Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians

  1. David R Shook  Is a corresponding author
  2. Jason WH Wen
  3. Ana Rolo
  4. Michael O'Hanlon
  5. Brian Francica
  6. Destiny Dobbins
  7. Paul Skoglund
  8. Douglas W DeSimone
  9. Rudolf Winklbauer
  10. Raymond E Keller
  1. University of Virginia, United States
  2. University of Toronto, Canada
  3. King's College London, United Kingdom
  4. Aduro Biotech, United States
  5. Independent Researcher, United States

Abstract

The morphogenic process of convergent thickening (CT) was originally described as the mediolateral convergence and radial thickening of the explanted ventral involuting marginal zone (IMZ) of Xenopus gastrulae (Keller and Danilchik 1988). Here we show that CT is expressed in all sectors of the pre-involution IMZ, which transitions to expressing convergent extension (CE) after involution. CT occurs without CE and drives symmetric blastopore closure in ventralized embryos. Assays of tissue affinity and tissue surface tension measurements suggest CT is driven by increased interfacial tension between the deep IMZ and the overlying epithelium. The resulting minimization of deep IMZ surface area drives a tendency to shorten the mediolateral (circumblastoporal) aspect of the IMZ, thereby generating tensile force contributing to blastopore closure (Shook et al. 2018). These results establish CT as an independent force-generating process of evolutionary significance and provide the first clear example of an oriented, tensile force generated by an isotropic, Holtfreterian/Steinbergian tissue affinity change.

Data availability

No large-scale data set were generated. Data upon which figures are based is included as source data for those figures; specifically, there are files for each of Figure 2C-E; Figure 3C,D; Figure 3-figure supplement 1C,D; Figure 3-figure supplement 2B; Figure 4C; Figure 5C,F; Figure 5-figure supplement 2B-D; Figure 5-figure supplement 2E; Figure 5-figure supplement 3F-J; Figure 6B,C; Figure 7B; Figure 7C; Figure 7D. Additionally, there is also a source data file with the data supporting a statement within the results section.

Article and author information

Author details

  1. David R Shook

    Department of Biology, University of Virginia, Charlottesville, United States
    For correspondence
    drs6j@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0131-1834
  2. Jason WH Wen

    Department of Cell, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7402-5073
  3. Ana Rolo

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael O'Hanlon

    Department of Cell Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian Francica

    Aduro Biotech, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Destiny Dobbins

    Independent Researcher, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Skoglund

    Department of Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas W DeSimone

    Department of Cell Bioloy, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rudolf Winklbauer

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0628-0897
  10. Raymond E Keller

    Department of Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD R37 HD025594 MERIT award)

  • Raymond E Keller

National Institute of General Medical Sciences (NIH RO1 GM099108)

  • Paul Skoglund

National Institute of General Medical Sciences (NIH RO1 GM094793)

  • Douglas W DeSimone

National Institute of General Medical Sciences (R35 GM131865)

  • Douglas W DeSimone

Canadian Institutes of Health Research (CIHR MOP-53075)

  • Rudolf Winklbauer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the 8th Edition of the Guide for the Care and Use of Laboratory Animals, of the National Institutes of Health. All of the animals were manipulated according to an approved institutional animal care and use committee (IACUC) protocols of the University of Virginia. The protocols were approved by the Animal Care and Use Committee of the University of Virginia (protocols #2581 and #1830). All surgery was performed under Tricaine anesthesia, and every effort was made to minimize suffering. The animal care and use program is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International. The University of Virginia has a PHS Assurance on file with the Office of Laboratory Animal Welfare (OLAW) (PHS Assurance #A3245-01). The University of Virginia is a USDA registered research facility(USDA Registration # 52-R-0011).

Copyright

© 2022, Shook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,083
    views
  • 188
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David R Shook
  2. Jason WH Wen
  3. Ana Rolo
  4. Michael O'Hanlon
  5. Brian Francica
  6. Destiny Dobbins
  7. Paul Skoglund
  8. Douglas W DeSimone
  9. Rudolf Winklbauer
  10. Raymond E Keller
(2022)
Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians
eLife 11:e57642.
https://doi.org/10.7554/eLife.57642

Share this article

https://doi.org/10.7554/eLife.57642

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Morgane Djebar, Isabelle Anselme ... Christine Vesque
    Research Article

    Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Laura Massoz, David Bergemann ... Isabelle Manfroid
    Research Article

    Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.