Genome duplication in Leishmania major relies on persistent subtelomeric DNA replication

Abstract

DNA replication is needed to duplicate a cell's genome in S-phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S-phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor colocalise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1 phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania's genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S-phase, to support predominantly chromosome-internal DNA replication initiation within S-phase.

Data availability

Sequences used in this study have been deposited in the European Nucleotide Archive. Data can be accessed using the accession number PRJEB35027.

The following data sets were generated

Article and author information

Author details

  1. Jeziel Dener Damasceno

    The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    jeziel.damasceno@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2077-3214
  2. Catarina A Marques

    The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1324-5448
  3. Dario Beraldi

    The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Kathryn Crouch

    The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9310-4762
  5. Craig Lapsley

    The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Ricardo Obonaga

    Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Luiz R O Tosi

    Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard McCulloch

    The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Richard.McCulloch@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5739-976X

Funding

Biotechnology and Biological Sciences Research Council (BB/N016165/1)

  • Luiz R O Tosi
  • Richard McCulloch

Biotechnology and Biological Sciences Research Council (BB/R017166/1)

  • Richard McCulloch

European Commission (RECREPEMLE)

  • Jeziel Dener Damasceno

Wellcome (104111)

  • Richard McCulloch

Medical Research Council (MR/S019472/1)

  • Jeziel Dener Damasceno
  • Richard McCulloch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Damasceno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,087
    views
  • 266
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeziel Dener Damasceno
  2. Catarina A Marques
  3. Dario Beraldi
  4. Kathryn Crouch
  5. Craig Lapsley
  6. Ricardo Obonaga
  7. Luiz R O Tosi
  8. Richard McCulloch
(2020)
Genome duplication in Leishmania major relies on persistent subtelomeric DNA replication
eLife 9:e58030.
https://doi.org/10.7554/eLife.58030

Share this article

https://doi.org/10.7554/eLife.58030

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.