Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians

  1. David R Shook  Is a corresponding author
  2. Jason WH Wen
  3. Ana Rolo
  4. Michael O'Hanlon
  5. Brian Francica
  6. Destiny Dobbins
  7. Paul Skoglund
  8. Douglas W DeSimone
  9. Rudolf Winklbauer
  10. Raymond E Keller
  1. University of Virginia, United States
  2. University of Toronto, Canada
  3. King's College London, United Kingdom
  4. Aduro Biotech, United States
  5. Independent Researcher, United States

Abstract

The morphogenic process of convergent thickening (CT) was originally described as the mediolateral convergence and radial thickening of the explanted ventral involuting marginal zone (IMZ) of Xenopus gastrulae (Keller and Danilchik 1988). Here we show that CT is expressed in all sectors of the pre-involution IMZ, which transitions to expressing convergent extension (CE) after involution. CT occurs without CE and drives symmetric blastopore closure in ventralized embryos. Assays of tissue affinity and tissue surface tension measurements suggest CT is driven by increased interfacial tension between the deep IMZ and the overlying epithelium. The resulting minimization of deep IMZ surface area drives a tendency to shorten the mediolateral (circumblastoporal) aspect of the IMZ, thereby generating tensile force contributing to blastopore closure (Shook et al. 2018). These results establish CT as an independent force-generating process of evolutionary significance and provide the first clear example of an oriented, tensile force generated by an isotropic, Holtfreterian/Steinbergian tissue affinity change.

Data availability

No large-scale data set were generated. Data upon which figures are based is included as source data for those figures; specifically, there are files for each of Figure 2C-E; Figure 3C,D; Figure 3-figure supplement 1C,D; Figure 3-figure supplement 2B; Figure 4C; Figure 5C,F; Figure 5-figure supplement 2B-D; Figure 5-figure supplement 2E; Figure 5-figure supplement 3F-J; Figure 6B,C; Figure 7B; Figure 7C; Figure 7D. Additionally, there is also a source data file with the data supporting a statement within the results section.

Article and author information

Author details

  1. David R Shook

    Department of Biology, University of Virginia, Charlottesville, United States
    For correspondence
    drs6j@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0131-1834
  2. Jason WH Wen

    Department of Cell, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7402-5073
  3. Ana Rolo

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael O'Hanlon

    Department of Cell Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian Francica

    Aduro Biotech, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Destiny Dobbins

    Independent Researcher, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Skoglund

    Department of Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas W DeSimone

    Department of Cell Bioloy, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rudolf Winklbauer

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0628-0897
  10. Raymond E Keller

    Department of Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD R37 HD025594 MERIT award)

  • Raymond E Keller

National Institute of General Medical Sciences (NIH RO1 GM099108)

  • Paul Skoglund

National Institute of General Medical Sciences (NIH RO1 GM094793)

  • Douglas W DeSimone

National Institute of General Medical Sciences (R35 GM131865)

  • Douglas W DeSimone

Canadian Institutes of Health Research (CIHR MOP-53075)

  • Rudolf Winklbauer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the 8th Edition of the Guide for the Care and Use of Laboratory Animals, of the National Institutes of Health. All of the animals were manipulated according to an approved institutional animal care and use committee (IACUC) protocols of the University of Virginia. The protocols were approved by the Animal Care and Use Committee of the University of Virginia (protocols #2581 and #1830). All surgery was performed under Tricaine anesthesia, and every effort was made to minimize suffering. The animal care and use program is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International. The University of Virginia has a PHS Assurance on file with the Office of Laboratory Animal Welfare (OLAW) (PHS Assurance #A3245-01). The University of Virginia is a USDA registered research facility(USDA Registration # 52-R-0011).

Copyright

© 2022, Shook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,105
    views
  • 191
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David R Shook
  2. Jason WH Wen
  3. Ana Rolo
  4. Michael O'Hanlon
  5. Brian Francica
  6. Destiny Dobbins
  7. Paul Skoglund
  8. Douglas W DeSimone
  9. Rudolf Winklbauer
  10. Raymond E Keller
(2022)
Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians
eLife 11:e57642.
https://doi.org/10.7554/eLife.57642

Share this article

https://doi.org/10.7554/eLife.57642

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Thi Thom Mac, Teddy Fauquier ... Thierry Brue
    Research Article

    Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.