct subpopulation of venous ECs with predom-
inant expression of Icam1 and Irf1 (Figure 2G and Figure 2—figure supplement 3C), excluding the 
possibility that the heterogeneity of cerebral venous ECs is a computational artifact.

Using immunostaining on 100-μm thick brain vibratome sections from transgenic reporter mice 
expressing nuclear green fluorescent protein (GFP) and membrane Tomato specifically in ECs (Cdh5-
H2BGFP/tdTomato) (Jeong et al., 2017), we confirmed that ICAM-1+ REVs are present throughout 
the cortex of immunologically unchallenged juvenile (Figure 2—figure supplement 3D) and adult 
mouse brain (Figure 2H). ICAM-1+ vessels in the brain parenchyma are predominantly venules with a 
diameter ranging from 8 to 50 μm (Figure 2—figure supplement 3E) and low-to-negative coverage 
by alpha-smooth muscle actin+ (αSMA+) mural cells (Figure  2I), suggesting that they represent a 

of all identified non-neuronal cell types. (E) Heatmap indicates the top 50 marker genes for each cell type. (F) Expression distribution of the top marker 
genes for each cell type projected onto the UMAP plot. Color represents the scaled expression level.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1C.

Figure supplement 1. Analysis of vascular and perivascular cell types in mouse cerebral cortex using single-cell RNA-seq.

Figure supplement 2. Expression of major cell type marker genes.

Figure 1 continued

https://doi.org/10.7554/eLife.57520
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Figure 2. Endothelial cell (EC) subclustering and identification of intercellular adhesion molecule-1 (ICAM-1+) 
endothelial population. (A–B) Uniform manifold approximation and projection (UMAP) plots of 10,741 adult and 
aged mouse ECs. Colors represent cell subclusters (A) or age groups (B), respectively. Box indicates ICAM-1+ 
reactive endothelial venule (REV) ECs. (C) UMAP plots depicting the expression of ICAM-1+ EC-enriched genes 

Figure 2 continued on next page
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subpopulation of smaller venules, potentially postcapillary venules where leukocyte extravasation into 
the brain predominantly occurs. While it was not possible to detect VCAM-1 staining in naïve brains, 
the cellular frequency of Icam1 and Vcam1 double-positive ECs ranges from 1 to 3% of total ECs in all 
stages analyzed (Figure 2—figure supplement 3F). Postcapillary venules are the main site of leuko-
cyte extravasation, in most tissues and in the brain, are associated with a perivascular space, defined 
by the inner endothelial and outer parenchyma or astroglial basement membranes, where activated 
leukocytes accumulate before entry into the brain parenchyma (Sixt et al., 2001; Zhang et al., 2020). 
To test whether the ICAM-1+ subpopulation is related to leukocyte trafficking upon an acute inflam-
mation, we intraperitoneally injected adult mice with 10 mg/kg of lipopolysaccharides (LPS), perfused 
the vasculature with ice-cold PBS after 2  hr to remove nonadherent cells from the vessel lumen, 
and performed immunostaining. Interestingly, this revealed the accumulation of CD3+ lymphocytes at 
ICAM-1+ venules prior to significant upregulation of ICAM-1 in other endothelium (Figure 2—figure 
supplement 3G), suggesting that the ICAM-1+ vessel subset might serve as the first entry site of the 
activated leukocytes to the brain parenchyma in settings of neuroinflammation. Based on these find-
ings, we refer to this vessel compartment as ‘reactive endothelial venules’ (REVs).

PVMs reside in close proximity of ICAM-1 expressing REV ECs
Brain parenchyma-resident myeloid cell types, namely microglia and PVMs, share expression of myeloid 
surface markers including CD68, Fcgr3 (CD16), Cx3cr1, and Aif1 (Figure 3—figure supplement 1A) 
and are GFP+ in Cx3cr1 reporter mice (Jung et al., 2000; Figure 3—figure supplement 1B). At the 
same time, single-cell transcriptome analysis shows molecular differences between the two cell popu-
lations (Figure 3A), which also correlate with distinct morphologies and localization (Figure 3—figure 
supplement 1B, C). As the heterogeneity of microglia during development, ageing, and brain patho-
genesis including Alzheimer’s disease, toxic demyelination, and neurodegeneration has been exten-
sively analyzed at the single cell level (Hammond et al., 2019; Keren-Shaul et al., 2017; Masuda 
et  al., 2019), we focused on the characterization of PVMs in this study. CD206 is predominantly 
expressed by PVMs (Figure 3—figure supplement 1D), and CD206+ PVMs are localized between 
the subendothelial basement membrane and GFAP+ astrocyte processes (Figure 3B–D). PVMs are 
clearly distinct from EC-associated pericytes (Figure 3C, asterisks) and Pdgfra-expressing adventi-
tial fibroblast-like cells (Figure 3D). Consistent with previous reports showing that PVMs are asso-
ciated with both arteries and veins in the CNS (Faraco et al., 2017; Faraco et al., 2016), we found 
PVMs in the proximity of ICAM-1+ vessels in cortex, thalamus, hippocampus, midbrain, and floor plate 
(Figure 3E and F).

Subclustering analysis indicated at least two different PVM populations, namely Lyve1+ and MHC 
class II+ (MHCII+) PVMs (Figure  4A–C), and differential gene expression analysis revealed unique 

Vcam1, Icam1, Irf1, and Vwf. Color represents scaled expression level. (D) Dot plot showing the expression of top 
subcluster-specific genes, with the dot size representing the percentage of cells expressing the gene and colors 
representing the average expression of the gene within a cluster. (E) Bar plot showing frequency of subclusters 
for adult and aged ECs. (F) Top gene ontology GO0 biological process terms enriched in REV-specific genes. (G) 
Three-dimensional Principal component analysis (PCA) plots generated by Markov affinity-based graph imputation 
of cells. Cells are colored representing the expression of selected subtype marker genes (green: Alkbh5 and 
Tmsb10 for venous ECs; red: Alpl and Fbln5 for arterial ECs; blue: Icam1 and Vcam1 for REVs). (H) Representative 
immunofluorescence image for ICAM-1 in adult Cdh5-H2BGFP/tdTomato murine brain cortex. Scale bar, 500 μm. 
Panels at the bottom show isolated ICAM-1 signal for each area marked in the overview image, representing 
different cortical areas. Scale bars, 150 μm. (I) Immunostaining showing alpha-smooth muscle actin (αSMA), CD31, 
and ICAM-1 expression. Panels on the right show ICAM-1 signal for arteriole and venule, respectively. Scale bars, 
50 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2E.

Figure supplement 1. Subclustering analysis of endothelial cells (ECs) during postnatal development.

Figure supplement 2. Differential gene expression analysis of adult and aged endothelial cells (ECs).

Figure supplement 3. Subclustering analysis of endothelial cells (ECs) during homeostasis.

Figure supplement 3—source data 1. Source data for panel E.

Figure 2 continued

https://doi.org/10.7554/eLife.57520
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Figure 3. Localization of perivascular macrophages (PVMs). (A) Heatmap and expression dot plot for top differentially expressed genes between 
microglia and PVMs. Dot size represents the percentage of cells expressing each gene, and color keys indicate scaled expression in each age group. 
(B) Immunostaining showing CD206+ Cx3cr1-GFP+ PVMs in perivascular space (asterisk) between ECs (CD31) and astrocyte limitans (GFAP). Scale bars, 
50 μm (left), 25 μm (right). (C–D) Spatial arrangement of PVMs (CD206), astrocyte limitans (GFAP), pericytes (CD13, asterisks), perivascular fibroblasts 

Figure 3 continued on next page
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transcriptomic landscapes of the two subtypes (Figure 4D, Figure 4—figure supplement 1A, B). 
Immunostaining of Lyve1 and MHCII also shows the two subtypes in association with ICAM-1+ vessels 
(Figure  4E). Interestingly, GSEA for KEGG signalling pathways indicates that Lyve1+ PVMs show 
enriched expression of genes associated with lysosome activity and endocytosis as well as Wnt signal-
ling, whereas MHCII+ PVMs show enrichment of terms such as antigen processing and presentation, 
cell adhesion molecules, and Toll-like receptor signalling pathway (Figure 4F, Figure 4—figure supple-
ment 1C). Macrophages can be broadly divided into classical (M1) and alternative (M2) subtypes 
(Mantovani et al., 2005; Mantovani et al., 2004). M1-polarized macrophages are strongly positive 
for MHC class II and present antigen to T lymphocytes that neutralize cells with viral or bacterial infec-
tions. Macrophages with M2 polarization display homeostatic or anti-inflammatory activity and have 
a higher endocytic ability compared to M1 macrophages (Tarique et al., 2015). Interestingly, Lyve1+ 
PVMs express anti-inflammatory or immune-suppressive (M2 macrophage-like) polarization genes, 
such as Ccr1, Cd163, Cd209a/f, Cd302, Igf1, Il21r, Mrc1, Stab1, Tgfb1, and Tslp, while MHCII+ PVMs 
show increased levels of proinflammatory (M1-like) genes, Cxcl9, Cxcl10, Cxcl13, Cxcl16, Irf5, Il1a/b, 
Cxcr4, Il2ra, and Tlr2 (Figure 4G). Both PVM subtypes are found at all stages investigated, but the 
frequency of MHCII+ PVMs increases with ageing, which correlates with a decrease in the frequency of 
Lyve1+ PVMs (Figure 4H). Not only the cell population but also the expression levels of MHCII genes 
are upregulated, whereas Lyve1 or Ccl24 expression is downregulated in aged PVMs (Figure  4I). 
These results indicate that specific PVM subtypes, characterized by distinct immunological signatures, 
are associated with ICAM-1+ REVs.

ICAM-1+ ECs are the most reactive EC population in EAE
To extend our analysis of brain ECs and PVMs to neuroinflammatory disease, we analyzed the tran-
scriptome of non-neuronal cell types in the brain cortex during EAE at single-cell resolution. In 
contrast to age-matched control mice, brain-infiltrating inflammatory cells, activated macrophages, 
neutrophils, and lymphocytes were significantly enriched in EAE (Figure 5—figure supplement 1A, 
B). EAE mice show onset of disease symptoms between 9 and 12 days and peak disease severity 
between 14 and 18 days after immunization with significant reduction of myelin basic protein (MBP) 
levels in the brain cortex (Figure 5—figure supplement 1C). The comparative analysis of ECs from 
healthy adults vs. peak EAE indicates the emergence of inflammatory ECs upon neuroinflammation 
(Figure  5A, Figure  5—figure supplement 2A). These ECs share the molecular features of CapV 
(Figure  5—figure supplement 2B) but show higher level of genes related to immune responses 
such as Ctla2, Lcn2, and Mt2 (Figure 5—figure supplement 2C). REV-specific marker genes, Icam1 
and Lrg1 are also upregulated in inflammatory ECs (Figure 5B). Consistent with published reports 
(Dopp et al., 1994), both the area and level of endothelial ICAM-1 expression are increased in EAE 
(Figure 5C and D). Interestingly, ICAM-1 expression in the brain parenchyma persists in REVs and, in 
peak EAE, expands into adjacent vessels (Figure 5C, Figure 5—figure supplement 3A).

It has been reported that high levels of ICAM-1 expression in ECs promote transcellular diapedesis 
of encephalitogenic T cells and, in absence of endothelial ICAM-1 and ICAM-2 in mutant mice, EAE 
symptoms were ameliorated (Abadier et al., 2015). Accordingly, upon EAE, leukocytes accumulate 
at ICAM-1+ REVs and enter the adjacent brain parenchyma (Figure 5E, Figure 5—figure supplement 
3B, C).

EAE alters gene expression in REVs (Figure 5—figure supplement 4A, B), including significant 
upregulation of regulators of blood vessel development, such as Pdgfb and Ctgf, Cd74 antigen 
(invariant polypeptide of the major histocompatibility complex, class II antigen-associated), the 
hemostasis regulator Vwf, an interferon gamma-stimulated gene mediating host immune responses 
(Ch25h), a gene involved in the cellular stress response (Maff), and numerous other genes related to 
antigen processing and presentation as well as cellular responses to hydrogen peroxide or radiation 

(Pdfgra- GFP+), and endothelial cells (ECs; CD31). Scale bars, 25 μm. (E) Confocal image showing Cx3cr1-GFP + microglia and vessel-associated PVMs 
(arrowheads) next to ICAM1+αSMA- CD31+ REV ECs. Scale bar, 50 μm. (F) CD206+ PVMs are associated with ICAM-1+ REVs in the indicated brain regions. 
Scale bars, 100 μm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distinct populations of microglia and perivascular macrophages (PVMs).

Figure 3 continued

https://doi.org/10.7554/eLife.57520
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(Figure 5—figure supplement 4C, D). Collectively, our results indicate that ICAM-1+ postcapillary 
venules or REVs are molecularly specialized and function as a gateway for the entry of activated leuko-
cytes through the BBB.

PVMs in EAE and cell-to-cell interactome analysis of BBB
The analysis of PVMs in adult and EAE mice indicates that these cells rarely proliferate (Figure 6—
figure supplement 1A), and their morphology and localization around ICAM-1+ REVs persist in 
EAE (Figure 6A and B and Figure 6—figure supplement 1B). Nevertheless, EAE induces profound 
changes in PVM gene expression. MHCII+ PVM-enriched genes, such as Cxcl16, Ccl8, Cd52, and 
MHCII genes, are significantly upregulated in most of the PVMs, whereas Lyve1+ PVM-enriched genes, 
namely Lyve1, Igf1, Cd163, Ccl24, Folr1, and Cd209f, are not changed or decreased (Figure 6D and 
E). This supports the hypothesis that polarization of macrophages toward inflammatory and non-
inflammatory phenotypes is not fixed, and that these cells possess plasticity, integrating diverse 
inflammatory signals with physiological and pathological functions (Jordão et  al., 2019; Murray, 
2017). In addition, differential gene expression analysis comparing PVMs and brain parenchyma-
infiltrated activated macrophages (Mac) further illustrates the molecular differences between PVMs 
and circulating peripheral monocytes/macrophages (Figure 6F and G), which may prove relevant 
for potential therapeutic approaches involving the targeting and modulation of different types of 
macrophages.

We next used CellPhoneDB (Vento-Tormo et  al., 2018) to identify potential receptor-ligand 
complexes mediating cell-to-cell communication between different cell populations at the BBB. 
First, we analyzed the communication between REVs and adjacent CapV and venous ECs. REVs 
show expression of various autologous signalling molecules regulating fundamental aspects of EC 
behavior, including Wnt5a, Tnfsf12, Tgfb1, Jag1, collagens, and immune-regulatory genes with their 
corresponding receptors (Figure  7A). CapV and venous ECs express higher level of Esam, which 
encodes EC-selective adhesion molecule, an immunoglobulin-like transmembrane protein associated 
with endothelial tight junctions. CapV and venous ECs also express the chemokine, and Cxcl12 and 
REVs express the corresponding receptor Ackr3 encoding CXCR-7, which might enable communica-
tion between EC subsets. Potential molecular interactions that upregulated in REVs by EAE include 
members of the tumor necrosis factor receptor superfamily, TGFβ receptors, integrins, the HLA class 
II histocompatibility antigen gamma chain CD74, the receptor tyrosine kinase TEK, and the PLXNB2 
receptor for semaphorin ligands (Figure 7A and B). These results also suggest that REVs are a major 
signal distributor among the EC populations in CNS, which is further enhanced by EAE (Figure 7C). 
We also identify putative signalling interactions between REVs and other cell types in the brain vascu-
lature during homeostasis and neuroinflammation (Figure 7—figure supplement 1). Notably, REVs 
express growth factors including PDGF-B, CTGF, and TGFβ1, which regulate cellular behavior, tissue 
remodelling, and angiogenesis. Signalling to other cell types is further enhanced by EAE, which 
involves the activation of various signals in astroependymal cells. By contrast, expression of PDGF-A, 
IGF2, and PGF in mural cells and of IGF1, TGFB1, and IGFBP4 in PVMs, for example, was not signifi-
cantly changed upon EAE (Figure 7D). Our results collectively suggest that postcapillary venules form 
a specialized vessel compartment in the CNS. We propose that REVs might play roles in the regula-
tion of immune surveillance in the CNS not only under homeostatic conditions but also in pathogenic 
neuroinflammation.

(F) Representative gene set enrichment analysis plots for overrepresented KEGG pathways in Lyve1+ and MHCII+ PVMs. (G) Dot plot of genes related to 
M1- or M2-like phenotypes in PVM subtypes. Dot size represents percentage of cells expressing the gene, and colors represent the average expression 
of each gene. (H) Bar plot showing the frequency of PVM subtypes in different age groups. (I) Ridge plots of Lyve1, Ccl24, and MHCII genes in PVMs at 
different ages.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4H.

Figure supplement 1. Differentially expressed genes in perivascular macrophage (PVM) subtypes.

Figure 4 continued
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Figure 5. Gene expression changes in endothelial cells (ECs) by experimental autoimmune encephalomyelitis (EAE). (A) Uniform manifold 
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Discussion
Here, we provide a comprehensive single-cell transcriptomic atlas of non-neural components of the 
murine brain vasculature during growth, adulthood, ageing, and in EAE. Using this data, we establish 
the existence of a specialized vessel subtype, which is characterized by a distinct endothelial gene 
expression profile and presence of ICAMs. In response to pro-inflammatory (LPS) stimulation or in the 
neuroinflammatory condition of EAE, REVs, but not the far more abundant ICAM-1- vessels, are associ-
ated with leukocytes, suggesting that the ICAM-1+ subset of postcapillary venules serves as a first site 
of immune cell accumulation prior to entry into the brain parenchyma. Such a role of REVs as an inter-
face for innate and adaptive immune cells might be also relevant under homeostatic conditions, when 
the recruitment of these cells is rare and their activity but also their entry into the brain parenchyma is 
tightly regulated (Schwartz et al., 2013). The association of MHCII+ and Lyve1+ PVM populations with 
REVs might mediate immunomodulatory responses, and the predominant gene expression changes 
in REVs upon immunological challenge highlight further that these vessels might be critical for the 
immune privileged status of the CNS with potential implications for ageing and neurodegenerative 
diseases.

Several previous studies on scRNA-seq analysis of murine or human brain have recovered only 
a limited number of vascular cells due to the comparably high abundance of neural cells (Han 
et al., 2020; Zeisel et  al., 2015). In other publications, fluorescence-activated cell sorting (FACS) 
or microbead-mediated isolation of ECs as well as of both ECs and mural cells has provided insight 
into the organ-specific specialization, transcriptional regulation, and arterial-venous zonation of brain 
vessels in the healthy organism (He et al., 2018; Kalucka et al., 2020; Sabbagh et al., 2018; Vanlan-
dewijck et al., 2018). While sorting based on certain cell surface markers or fluorescent reporters 
enables the efficient enrichment of the desired cell populations, it has to be considered that these 
approaches are biased and will miss cells lacking expression of the relevant markers. This limitation 
is avoided by our demyelination approach, which does not rely on the expression of specific cell 
surface proteins or fluorescent reporters. Despite of the differences in the experimental approach, 
data generated by Vanlandewijck et al., 2018 confirms the enriched expression of Icam1 and Vwf in 
a fraction of venous ECs, which is consistent with our own findings. Transcriptomic changes in brain 
ECs associated with the aging have been also investigated previously, and it has been proposed that 
soluble brain EC-derived Vcam1, generated by shedding, activates microglia and impairs the function 
of hippocampal neural precursors (Chen et al., 2020; Yousef et al., 2019). Our own study confirms 
that aging increases transcripts associated with inflammation in brain ECs, and, in particular, in REVs. 
Similarly, EAE results in the upregulation of proinflammatory gene expression in ECs with potential 
implications for neuroinflammation and disease development.

In the healthy organism, the CNS contains a highly selective barrier system to restrict peripheral 
immune cell entry into brain parenchyma. During pathophysiological conditions, activated T cells 
can enter the perivascular space independent of antigen specificity (Kawakami et al., 2005) along 
postcapillary venules (Raine et al., 1990). However, only after acquiring the ability to move across the 
glia limitans by recognition of cognate antigen displayed by perivascular APCs, T cells traverse into 
the parenchyma (Lodygin et al., 2013). Firm attachment of T cells to ECs to resist the vascular shear 

Quantification of ICAM-1+ vessel area and immunohistochemistry signal intensity in the brain cortex of control and EAE mice at disease onset (EAE 
onset) and peak (EAE peak). Error bars represent mean ± s.e.m. from three animals. (E) Immunofluorescence images showing CD45+ leukocytes near 
ICAM-1+ REVs in the cerebral cortex of control and EAE mouse. CD31 indicates all ECs. Scale bars, 70 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for Figure 5D.

Figure supplement 1. Single-cell RNA-seq analysis of experimental autoimmune encephalomyelitis (EAE) mice.

Figure supplement 2. Subclustering of endothelial cells (ECs) from adult and experimental autoimmune encephalomyelitis (EAE) mice.

Figure supplement 2—source data 1. Source data for panel A.

Figure supplement 3. Intercellular adhesion molecule-1 (ICAM-1) expression in brain cortical parenchyma upon experimental autoimmune 
encephalomyelitis (EAE).

Figure supplement 4. Differentially expressed genes between adult and experimental autoimmune encephalomyelitis (EAE) endothelial cells (ECs).

Figure 5 continued
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Figure 6. Experimental autoimmune encephalomyelitis (EAE)-induced changes in perivascular macrophages (PVMs). (A) Representative 
immunohistochemistry images for CD206+ PVMs and ICAM-1+ vessels in control and EAE brain cortical parenchyma. Scale bars, 100 μm. (B) Frequency 
of CD206+ PVMs associated to ICAM-1+ vessels in brain cortical parenchyma of control and EAE mice at disease onset (EAE onset) and peak (EAE peak). 
(C) Uniform manifold approximation and projection (UMAP) plots of 919 PVMs from adult and EAE mice. (D) UMAP plots depicting the expression 
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stress and prolonged crawling before diapedesis is also critical for immune cell extravasation (Steiner 
et al., 2010). Our findings suggest that functionally specialized REV ECs enable the sustained immune 
surveillance process alongside the postcapillary venules, serving as the cellular gateway of BBB. In 
this sense, REVs share some functional features with high endothelial venules in secondary lymphoid 
organs that support circulating lymphocyte extravasation and physical contact with APCs (Girard and 
Springer, 1995). Because of the restricted afferent and efferent communication with lymphatic tissue 
in CNS parenchyma, these specialized postcapillary ECs are probably relevant for fine-tuned CNS 
immune reactions.

Our work also shows transcriptionally distinguishable subtypes of brain resident PVMs, physically 
associated with REVs in postcapillary venules, which might serve as APCs for CNS immune surveil-
lance and thereby as gate-keepers at the BBB. It has been reported that PVMs are derived from early 
yolk-sac-derived erythromyeloid progenitors, similar to microglia and have minimal turnover during 
homeostasis (Goldmann et al., 2016). The transcriptional continuum between the PVM subtypes and 
the coherent activation upon EAE reflect the ability of PVMs to swiftly adapt to changing immunolog-
ical and environmental cues. Nevertheless, PVMs retain distinct molecular characteristics relative to 
infiltrating peripheral macrophages even though all these cells are exposed to the same perivascular 
microenvironment. More detailed understanding of the mechanisms that determine the behavior of 
PVMs and peripheral macrophages upon neuroinflammation will be important, especially for attempts 
to target specific cell populations and modulate local immune responses. Delivery of drugs or ther-
apeutic cells (e.g. chimeric antigen receptor T cells) across the BBB is a limiting factor in the future 
development of new therapeutics for the brain diseases, such as Alzheimer’s disease and various brain 
tumours (Pardridge, 2019).

The sum of our work reveals critical aspects of vascular heterogeneity in the CNS and thereby 
provides a valuable resource for cell-cell interactions and the molecular modulation of immune cell 
trafficking into the CNS, with relevance for brain function in health and disease.

Methods
Mice
C57BL/6 female mice were used unless stated otherwise. Cdh5- H2BGFP/tdTomato (Jeong et al., 
2017), Cx3cr1-GFP (Jung et al., 2000), and Pdgfra-GFP transgenic mice were used to specifically 
label EC, Micro + PVM, and Fibro, respectively. All animal experiments were performed in compli-
ance with the relevant laws and institutional guidelines, approved by local animal ethic committees, 
and conducted with permissions (84–02.04.2016  .A525, 81–02.04.2020  .A471 and 84–02.04.2017  .
A322) granted by the Landesamt für Natur, Umwelt und Verbraucherschutz (LANUV) of North Rhine-
Westphalia, Germany.

EAE and LPS treatment
EAE was induced as previously described (Gerwien et al., 2016). In brief, 150 μl of 0.75 mg/ml myelin 
oligodendrocyte glycoprotein 33–55 peptides (MOG35–55) mixed with Complete Freund’s Adju-
vant (FS8810; Sigma-Aldrich) was injected subcutaneously into the tail base of 7–11-week-old female 
C57Bl/6 mice. On the day of immunization and on day 2, 100 μl of 2 μg/ml pertussis toxin (P7208; 
Sigma-Aldrich) was injected intravenously. Mice were monitored daily for development of disease 
symptoms. EAE was graded on a 0–5 scale as follows: score 0, no clinical symptoms; score 1, flaccid 
tail; score 2, hindlimb weakness or partial paralysis; score 3, severe hindlimb weakness or paralysis; 

of Lyve1, H2-Aa, Ccl8, and Cd52 in PVMs of adult control and EAE mice. Color indicates the scaled expression. (E) Ridge plots of Lyve1+ and MHCII+ 
PVM marker genes in adult and EAE PVMs. (F) MA plot of differentially expressed genes between PVMs from healthy adult and EAE brain. Blue dots, 
p-adjusted value  <0.001; red dots, p-adjusted value  <0.001, and Log2 fold change >0.5. (G) Heatmap of selected differentially expressed genes 
(Padj <0.001) across adult and EAE PVMs and activated macrophages (Mac). Color indicates the scaled average expression.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for Figure 6B.

Figure supplement 1. Cell cycle phases and localization of perivascular macrophages (PVMs) in experimental autoimmune encephalomyelitis (EAE).

Figure 6 continued
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Figure 7. Jeong et al.
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Figure 7. Interactions between different endothelial cell (EC) subpopulations and blood-brain barrier (BBB) cell types. (A) Overview of potential ligand-
receptor interactions for CapV, reactive endothelial venule (REV), and venous EC populations in adult and experimental autoimmune encephalomyelitis 
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(B) Diagram of the main ligand-receptor interactions regulated by EAE. (C) Diagram of the numbers of ligand-receptor interactions on CapV, REV, 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.57520


 Tools and resources﻿﻿﻿﻿﻿﻿ Developmental Biology | Immunology and Inflammation

Jeong et al. eLife 2022;11:e57520. DOI: https://doi.org/10.7554/eLife.57520 � 16 of 22

score 4, forelimb paralysis; and score 5, paralysis in all limbs or death. Mice typically reached a peak of 
disease symptoms between days 14 and 18 after immunization, before disease resolution. The disease 
typically correlates with weight loss; killing of mice was required when weight loss exceeded 20–30% 
of the initial body weight.

For acute LPS treatment, mice were intraperitoneally injected with a single dose of 10 mg/kg LPS 
(L2630-25MG; Sigma-Aldrich). Control animals received the same volume of PBS (data not shown). 
Mice were sacrificed at 2 hr after the injection.

Single-cell RNA-seq library preparation and sequencing
Mice were perfused transcardially with ice-cold PBS under anesthesia. Brains were isolated and 
dabbed with filter paper for the removal of meninges. After the removal of olfactory bulbs and cere-
bellum, brain cortex tissues were dissected and digested using the enzyme-cocktail solution of 30 U/
ml papain (LK003153; Worthington) and 0.125  mg/ml Liberase TM (5401119001; Sigma-Aldrich) 
in Dulbecco's Modified Eagle Medium (DMEM, Sigma-Aldrich) for 60  min at 37°C. Homogenized 
tissues were combined with 1.7-fold volume of 22% BSA in PBS and then centrifuged at 1000× g for 
10 min for myelin removal. After washing with ice-cold DMEM, dead cells and debris were removed 
using ClioCell nanoparticles (Amsbio) according to the manufacturer’s instructions. Single cells were 
counted using Luna-II automated cell counter (Logos Biosystems) and captured using the 10X Chro-
mium system (10X Genomics). We pooled tissues from three (for aged and EAE samples) or six (for 
juvenile and adult samples) mice to reduce the effect of sample-dependent individual variations. 
Libraries were prepared according to the manufacturer’s instructions using Chromium Single Cell 3’ 
Library & Gel Bead Kit v2 (10X Genomics) and sequenced on the Illumina NextSeq 500 using High 
Output Kit v2.5 (150 cycles, Illumina) for 26 bp +98 bp paired-end reads with 8 bp single-index aiming 
raw sequencing depth of >20,000 reads per cell for each sample.

Single-cell RNA-seq data analysis
Sequencing data were processed with UMI tools (Smith et al., 2017) (version 1.0.0), aligned to the 
mouse reference genome (mm10) with STAR (Dobin et al., 2013) (version 2.7.1 a), and quantified 
with Subread featureCounts (Liao et al., 2014) (version 1.6.4). Data normalization, detailed analysis, 
and visualization were performed using Seurat package (Butler et al., 2018) (version 3.1.5). For initial 
quality control of the extracted gene-cell matrices, we filtered cells with parameters nFeature_RNA 
>500 & nFeature_RNA <6000 for number of genes per cell and ​percent.​mito <25 for percentage 
of mitochondrial genes and genes with parameter ​min.​cell=​3. Filtered matrices were normalized by 
LogNormalize method with scale factor = 10,000. Variable genes were found by FindVariableFeatures 
function with parameters of ​selection.​method = ‘vst’, nfeatures = 2000, trimmed for the genes related 
to cell cycle (GO:0007049) and then used for principal component analysis. FindIntegrationAnchors 
and IntegrateData with default options were used for the data integration. Statistically significant prin-
cipal components were determined by JackStraw method, and the first 12 principal components were 
used for UMAP nonlinear dimensional reduction. Unsupervised hierarchical clustering analysis was 
performed using FindClusters function in Seurat package. We tested different resolutions between 
0.1 and 0.9 and selected the final resolution using clustree R package to decide the most stable as well 
as the most relevant for our previous knowledges. Cellular identity of each cluster was determined 
by finding cluster-specific marker genes using FindAllMarkers function with minimum fraction of cells 
expressing the gene over 25% (​min.​pct=​0.​25), comparing those markers to known cell type-specific 
genes from previous studies.

and venous EC populations in healthy adult and EAE brain. (D) Circos plots for ligand-receptor interactions between REV ECs, mural cells (Mural), 
perivascular macrophages (PVMs), and astroependymal cells (Astro) in adult and EAE. Each plot shows top 100 highly expressed interactions. The lines 
and arrow heads are scaled to indicate the relative expression level of the ligand and receptor, respectively.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Interactome of blood-brain barrier (BBB) cell types in postcapillary venules.

Figure supplement 2. Schematic summary of experimental findings.

Figure 7 continued
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Data were further trimmed for clusters of multiplets, low-quality cells (mitochondrial gene-enriched), 
contaminated neurons (Tubb3+), oligodendrocytes (Mbp+), lymphocytes (Igkc+ or Nkg7+), red blood 
cells (Hba−a1+), and ependymal cells (Tmem212+) and then reanalyzed. For subclustering analysis, we 
isolated specific cluster(s) using subset function, extracted data matrix from the Seurat objectusing 
GetAssayData function, and repeated the whole analysis pipeline from data normalization.

Differentially expressed genes were identified using the nonparametric Wilcoxon rank sum test 
by FindMarkers function of Seurat package. We used default options for the analysis if not specified 
otherwise. Results were visualized using EnhancedVolcanoR package (version 1.10.0). FeaturePlot, 
VlnPlot, and DotPlot functions of Seurat package were used for visualization of selected genes. The 
‘VlnPlot’ function of Seurat package was used for violin plots to show the expression level of selected 
genes with log normalized value by default.

Monocle (Trapnell et al., 2014) (version 2.12.0) was used for pseudotime trajectory analysis. We 
imported Seurat objects to Monocle R package and then performed dimensionality reduction with 
DDRTree method with parameters max_components = 2 and norm_method=‘log’. Cell cycle phases 
were classified by cyclone function of scran (Lun et al., 2016) (version 1.14.5). We also used MAGIC 
(van Dijk et  al., 2018) (version 1.4.0.9000) for an alternative dimensionality reduction and Cell-
PhoneDB (Vento-Tormo et al., 2018) for ligand-receptor interactome analysis. An R package iTALK 
(https://doi.org/10.1101/507871) was used for the ligand-receptor interactome analysis. For the anal-
ysis of each single sample, top 50% of genes in their mean expression values were selected and used 
for ligand-receptor pair identification using FindLR function with datatype = mean count. All the 
analysis scripts are available from vignettes of original software webpage of Seurat, Monocle, MAGIC, 
CellPhoneDB, or iTALK. No custom code or mathematical algorithm other than variable assignment 
was used in this study.

Flow cytometry
Brain cortex tissues from transcardially perfused P10 Cdh5- H2BGFP/tdTomato transgenic mice were 
dissected and treated by different digestion conditions, namely papain solution, papain + liberase 
cocktail solution, or papain  + liberase cocktail solution followed by myelin removal. EC-specific 
H2BGFP and tdTomato fluorescences were directly analyzed after single/live cell gating in forward 
scattered/side scattered plot using FACSVerse flow cytometer (BD). For brain-infiltrated leukocyte 
analysis, brains from transcardially perfused mice were dissected and crushed with FACS buffer (2% 
FCS, 2  mM EDTA in DPBS) using 100  um mesh and plunger. After collecting the cell suspension 
with 10 ml of FACS buffer, centrifugation was performed to make cell pellet. Percoll gradient was 
performed, and a layer that contains mononuclear cells was collected for further FACS analysis. 
105  cells were stained with fluorescence conjugated antibodies, CD45-APC-Cy7 (BD 557659) and 
CD3e-FITC (Thermo 11–0031) for 30 min at 4°C. The analysis is performed with BD FACSymphony A3 
Cell Analyzer. FlowJo software (version 10.5.3, FlowJo, LLC) was used for further analysis.

Immunohistochemistry
Mice were perfused transcardially with ice-cold PBS and subsequently with 2% paraformaldehyde (PFA) 
under anesthesia. Whole brain tissues were dissected and further fixed with 4% PFA or 100% methanol 
at 4°C for overnight. Methanol-fixed samples were rehydrated by serial incubation (15–20 min each, 
at RT) in increasing concentrations of PBS:methanol solution (25, 50, 75, and 100% PBS). The fixed 
brains were glued to a mounting block with cyanoacrylate glue (48700; UHU), submerged in ice-cold 
PBS, and sliced with 100-µm thickness using vibrating blade microtome (VT1200, Leica). Sections were 
blocked and permeablilized by 1% BSA and 0.5% Triton X-100 in PBS for overnight. Incubation with 
blocking/permeabilization solution containing primary antibodies at 4°C for overnight was followed 
by secondary antibody staining using suitable species-specific Alexa Fluor-coupled antibodies (Invit-
rogen) and flat-mounting in microscope glass slides with Fluoromount-G (0100–01; SouthernBiotech). 
The following primary antibodies were used for immunostaining: rabbit anti-ICAM-1 (Abcam ab222736, 
1:100), rat anti-ICAM-1 (BioLegend 116102, 1:100), mouse anti-αSMA-Cy3 (Sigma C6198, 1:300), 
mouse anti-αSMA-660 (eBioscience 50-9760-82, 1:300), chicken anti-GFP (2BScientific Ltd. GFP-1010, 
1:300), goat anti CD31 (R&D Systems AF3628, 1:200), rabbit anti-CD206 (Abcam ab64693, 1:100), rat 
anti-CD206 (BioRad MCA2235T, 1:100), rabbit anti-GFAP (DAO Z0334, 1:200), rat anti-CD13 (AbD 
Serotec MCA2183GA, 1:100), hamster anti-CD3e-FITC (eBiosciences 11–0031, 1:100), rabbit anti 
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ColIV (AbD Serotec 2150–1470, 1:100), rat anti-CD68 (Abcam ab53444, 1:200), goat anti-Olig2 (R&D 
Systems AF2418, 1:100), rabbit anti-MHC Class II (Abcam ab180779, 1:100), rat anti-CD45 (Becton 
Dickinson 550539, 1:200), and rat anti MBP (Abcam ab7349, 1:200). The following donkey-raised 
secondary antibodies (all in 1:400 dilution unless otherwise stated) were used for immunostaining: 
anti-rabbit IgG conjugated to Alexa Fluor (AF) 488 (Thermo Fisher Scientific A21206), anti-chicken IgY 
AF488 (Jackson ImmunoResearch 703-545-155), anti-goat IgG AF488 (Invitrogen, A-11055), anti-rat 
IgG Cy3 (Jackson ImmunoResearch 712-165-153), anti-rabbit IgG AF546 (Thermo Fisher Scientific 
A10040), anti-rat IgG AF594 (Thermo Fisher A21209), anti-rabbit IgG AF594 (Thermo Fisher Scientific 
A21207), anti-rabbit IgG AF647 (Thermo Fisher Scientific A31573), and anti-goat IgG AF647 (Thermo 
Fisher Scientific A21447). Streptavidin AF405 (Invitrogen S32351, 1:200) was used for detection of 
biotinylated-IB4 stained samples. Nuclei were counterstained with 4’,6-diamidino-2-phenylindole 
(Sigma, D9542) diluted at 1 μg ml–1 together with the secondary antibodies.

Statistics and reproducibility
No statistical methods were used to predetermine sample size. The experiments were not random-
ized, and investigators were not blinded to allocate during experiments and outcome assessment.

Data sets with normal distributions were analysed with unpaired Student’s two-tailed t-tests to 
compare two conditions. Results are depicted as mean  ± s.e.m. as indicated in figure legends. All 
experiments for quantitative analysis and representative images were reproduced at least three times.
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