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Abstract The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode

mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the

real-time synthesis of the exponentially growing biomedical literature and deep omics insights is

unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion

possible conceptual associations from unstructured text, and triangulation with insights from

single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-

free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells

and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as

the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is

shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic

data science platform triangulating insights from structured and unstructured data holds potential

for accelerating the generation of impactful biological insights and hypotheses.

Introduction
Since December 2019, the SARS-CoV-2 virus has been rapidly spreading across the globe. The asso-

ciated disease (COVID-19) has been declared a pandemic by the WHO, with over 5 million con-

firmed cases and over 300,000 deaths globally as of May 23, 2020 (Johns Hopkins Coronavirus

Resource Center, 2020). The constellation of symptoms, ranging from acute respiratory distress

syndrome (ARDS) to gastrointestinal issues, is similar to that observed in the 2002 Severe Acute

Respiratory Syndrome (SARS) epidemic and the 2012 Middle East respiratory syndrome (MERS) out-

break. SARS, MERS, and COVID-19 are all caused by Coronaviruses (CoV), deriving their name from

the crown-like spike proteins protruding from the viral capsid surface. Coronavirus infection is driven

by the attachment of the viral spike protein to specific human cell-surface receptors: ACE2 for SARS-

CoV-2 and SARS-CoV (Zhou et al., 2020a; Li et al., 2003; Hofmann et al., 2005), DPP4 for MERS-

CoV (Raj et al., 2013) and ANPEP for specific a-coronaviruses (Yeager et al., 1992). In addition to

these receptors, the protease activity of TMPRSS2 has also been implicated in viral entry

(Hoffmann et al., 2020; Gierer et al., 2013).

In a recent clinical study of COVID-19 patients from China, 48% of the 191 infected patients stud-

ied had comorbidities such as hypertension and diabetes (Zhou et al., 2020b). Epidemiological and
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clinical investigations on COVID-19 patients have also suggested fecal viral shedding and gastroin-

testinal infection (Xu et al., 2020a; Gu et al., 2020; Xiao et al., 2020). In the case of the earlier

SARS epidemic, multiple organ damage involving lung, kidney, and heart was reported (Yang et al.,

2010). The mechanisms by which various comorbidities impact the clinical course of infections and

the reasons for the observed multi-organ phenotypes are still not well understood. Thus, there is an

urgent need to conduct a comprehensive pan-tissue profiling of ACE2, the putative human receptor

for SARS-CoV-2.

A deep profiling of ACE2 expression in the human body demands a platform that synthesizes bio-

medical insights encompassing multiple scales, modalities, and pathologies described across the sci-

entific literature and various omics siloes. With the exponential growth of scientific (e.g. PubMed,

preprints, grants), translational (e.g. clinicaltrials.gov), and other (e.g. patents) biomedical knowledge

bases, a fundamental requirement is to recognize nuanced scientific phraseology and measure the

strength of association between all possible pairs of such phrases. Such a holistic map of associations

will provide insights into the knowledge harbored in the world’s biomedical literature.

While unsupervised machine learning has been advanced to study the semantic relationships

between word embeddings (Mikolov et al., 2013a; LeCun et al., 2015) and applied to the material

science corpus (Tshitoyan et al., 2019), this has not been scaled-up to extract the ‘global context’

of conceptual associations from the entirety of publicly available unstructured biomedical text. Addi-

tionally, a principled way of accounting for the distances between phrases captured from the ever-

growing scientific literature has not been comprehensively researched to quantify the strength of

‘local context’ between pairs of biological concepts. Given the propensity for irreproducible or erro-

neous scientific research (Nature Editorial, 2016), any local or global signals extracted from this

unstructured knowledge need to be seamlessly triangulated with deep biological insights emergent

from various omics data silos.

The nferX software is a cloud-based platform that enables users to dynamically query the universe

of possible conceptual associations from over 100 million biomedical documents, including the

COVID-19 Open Research Dataset recently announced by the White House (The White House,

2020; Figure 1). An unsupervised neural network is used to recognize and preserve complex bio-

medical phraseology as 300 million searchable tokens, beyond the simpler words that have generally

been explored using higher dimensional word embeddings previously (Mikolov et al., 2013a). Our

local context score is derived from pointwise mutual information content between pairs of these

tokens and can be retrieved dynamically. Our global context score is derived using word2vec

(Mikolov et al., 2013a), as the cosine similarity between 180 million word vectors projected in a 300

dimensional space (Figure 1A, Figure 1—figure supplement 1).

In order to assess the veracity of these conceptual associations derived from biomedical litera-

ture, it is absolutely essential to enable triangulation with structured data sources including gene

and protein expression datasets. To address this need and empower the scientific community, we

built a Single Cell RNA-seq (scRNAseq) resource (https://academia.nferx.com/) which harnesses

these local and global score metrics to enable seamless integration of literature-derived associations

with the analysis of transcriptomes from over 2.2 million individual cells from over 50 human and

mouse tissue-types (Figure 1B). Here, we use this first-in-class resource to conduct a comprehensive

expression profiling of ACE2 across host tissues and cell types and discuss how the observed expres-

sion patterns correlate with the pathogenicity and viral transmission shaping the ongoing COVID-19

pandemic (Figure 1C).

Results

ACE2 has higher expression levels in multiple cell types of the
gastrointestinal (GI) tract compared to respiratory cells
To systematically profile the transcriptional expression of ACE2 across tissues and cell types, we tri-

angulated scRNAseq-based measurements with literature-derived signals to automatically delineate

novel, emerging, and known expression patterns (Figure 2; Supplementary file 1). This approach

immediately highlights renal proximal tubular cells and small intestinal enterocytes among the cell

types that most robustly express ACE2 (detection in >40% of cells). These cell types are also moder-

ately to strongly associated with ACE2 in the literature. The strong intestinal ACE2 expression is
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Figure 1. Knowledge synthesis and the nferX Single Cell resource. (A) Knowledge synthesis: capturing association between concepts from over 100

million documents. Schematic shows the workflow for generating literature-derived associations between phrases. Local score and global score are

defined and the types of literature-derived associations are shown for combinations of high and low local and global scores. (B) Datasets enabling

knowledge synthesis-powered scRNAseq analysis platform (https://academia.nferx.com/). Single-cell RNAseq data was obtained from publicly available

human and mouse single-cell RNA-seq datasets. Bulk RNA-seq data was obtained from Gene Expression Omnibus (GEO) and the Genotype Tissue

Expression (GTEx) project portal. Protein-level expression of coronavirus receptors was assessed using a collection of immunohistochemistry (IHC)

images and tissue proteomics datasets from the Human Protein Atlas and the Human Proteome Map. Literature-derived association scores are

obtained from over 100 million biomedical documents (C) Highlighting selected tissues and cell types identified by one or more modalities to express

ACE2, the putative receptor of SARS-CoV-2 spike protein. Image template: https://www.proteomicsdb.org/.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Validation of metrics used to assess literature-derived associations.
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Figure 2. Triangulation of knowledge synthesis with ACE2 expression profile by scRNAseq across cells and tissues. Scatterplot shows comparison of

percentage of cells with non-zero expression (x-axis) against literature-derived associations: local score (y-axis and size of circles) and global score

(transparency of circles). Data includes cell types identified from ~1.8 million human cells and 462,000 mouse cells cumulatively from 72 studies.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. ACE2 expression in cell types from murine and human pancreas by scRNAseq.

Figure supplement 2. Multimodal analysis of ACE2 expression using bulk RNA-seq, proteomics, and IHC.

Figure supplement 3. ACE2, DPP4, and ANPEP show similar expression profiles in the renal proximal tubule epithelial cells by scRNAseq and bulk

RNA-seq.

Figure supplement 4. Overview of nferX Single Cell platform functionality.

Figure supplement 5. Assessment of DPP4, ANPEP, and TMPRSS2 across healthy tissues using bulk RNA-seq and IHC.

Figure supplement 6. Single-cell RNAseq analysis of coronavirus receptors in the adult and fetal human kidney.

Figure supplement 7. Single-cell RNAseq analysis of coronavirus receptors in the human and murine heart.

Figure supplement 8. Single-cell RNAseq analysis of coronavirus receptors in adipose tissue.

Figure supplement 9. Single-cell RNAseq analysis of coronavirus receptors in the human and murine testis.

Figure supplement 10. Single-cell RNAseq analysis of coronavirus receptors in the human and murine ovary.

Figure supplement 11. IHC images of coronavirus receptors in healthy pancreas and liver samples from the Human Protein Atlas.

Figure supplement 12. Single-cell RNAseq analysis of coronavirus receptors in the human liver and pancreas.

Figure supplement 13. Single-cell RNAseq analysis of coronavirus receptors in human blood, spleen, and bone marrow.

Figure supplement 14. Single-cell RNAseq analysis of coronavirus receptors in murine spleen, bone marrow, and thymus.

Figure supplement 15. Single-cell RNAseq analysis of coronavirus receptors in human and murine bladder and prostate.

Figure supplement 16. Single-cell RNAseq analysis of coronavirus receptors in the murine uterus.

Figure supplement 17. Single-cell RNAseq analysis of coronavirus receptors in human and murine central nervous system tissues.

Figure supplement 18. IHC analysis of DPP4 expression in human brain cortex.

Figure supplement 19. Association of age with ACE2 expression and co-administered drugs with COVID-19 outcomes.

Figure supplement 20. Characterization of oral epithelium cluster-defining genes from Xu et al., 2020b.

Figure supplement 21. Expression of ACE2 in respiratory tract associated samples from GEO in comparison to Lung (GTEx).
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particularly interesting given the emerging clinical reports of fecal shedding and persistence post-

recovery which may reflect a fecal-oral transmission pattern (Xu et al., 2020a; Gu et al., 2020;

Xiao et al., 2020).

Conversely, pancreatic polypeptide cells (gamma cells), pancreatic alpha cells, and keratinocytes

show similarly robust ACE2 expression but have not been strongly associated with ACE2 in the liter-

ature. This combination suggests either a biological novelty or an experimental artifact. We note

that the strong ACE2 expression in pancreatic cell types is derived from only one murine study (Fig-

ure 2—figure supplement 1; Tabula Muris Consortium et al., 2018), while ACE2 expression is not

observed in gamma or alpha cells from scRNAseq of human pancreatic islets (Figure 2—figure sup-

plement 1; Segerstolpe et al., 2016; Grün et al., 2016; Muraro et al., 2016). While we cannot

determine the validity of either observation, this example demonstrates how knowledge synthesis

can automatically surface discordant biological signals for further evaluation.

Surprisingly, cells from respiratory tissues were notably absent among the populations with high-

est ACE2 expression by scRNAseq (Figure 2). This observation was corroborated by complementary

gene expression analysis of bulk RNA-seq samples from GTEx (GTEx Portal, 2020; Carithers and

Moore, 2015) and the Gene Expression Omnibus (GEO) along with protein expression analysis from

healthy tissue proteomics and immunohistochemistry (IHC) datasets (Uhlén et al., 2015;

Wang et al., 2019; Kim et al., 2014), where lung and other respiratory tissues consistently show

lower ACE2 expression compared to the digestive tract and kidney (Figure 2—figure supplement

2). However, the respiratory transmission of COVID-19 along with the disease symptomatology and

well-documented viral shedding in respiratory secretions (Wang et al., 2020c) strongly indicates

that SARS-CoV-2 indeed infects and replicates within these tissues. This would suggest that even

low levels of ACE2 expression may be biologically relevant in the respiratory epithelium, and so we

prioritized the respiratory and digestive tracts for further knowledge synthesis-augmented scRNAseq

analysis.

We also applied the Single Cell resource to analyze several other human and mouse tissues

including heart, adipose, liver, pancreas, blood, spleen, bone marrow, thymus, testis, prostate, blad-

der, ovary, uterus, placenta, brain, and retina. A summary of ACE2 expression across these tissues

are provided in Figure 2—figure supplements 3–18.

Club cells, ciliated cells, pneumocytes and nasal cavity epithelial cells
are likely targets of SARS-CoV-2 in respiratory tract
Next, we classified 241 respiratory cell populations from 17 independent studies based on their

expression of and literature-derived associations to ACE2 (Figure 3A). Consistent with the low levels

of ACE2 in respiratory tissues by bulk RNA-seq, proteomics, and IHC (Figure 2—figure supplement

2A–D), we found that ACE2 expression is detected generally in fewer than 10% of all cell types

recovered from these studies. However, as mentioned above, we believe that even low ACE2

expression levels in these respiratory cells may be relevant for COVID-19 pathogenesis.

We found that club cells (formerly known as Clara cells), were consistently among the highest-

expressing respiratory cell types (Figure 3A–B). Literature-derived local and global scores suggest

that this ACE2-club cell connection is underappreciated. We also found that ACE2 is detected in

type II pneumocytes in multiple studies, although the percentage of expressing cells ranges from

only 0.5–7% (Figure 3A–B). This relatively low expression, which may be deemed inconsequential if

viewed in isolation, is strongly supported by knowledge synthesis that highlights an existing associa-

tion between ACE2 and type II pneumocytes (Figure 3A–B). Indeed, multiple studies have demon-

strated ACE2 expression in these cells (Glowacka et al., 2011; van den Brand et al., 2008;

Glowacka et al., 2010; Bertram et al., 2011; Hamming et al., 2004; Mossel et al., 2008; To and

Lo, 2004). Further, ACE2 expression in bulk-RNAseq of GTEx lung samples (n = 578) is strongly cor-

related to markers of type II pneumocytes, with all seven surfactant protein-encoding genes among

the top 4% of transcriptional correlations to ACE2 (out of the ~19,000 genes expressed at >1 Tran-

scripts Per Million (TPM) in GTEx lung samples; hypergeometric p-value=1.1�10�10) (Figure 3—fig-

ure supplement 1).

Our scRNAseq analysis also shows that ACE2 is expressed in small fractions of ciliated airway cells

and epithelial cells of the nasal cavity (Figure 3A–B). While no staining is observed for ACE2 in naso-

pharynx samples from the Human Protein Atlas (HPA) IHC dataset (Figure 3—figure supplement 2),

a previous IHC study did report the staining of ACE2 in nasal and oral mucosa and the nasopharynx
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Figure 3. Triangulation of ACE2 expression in the respiratory tract with literature-derived insights. (A) Schematic representation of the respiratory

system highlighting key cell types from the nasal cavity, airway and alveoli. Scatterplot shows comparison of percentage of cells with non-zero

expression (x-axis) from eight single-cell studies against literature-derived associations: local score (y-axis and size of circles) and global score

(transparency of circles). (B) Assessing literature-based and scRNAseq-based associations between ACE2 and respiratory tract cells. On the left, the

dimensionality reduction plots show different cell populations associated with lung and olfactory epithelium. On the right, violin plots show the

Figure 3 continued on next page
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(Hamming et al., 2004). This expression is consistent with the high SARS-CoV-2 viral loads detected

in nasal swab samples (Wang et al., 2020c). Intriguingly, mild degeneration of olfactory epithelium

was observed in an immunosuppressed animal model infected with SARS-CoV (Schaecher et al.,

2008). These observations are correlated with emerging reports of anosmia/hyposmia (loss of smell)

in otherwise asymptomatic COVID-19 patients (ENT UK, 2020). Such emerging clinical evidence

emphasizes the need for further investigation into olfactory ACE2 expression via scRNAseq and

other modalities.

Taken together, these scRNAseq analyses and triangulation to literature synthesis confirm that

type II pneumocytes are a likely target of SARS-CoV-2 infection while also highlighting club cells, cili-

ated cells, and olfactory epithelial cells as additional potential sites of infection. Given the low ACE2

expression in the lung, it is important to identify the minimum ACE2 expression level required in a

cell type for SARS-CoV-2 infection and examine whether there is correlation between the expression

levels of ACE2 and propensity of the cell type to get infected.

Tongue keratinocytes and mature small intestinal enterocytes are
potential targets of SARS-CoV-2
We then classified 246 gastrointestinal cell types from 16 scRNAseq studies based on their expres-

sion of and literature associations to ACE2 (Figure 4A). These studies encompassed samples from

the upper, mid, and lower GI tracts including tongue, esophagus, stomach, small intestine, and

colon (Tabula Muris Consortium et al., 2018; Han et al., 2018; Wang et al., 2020a; Smillie et al.,

2019; Haber et al., 2017; HCA Data Browser, 2020).

This analysis highlights a robust expression of ACE2 in tongue keratinocytes that has not been

strongly documented in the literature, as evidenced by the weak local context score between ACE2

and keratinocytes (Figure 4B). In fact, we found no previous reports of ACE2 expression in keratino-

cytes and only one recent report suggesting ACE2 expression in the human tongue based on a com-

bination of bulk RNA-seq and a scRNAseq dataset which has not been made publicly accessible

(Xu et al., 2020b). We propose that a subset of ACE2+ tongue keratinocytes may serve as a novel

site of SARS-CoV-2 entry and highlight the need to generate additional gene and protein expression

data from human tongue samples to further evaluate this hypothesis. Emerging reports of loss of

taste (dysgeusia) in otherwise non-symptomatic COVID-19 patients may warrant further study of the

tongue in this pathology (Anosmia AAO-HNS, 2020; Shweta, 2020).

We also found that ACE2 is highly expressed in both human and murine small intestinal entero-

cytes, confirming an association which has been moderately appreciated in literature, as indicated

by our literature derived local score between ACE2 and enterocytes. However, to our knowledge,

the transcriptional heterogeneity of ACE2 among enterocyte populations has never been explored.

In this context, we found that ACE2 shows an increase in expression correlated with the maturation

of murine small intestinal enterocytes, with minimal expression in stem cells and transit amplifying

cells in contrast to most robust expression in mature enterocytes (Figure 4). To the best of our

knowledge, this is the first demonstration that ACE2 expression synchronously increases over the

course of enterocyte maturation. The recognition of such intra-tissue heterogeneity is necessary to

specify the cell types which are most likely responsible for the proposed fecal-oral transmission of

COVID-19 (Xiao et al., 2020).

Figure 3 continued

distribution of ACE2 expression levels in selected populations with non-zero expression. The cell types and the literature-derived local and global

associations scores are shown.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. ACE2 is strongly correlated to surfactant protein-encoding genes across GTEx lung samples.

Figure supplement 2. Negative IHC staining of ACE2 in nasopharynx from Human Protein Atlas.
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SARS-CoV-2, SARS-CoV, MERS-CoV and HCoV-229E receptors share a
transcriptional signature correlated to maturation of small intestinal
enterocytes
To determine whether this maturation-correlated expression pattern is unique to ACE2, we com-

puted cosine similarities between the ACE2 gene expression vector (Counts Per 10,000 [CP10K] val-

ues in ~6000 small intestinal enterocytes) and that of the ~15,700 other genes detected in this study

(Figure 5A). For this analysis, the vector space is constituted of the individual cells as the dimensions

using the gene expression values to construct the vectors (see Materials and methods). Interestingly,

we found that ANPEP, the established entry receptor for HCoV-229E, showed the third highest

cosine similarity to ACE2 (Figure 5B). Further, DPP4, the entry receptor for MERS coronavirus, is

also among the top 1% of similarly expressed genes by this metric (Figure 5B). We confirmed that

both of these genes do indeed show a maturation-correlated transcriptional pattern similar to that

of ACE2 (Figure 5C–D), highlighting an unexpected shared pattern of transcriptional heterogeneity

Figure 4. Triangulation of ACE2 expression in the gastrointestinal (GI) tract with literature-derived insights. (A) Schematic representation of the GI tract

highlighting key cell types. Scatterplot shows comparison of percentage of cells with non-zero expression (x-axis) from nine single cell studies against

literature-derived associations: local score (y-axis and size of circles) and global score (transparency of circles). (B) Assessing literature-based and

scRNAseq-based association between ACE2 and tongue keratinocytes. Violin plot shows distributions of ACE2 expression in keratinocytes. The

literature-derived local and global associations between ACE2 and keratinocytes are shown. (C) ACE2 transcriptional expression is correlated to

enterocyte maturation. Violin plots show distribution of ACE2 expression levels in enterocytes at different stages of differentiation.
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C Anpep Expression During Murine 

Small Intestinal Enterocyte Maturation

Dpp4 Expression During Murine 

Small Intestinal Enterocyte Maturation
D

Expression of all known coronavirus receptors synchronously increase with enterocyte maturation 

Figure 5. Coronavirus receptors share a transcriptional signature correlated to maturation of small intestinal enterocytes. (A) Distribution of cosine

similarity between the ‘gene expression vectors’ of ACE2 and all genes in a scRNAseq study of the murine small intestine. The gene expression vector

corresponds to the set of CP10K values for a given gene in each individual cell from the selected populations in the selected study. (B) Genes similar to

ACE2 (cosine similarity >0.4) sorted by literature-derivation association. Arrow indicates a sort option available on the platform. (C) Transcriptional

Figure 5 continued on next page
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among known coronavirus receptors in a cell population which may be relevant for viral

transmission.

We then asked whether this shared pattern of transcriptional heterogeneity among coronavirus

receptors is observed in the human small intestine. Indeed, among all enterocytes from a human

scRNAseq study, both ANPEP and DPP4 were among the top 1% of genes with similar expression

vectors to that of ACE2 (Figure 5—figure supplement 1). We independently validated this observa-

tion by computing gene expression correlations from bulk RNA-sequencing of human small intestine

samples from GTEx (n = 187), which similarly revealed that DPP4 and ANPEP are among the top 1%

of correlated genes to ACE2 (Figure 5—figure supplement 1C). In fact, among all ~18,500 genes

mean expression >1 TPM in GTEx small intestine samples, DPP4 shows the second highest correla-

tion to ACE2 (r = 0.95).

To our knowledge, this is the first demonstration that all known coronavirus entry receptors dis-

play highly coordinated and maturation-correlated transcriptional expression patterns in intestinal

epithelial cells. We propose that the requisite interaction with human proteins displaying a tightly

defined expression gradient on apical surfaces of epithelial cells, which is shared among known coro-

navirus strains, may have fundamental implications for understanding the evolution, lifecycle, and/or

transmission patterns of this family of viruses.

Expression of coronavirus receptors in other tissues by scRNAseq
We evaluated the expression profiles of ACE2, ANPEP, DPP4, and TMPRSS2 across various other

human and mouse tissues by single-cell RNA-sequencing. The complete set of studies profiled is

outlined in Supplementary file 1 and includes both tissues which were identified from bulk RNA-

sequencing as potential sites of expression for one or more receptors (e.g. kidney, adipose tissue,

heart, testis, prostate, blood/immune system) as well as other tissues which did not show any evi-

dence for expression at the bulk level (e.g. brain, retina, ovary, uterus). The analysis of data from all

other tissues is discussed below with corresponding images found in Figure 2—figure supplements

3–18.

Our analyses of bulk RNA-seq, proteomics, and IHC demonstrated that all coronavirus receptors

are highly expressed in the kidney in addition to the small intestine (Figure 2—figure supplements

2,6). scRNAseq of human and murine kidney corroborates this finding, showing that ACE2, DPP4,

and ANPEP are each robustly expressed in epithelial cells of the proximal tubules (Figure 2—figure

supplement 5). Although clinical data suggests that SARS-CoV-2 does not reside in the urine

(Wang et al., 2020c), we wondered whether ACE2, DPP4, and ANPEP show an overlapping pattern

of expression heterogeneity among proximal tubular cells similar to that observed among small

intestinal enterocytes. To address this, we computed cosine similarity scores between gene expres-

sion vectors specifically among ~27,000 recovered human proximal tubule epithelial cells

(Stewart et al., 2019) and found that again DPP4 and ANPEP are among the genes with the most

similar expression profiles to ACE2 (Figure 2—figure supplement 3). This is further supported by

the strong transcriptional correlations among GTEx kidney samples (n = 85) by bulk RNA-seq, where

DPP4 and ANPEP are again among the top 1% of gene correlations to ACE2 among the ~16,600

genes with mean expression >1 TPM (Figure 2—figure supplement 6). These observations are

quite consistent with our previous analysis of small intestinal data and together may suggest an

underlying transcriptional network which coordinates the expression of coronavirus entry receptors

across diverse human tissues and cell types.

We then examined coronavirus receptor expression in the heart given the relatively high expres-

sion of ACE2 by bulk RNA-seq and the strong literature association identified between this gene-tis-

sue pair (Figure 2—figure supplement 7). In the human heart, ACE2 is detected in 11% of cells or

Figure 5 continued

expression of ANPEP correlated to enterocyte maturation in murine small intestine. Violin plots show distribution of ANPEP expression levels in

enterocytes at different stages of differentiation. (D) Transcriptional expression of DPP4 correlated to enterocyte maturation in murine small intestine.

Violin plots show distribution of DPP4 expression levels in enterocytes at different stages of differentiation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Coronavirus receptors show highly correlated expression patterns by single cell and bulk RNA-seq in human small intestine.
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fewer from multiple populations including smooth muscle cells, cardiomyocytes, and fibroblasts. It is

detected in a higher fraction of cardiac myofibroblasts from the Tabula Muris study (Figure 2—fig-

ure supplement 7C–D) while showing no appreciable expression in any cardiac populations from

the Mouse Cell Atlas dataset (Figure 2—figure supplement 7E–F). We consider this evidence incon-

clusive in light of the discordant IHC patterns observed in HPA (not shown). This disagreement both

within and across data types highlights the heart as a tissue which certainly requires thorough fol-

low-up regarding the intricacies of ACE2 expression.

Across multiple studies of adipose tissue, ACE2 is not strongly expressed in any cell population

(Figure 2—figure supplement 8). Of note, this includes studies of the murine adipose stromovascu-

lar fraction (Figure 2—figure supplement 8A–D) along with unfractionated adipose tissue subjected

to single nucleus RNA-seq (sNuc-seq) which allows for the capture and sequencing of adipocytes

(Figure 2—figure supplement 8E–F). DPP4 and ANPEP are both detected in adipose stromal popu-

lations along with smaller fractions of immune cells. Across multiple datasets, TMPRSS2 is exclusively

expressed in cells defined by canonical epithelial markers (e.g. EPCAM, KRT8, CLDN3, KRT18), sug-

gesting epithelial contamination of the adipose tissue preparations in these studies.

In the testis, ACE2 expression was unexpectedly low by scRNAseq (Figure 2—figure supplement

9A–D) given its high expression by bulk RNA-seq (Figure 2—figure supplement 2A), strong stain-

ing by IHC, and high detection levels by proteomics (Figure 2—figure supplement 2B–C). The rea-

son for this discrepancy is not clear. Based on the strong protein and bulk RNA-seq evidence, we

suggest that SARS-CoV-2 may indeed be able to infect certain testicular cells, but our scRNAseq

analysis did not shed light on the most likely cellular targets in this case. In both human and mouse

ovary, coronavirus entry receptors and TMPRSS2 are not appreciably expressed, which is consistent

with a lack of detection by our other data modalities (Figure 2—figure supplement 10A–D).

In the liver, expression of these genes was generally consistent with the protein expression pat-

terns observed by IHC (Figure 2—figure supplement 11). ACE2 shows minimal detection through-

out liver populations, while both DPP4 and ANPEP are expressed in the epithelial compartment

(Figure 2—figure supplement 12). ANPEP expression is particularly high in the EPCAM+ population

of cells which may mark hepatic progenitor cells. TMPRSS2 is also expressed in these cells and in a

subset of mature hepatocytes, which is discordant with the lack of TMPRSS2 staining in the liver by

IHC (Figure 2—figure supplement 12).

In the pancreas, ACE2 is expressed in different cell types including acinar cells and ductal cells

(Figure 2—figure supplement 12). DPP4 is robustly expressed in pancreatic alpha cells with lower

expression detected in ~20% of ductal cells, while TMPRSS2 and ANPEP are both strongly

expressed in the acinar and ductal populations (Figure 2—figure supplement 12). These patterns

are largely consistent with our observations of protein expression by IHC (Figure 2—figure supple-

ment 11).

To assess expression in blood and immune organs, we analyzed scRNAseq studies from blood,

spleen, bone marrow, and thymus (Figure 2—figure supplements 13–14). Generally ACE2 and

TMPRSS2 are not highly expressed in any populations from these tissues. DPP4 is expressed in sub-

sets of T cells across these studies (Figure 2—figure supplement 14) along with B cells and various

progenitor populations in the bone marrow from the Tabula Muris study (Figure 2—figure supple-

ment 14). ANPEP expression was mostly restricted to monocytes and macrophages along with

some small bone marrow progenitor populations (Figure 2—figure supplement 14B,D). Similarly,

ANPEP expression in monocytes and macrophages may provide an alternative non-epithelial route

of infection for other coronaviruses such as CoV-229E.

In both bladder and prostate samples from human and mouse, TMPRSS2 is robustly expressed in

various epithelial populations (Figure 2—figure supplement 15A–H). The coronavirus entry recep-

tors are only minimally detected across all bladder cell populations (Figure 2—figure supplement

15A–F), whereas DPP4 and ANPEP are detected in subsets of human prostate luminal cells (~8% of

18%, respectively) (Figure 2—figure supplement 15H). ACE2 expression is low across all recovered

populations from the prostate (Figure 2—figure supplement 15H).

In the mouse uterus dataset of ~3700 cells from the Mouse Cell Atlas (Figure 2—figure supple-

ment 16A), Ace2 was uniformly absent from all recovered populations (Figure 2—figure supple-

ment 16B). Anpep is robustly detected in ~60% of glandular epithelial cells along with a smaller

fraction (~10%) of stromal cells (Figure 2—figure supplement 16B). Dpp4 expression is detected

in ~17% of dendritic cells (n = 23 of 131) along with ~5% of glandular epithelial cells, and Tmprss2 is
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expressed in a similarly small fraction of the epithelial population (Figure 2—figure supplement

16B).

Finally, we assessed the expression of these genes in central nervous system (CNS) tissues despite

their uniformly low expression and lack of detection in brain samples from GTEx and HPA, respec-

tively (data not shown). scRNAseq data suggests similarly low expression across CNS populations,

including various regions of the mouse brain and the human retina (Figure 2—figure supplement

17). From the Tabula Muris study, Ace2 is detected in a small number of pericytes (22 of 146) and

an even lower fraction of endothelial cells (Figure 2—figure supplement 17B). Dpp4 is also

expressed here in ~20% of endothelial cells (Figure 2—figure supplement 17B), which may warrant

follow-up but importantly is not reflected in endothelial cells of the cerebral cortex by IHC (Fig-

ure 2—figure supplement 18). In all brain-derived cell populations from the Mouse Cell Atlas (Fig-

ure 2—figure supplement 17C–D) and human retina-derived populations (Figure 2—figure

supplement 17E–F), these genes were uniformly not detected at significant levels.

ACE2 expression and patient demographics
While our study profiles the expression of the coronavirus receptors from various tissue samples,

whether and how much receptor expression varies among individuals across various factors like age,

disease states, genetic diversity, lifestyle, and environmental factors are not well understood. For

instance, in order to understand variation of expression with age we explored ACE2 expression

using GTEx samples. Interestingly, ACE2 expression levels in colon (transverse) samples were higher

in younger individuals in comparison to older individuals (Figure 2—figure supplement 19A). In

contrast, ACE2 expression levels in the esophagus (gastroesophageal junction) were lower in youn-

ger individuals in comparison to older individuals (Figure 2—figure supplement 19B). These pat-

terns of ACE2 expression need to be tested more rigorously on larger sample sizes across diverse

ethnicities to establish statistical significance. If ACE2 were found to be expressed more significantly

in the colon of younger individuals, taken together with recent reports of sustained fecal shedding

of SARS-CoV-2 (Xu et al., 2020a; Gu et al., 2020), the emerging epidemiological hypothesis of

younger individuals having fewer respiratory complications in general and serving as facile vectors in

transmission of COVID-19 requires more deeper investigation.

The recent reports of hypertension as a comorbidity in COVID-19 patients (Fang et al., 2020)

and specifically the use of ACE inhibitors as antihypertensives contributing to mortality encourages a

hypothesis-free examination of the FDA adverse event reporting system (FAERS; see

Materials and Methods). Examining the differential patterns of adverse event reports between ACE

inhibitors and beta blockers - both antihypertensive drug classes, with the former known to increase

ACE2 expression in select cardiovascular tissues (Ferrario et al., 2005) - shows that use of ACE

inhibitors is associated with a higher risk of respiratory edema (Figure 2—figure supplement 19C).

Any reports of patients on beta blockers also were removed from the ACE inhibitors set, and vice

versa, for this analysis. The increased adverse events of epiglottic edema, epiglottis, pneumopericar-

dium, upper airway obstruction, eosinophilic oesophagitis, edema mucosal, edema of the mouth,

tracheal edema, palatal edema, and allergic edema associated with ACE inhibitors compared to

beta blockers suggests that a thorough investigation of all 10 million plus adverse event reports is

necessary, to triangulate any drug-induced side effects that also appear as comorbidities from the

emerging evidence of COVID-19 mortality. Availability of single-cell RNAseq data from healthy,

pathological, and drug-treated tissues would enable us to profile the age-associated and treatment-

based expression levels of ACE2 across cell populations. These observations underline that invest-

ments are needed to conduct comprehensive scRNAseq profiling of tissue samples from across dif-

ferent demographics and pathologies pertinent to COVID-19, as such effort will hold tremendous

potential to reveal under-appreciated fingerprints of coronavirus transmission patterns, tissue tro-

pism, and mortality.

Discussion
Recent advances in scRNAseq are empowering us to study tissue and cellular transcriptomes at pre-

viously unprecedented resolutions. Several single-cell RNA sequencing based efforts such as the

Human Cell Atlas are spearheading coordinated efforts to catalog gene expression across tissues

and cell types, and the raw data from many of these studies are available on public platforms such
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as the Broad Institute Single Cell Portal (Single Cell Portal, 2020a) and Gene Expression Omnibus

(GEO). Analyses of these datasets are of interest to a wide range of researchers but currently prove

challenging for all but a few due to the need for specialized workflows and computing infrastruc-

tures. Consequently, the widespread use of this data for biomedical research is hampered, an issue

which is particularly evident in the face of public health crises like the ongoing COVID-19 pandemic.

To address this unmet need, the nferX platform Single Cell resource enables the rapid and interac-

tive analysis of the continually growing scRNAseq datasets by specialists and non-specialists alike.

Furthermore, the seamless triangulation of scRNAseq insights with global and local scores derived

from the synthesis of accessible biomedical literature creates a truly first-in-class resource.

By making the resource available to all academic researchers, we enable scientists to not only

dive deeper into insights that are aligned with existing knowledge but also to prioritize the novel

insights which warrant further experimental validation. Looking forward, we plan to automate the

integration of the rapidly growing number of scRNAseq studies so that access to the entire world’s

knowledge of single-cell transcriptomes is just one click away for any researcher. As we do so, we

encourage interactive feedback from the scientific community so that this platform can evolve to

optimally support research needs across the biomedical ecosystem, beyond the COVID-19 focus on

the current study.

Combined with our analyses of bulk RNA-seq, IHC, and proteomics datasets, our characterization

of the known human coronavirus receptors (ACE2, DPP4, ANPEP) using the nferX platform Single

Cell resource represents the most comprehensive molecular fingerprint of host factors determining

coronavirus infections including COVID-19. While this serves as a primer of the deep profiling that is

made possible with this resource, we also identified several interesting aspects of coronavirus recep-

tor biology which warrant further experimental follow-up.

We identified tongue keratinocytes and olfactory epithelia as novel ACE2-expressing cell popula-

tions and thus as important potential sites of SARS-CoV-2 infection. This molecular fingerprint is a

striking correlate to established clinical reports of dysgeusia (Anosmia AAO-HNS, 2020) and anos-

mia (ENT UK, 2020) in COVID-19 patients, which strongly implicate the gustatory and olfactory sys-

tems in SARS-CoV-2 pathogenesis and human-to-human transmission. Tongue epithelial cells have

also previously been shown to uptake Epstein-Barr virus (Tugizov et al., 2003), and importantly a

recent study found that ACE2 is appreciably expressed in the tongue based on a small number of

non-tumor bulk RNA-seq samples from TCGA (Xu et al., 2020b). This same study further showed by

scRNAseq that ACE2 expression is observed in a subset of the human tongue (but not other oral

mucosal) epithelial cells, albeit in only ~0.5% of the recovered epithelial population. This data has

unfortunately not been released for public consumption but certainly does provide preliminary sup-

port for our finding, particularly as the listed set of cluster-defining genes for this population (SFN,

KRT6A, KRT10) is consistent with the tongue keratinocyte identify from the Tabula Muris data set

(Figure 2—figure supplement 20). We thus emphasize the imminent need for further generation of

multi-omic expression data from large numbers of healthy and diseased human tongue samples

drawn from a cohort of wide demographic representation.

We also observed that expression of ACE2 and other coronavirus receptors is intimately linked to

the maturation status of small intestinal enterocytes, pinpointing the more mature subsets as the

most likely cells to harbor SARS-CoV-2 virus. This finding amplifies the potential for fecal-oral trans-

mission of COVID-19 (Xu et al., 2020a; Gu et al., 2020; Xiao et al., 2020) and should motivate fur-

ther experimental validation to determine whether monitoring of fecal viral loads should be

considered clinically for diagnostic or prognostic purposes.

We further found that this transcriptional mirroring of coronavirus entry receptors was not unique

to the small intestine, but was also strongly present among renal proximal tubule epithelial cells,

where ACE2, DPP4, and ANPEP expression tends to be observed in the same cellular subsets. These

observations suggest the existence of a transcriptional network spanning tissues and cell types which

may drive and regulate coronavirus receptor expression. The question of whether coronaviruses

have evolved to exploit such a network may be relevant to pursue, particularly given that downregu-

lation of ACE2 by SARS-CoV has been reported previously and is associated with poor clinical out-

comes (Glowacka et al., 2010; Kuba et al., 2010). It is possible that SARS-CoV-2 is also able to

induce cleavage of ACE2 as a means of viral entry and concomitant production of inflammatory cyto-

kines (e.g. TNF-a). However, the moderate homology of spike proteins between SARS-CoV and
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SARS-CoV-2 requires additional experimentation to understand if such a mechanism operates in

infection with SARS-CoV-2.

The emerging picture of the coronavirus life cycle appears to be intricately interwoven with many

proteins beyond the primary host receptors. For instance, a recent structural complex of the SARS-

CoV-2 spike protein with ACE2 identified SLC6A19 as an interaction partner of ACE2 (Yan et al.,

2020). Further, spike proteins from some coronaviruses can interact with CEACAM1 (Miura et al.,

2004) and sialylated glycans similar to influenza hemagglutinin (Tortorici et al., 2019) as host recep-

tors. Future studies are likely to highlight several other proteins and glycans that constitute the

‘interactome’ of the coronavirus proteome. Understanding the expression profiles of the interac-

tome across tissues will provide systems level insights on the cellular dynamics of the functional part-

ners and the regulatory machinery of the host receptor proteins. Like in the current study, the nferX

platform will be an excellent resource for unraveling the purported interaction partners for coronavi-

rus receptors and profiling their expression across different tissues and cells constituting the human

body.

Overall, this study evidences the utility of an integrative data science platform to enable rapid

and high-throughput analysis of publicly available data to generate relevant biological insights and

scientific hypotheses. We hope that by making our biomedical knowledge synthesis-augmented sin-

gle cell platform publicly accessible, we help empower the research community to advance our

understanding of the world’s most pressing biomedical challenges such as COVID-19.

Materials and methods

Unstructured biomedical knowledge synthesis and triangulation
capabilities
In order to capture biomedical literature-based associations, the nferX platform defines two scores:

a ‘local score’ and a ‘global score’, as described previously (Park et al., 2020). Briefly, the local score

is obtained from applying a traditional natural language processing technique which captures the

strength of association between two concepts in a selected corpus of biomedical literature based on

the frequency of their co-occurrence normalized by the frequency of each individual concept

throughout the corpus. A higher local score between Concept X and Concept Y indicates that these

concepts are frequently mentioned in close proximity to each other more frequently than would be

expected by chance. The global score, on the other hand, is based on the neural network renais-

sance that has recently taken place in Natural Language Processing (NLP). To compute global

scores, all tokens (e.g. words and phrases) are projected in a high-dimensional vector space of word

embeddings. These vectors serve to represent the ‘neighborhood’ of concepts which occur around

a given concept. The cosine similarity between any two vectors measures the similarity of these

neighborhoods and is the basis for our global score metric, where concepts which are more similar

in this vector space have a higher global score.

While the global scores in this work are computed in the embedding space of word2vec model, it

can also be computed in the embedding space of any deep learning model including recent trans-

former-based models like BERT (Devlin et al., 2019). These may have complementary benefits to

word2vec embeddings since the embeddings are context sensitive having different vectors for dif-

ferent sentence contexts. However, despite the context sensitive nature of BERT embeddings a

global score computation for a phrase may still be of value given the score is computed across sen-

tence embeddings capturing the context sensitive nature of those phrases.

From a visualization perspective, the local score and global score (‘Signals’) are represented in

the platform using bubbles where bubble size corresponds to the local score and color intensity cor-

responds to the global score. This allows users to rapidly determine the strength of association

between any two concepts throughout biomedical literature. We consider concepts which show

both high local and global scores to be ‘concordant’ and have found that these typically recapitulate

well-known associations.

One key aspect of the nferX platform is that it allows the user to query associated concepts for a

virtually unbounded number of possible query concepts. This is achieved by means of two features:

Firstly, the nferX platform allows the user to compose queries using the logical AND, OR and NOT

operators to logically combine any number of biomedical concepts in a query, each combination
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amounting to a gross or nuanced composite biomedical concept. Secondly, since logical combina-

tions yield a virtually unbounded number of biomedical concepts that can be queries, the nferX plat-

form implements a completely dynamic method of computing local scores on the fly by using novel

high performance parallel and distributed algorithms that, in real time, scan hundreds of millions of

documents to quickly locate user query related text fragments and count co-occurring biomedical

concepts for computing strength of association scores and their significances.

The platform further leverages statistical inference to calculate ‘enrichments’ based on structured

data, thus enabling real-time triangulation of signals from the unstructured biomedical knowledge

graph various other structured databases (e.g. curated ontologies, RNA-sequencing datasets, human

genetic associations, protein-protein interactions). This facilitates unbiased hypothesis-free learning

and faster pattern recognition, and it allows users to more holistically determine the veracity of con-

cept associations. Finally, the platform allows the user to identify and further examine the documents

and textual fragments from which the knowledge synthesis signals are derived using the Documents

and Signals applications.

Association scores
Having a method that automatically consumes a corpus and computes a numeric score that captures

the strength of the association between any pair of entities is obviously beneficial because then

given any entity, its association strength score with all other entities can be sorted to find a sorted

list of other associated entities. The number of times two entities mutually co-occur in ‘small’ vicini-

ties of a corpus is the basis of all association scores. One popular traditional measure for association

strength between tokens in text is pointwise mutual information, or PMI (Evert, 2005), which we

consider in several association scores.

Measures of association
Formally, an association score is some real-valued function S(q, t) where q is a query token/entity

and t is another token/entity. One important notion, the ‘vicinity’ of q, we formally denote as the

Context of q : The context of q are those corpus segments deemed to be ‘near’ or ‘local’ to q. For

single token queries (where q is a single entity and not a logical combination of entities) , q’s context

consists of all corpus segments that are ‘windows’ formed by taking words within a distance w (usu-

ally a tunable parameter) of words from an occurrence of q in the corpus. The dynamic adjacency

engine generalizes this notion of context in a natural way to logical queries: the context for a logical

q can be generalized as a certain set of fixed-length fragments.

Co-occurrences
This is just the number of times t appears in the context of q.

Traditional PMI
This is log(p(t | q)/p(t)). Here p(t | q) is the number of times t occurs in the context of q (ie co-occur-

rences of t and q) divided by the total length of all q contexts in the corpus, whereas p(t) is the num-

ber of occurrences of t in the entire corpus, divided by the corpus length.

Word2vec cosine similarity
The popular word2vec algorithm (Raj et al., 2013) generates a vector (we use 300-dimensional vec-

tor representation) for each token in a corpus. The purpose of these vectors is usually to be used as

features in downstream NLP tasks. But they can also be used for similarity. The original paper vali-

dates the vectors by testing them on word similarity tasks: the association score is the cosine

between the vector for q and the vector for t. This score only applies to single-token q.

Exponential mask PMI (ExpPMI)
This is our first new proposed score. PMI treats every position in a binary way: it’s either in the con-

text of q or not. With a window size of say 50, a token which appears three words from a query q

and a token which appears 45 words from a query q are treated the same. We thought it might be

useful to consider a measure which distinguishes positions in the context based on the number of

words away that position is from an occurrence of q. We did this by weighting the positions in the
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context by some weight between 0 and 1. Our weighting is based on an exponential decay (which

has some nice properties especially when we extend to the case of logical queries).

Local score
This is another new proposed score. We find that PMI and ExpPMI can vary a lot for small samples

(i.e. small numbers of co-occurrences, occurrences). The Local Score is log(coocc) * sigmoid(PMI -

0.5), constructed to correct for this; we found that this formula too works well empirically.

Exponential mask local score (ExpLocalScore)
We apply both modifications together: the exponential mask score is log(weighted_coocc) * sigmoid

(expPMI - 0.5). Here weighted_coocc is the sum of the weights of the positions of the corpus.

Evaluation of literature-derived association scores
We need a notion of ground truth to evaluate the quality of association measures. We use sets of

known pairs of related entities versus a ‘control’ group of random pairs of entities of the same clas-

ses. We use a few different sets of known pairs:

1. Disease-Gene relationships based on OMIM (Park et al., 2020)
2. Drug-Gene relationships (Table 1)
3. Drug-Disease relationships based on FDA labels

a. Drugs and their on-label indications
b. Drugs and their on-label adverse events

4. Logical queries for ambiguous tokens

One demonstration of the use of the logical query system is to disambiguate a token by conjoin-

ing it with a disambiguating token. An example is clearer: the token ‘egfr’ can refer to the gene

entity epidermal growth factor receptor, but also the test measure entity estimated glomerular filtra-

tion rate. A query ‘egfr AND kidney’ should return results related to the latter meaning, while ‘egfr

AND lung_cancer’ the former. In particular, an unambiguous referent to the right entity should be

highly related to the query. So example known pairs in this data are (‘egfr AND kidney’, ‘estimated_-

glomerular_filtration_rate’) and (‘egfr AND lung_cancer’, ‘epidermal_growth_factor_receptor’). We

used an internal set of ~200–300 such (‘A AND B’, ‘C’) pairs (originally built up for other reasons).

Note: One key drawback of the word2vec vector cosine similarity (Park et al., 2020;

Mikolov et al., 2013b) method is its inability to get scores for logical queries as described above,

Table 1. Results of evaluation.

Performance of approximately 2100 disease-gene pairs.

Assoc score# Cohen’s d (+) Mann-W U norm. (-) Logistic log loss (-) Logistic Brier score (-)

Cosine (w2v) 1.31 0.197 0.51 0.168

Raw PMI 2.07 0.0953 0.374 0.116

Raw PMI -log(pctile) 2.15 0.0947 0.355 0.111

Exp PMI 2.17 0.0897 0.356 0.109

Exp PMI -log(pctile) 2.21 0.0903 0.341 0.105

Raw Local Score 2.35 0.0828 0.312 0.0947

Raw Local Score -log(pctile) 2.28 0.0832 0.317 0.0963

Exp Local Score 2.34 0.0812 *0.301 *0.0915

Exp Local Score -log(pctile) *2.36 *0.0811 0.308 0.093

log(coocc) 2.24 0.097 0.348 0.105

Interpretation of the above table.

Each row corresponds to an association score whereas each column corresponds to one of the evaluation metrics. A (+) in the column means a higher eval-

uation metric value, the better the association score in that row separates the positive and random pairs. A (-) means a lower evaluation metric is better.

Note all the metrics are immune to linear rescalings; also the Mann-Whitney U score is nonparametric.
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because the method (Mikolov et al., 2013b) does not address the question of how to get vectors

for queries that are logical combinations of tokens.

Evaluation metrics
Given a scoring method and a particular set of positive/control pairs, we get two sets of scores: one

set for the positive pairs and one set for the negative pairs.

Cohen’s d: We compute the Cohen’s d standard statistical measure of distance between two

samples (Cohen’s D, 2016).

Mann-Whitney U (normalized): - The Mann-Whitney U is a nonparametric measure of distribution

distance: it counts the number of transposed pairs (Contributors to Wikimedia projects, 2004).

Metrics based on training a 1-d logistic model
In this test, we are discriminating between two classes (true association/non-association) based on

one feature. We have two metrics based on fitting a 1-feature logistic curve to the data. (Figure 1—

figure supplement 1A–B).

Brier score: The Brier score is the average squared error of the logistic curve above: that is, for

each labeled point, we square the vertical distance to the logistic curve, and average over all labeled

points (Contributors to Wikimedia projects, 2005).

Log loss (dansbecker, 2018): The logistic log loss is the average -log [model probability of true

label] for each labeled point. If the model is perfect at the point, it incurs no loss. If it predicts 0.5, it

incurs -log[0.5] loss. If it predicts ‘yes’ with certainty when the answer is ‘no’ it incurs infinite loss (a

logistic function never touches 0 or one so this won’t happen in our case).

Neg log percentile: For most of the scoring rules, we also include a -log(percentile) version of the

rule. This is constructed as follows, for query q, token t, and score S(q, t):

1. Compute the scores S(q, t’) for q with every token t’. Let R be the number of these that are
nonzero.

2. Take the rank r of S(q, t) among all nonzero S(q, t’).
3. The neg log percentile score nlS(q, t) associated with S is -log(r/R)

We do this to:

1. control for differences across queries
2. control for differences in the shapes of the distributions that different association scoring func-

tions take.

This procedure maps all the S(q, t’) to an Exponential(1) distribution. We chose Exponential(1)

because it is simple, intuitively reasonable and many of the scores naturally seemed to be approxi-

mately exponential.

High-dimensional word embeddings for determining the significant
global associations
Figure 1—figure supplement 1C illustrates two histograms generated from a random set of vectors

(in the vector space generated by the Neural Network) where one distribution represents all vector

pairs whose cosine similarity is less than 0.32 (deemed ‘not strong associations’) and the other distri-

bution represents all vector pairs whose cosine similarity is greater than 0.32 (deemed ‘strong associ-

ations’). This can show how common a phenomenon it is to find word vector pairs that have very

good cosine similarity values but yet not co-occur even once in the corpus. The

‘cosine similarity >= 0.32’ bar at zero value suggests that roughly 11% of vector pairs whose cosine

similarity where greater than 0.32 (‘strong associations’) never occurred together even once in a doc-

ument. It is also clear from the figure that albeit more of the mass of the ‘cosine similarity >= 0.32’

distribution is skewed to the right as expected (more co-occurrences and hence unsurprisingly larger

cosine similarity values), there is a long tail of the ‘cosine similarity < 0.32’ distribution (very high co-

occurrences but small cosine similarity). The long tail is a direct consequence of negative sampling—

where vectors corresponding to common words that co-occur quite often with significant words in a

sliding window are moved away from vectors of the other words.
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What does the word2vec neural network do from the perspective of Genes-
Diseases associations?
One way to view the word2vec ‘black box’ operation from a Genes/Diseases perspective (cosine

of <Gene, Disease> for all Genes and Diseases) is as a Transfer Function which changed the input

probability distribution (pre-training randomly assigned word vectors for Genes and Diseases) to a

new probability distribution. The ‘null hypothesis’ (which seems to be well preserved in actuality in

the way word2vec assigns random values to vectors initially) is the ‘green colored’ Cosine Distribu-

tion (Figure 1—figure supplement 1D). Once word2vec training is over, the final word vectors are

placed in specific positions in the 300-dimensional space so as to present the ‘blue colored’ Empiri-

cal distribution (the actual cosine similarity between <Gene, Disease> pairs that we observe). The

‘orange curve’ is the 2-Gamma mixture (the parametric distribution that captures the ‘empirical dis-

tribution’ with just eight parameters (two alphas, two betas, 2 ts and two phis).

Observations from this analysis:

. Note the ‘symmetrical’ cosine distribution after training becomes ‘Asymmetrical’ with a longer
‘right tail’. The asymmetry is the reason why Gamma distribution worked better than say,
Gaussian, for the curve fit. The mean of the distribution gets shifted to the right after training
as one would expect — the vectors during training are ‘brought together’ by parallelogram
addition predominantly— explaining the shift to the right (negative sampling will cause a
movement in the opposite direction, but that will disproportionately affect the ‘ultra-high fre-
quency’ words, which get ‘more’ positively sampled and hence the 3-gamma with a bump
near 0.6 happens for ultra-high frequency words).

. The most interesting associations, by definition, are in the tail of the distribution.

What does varying the number of dimensions in the word2vec space do to
the underlying cosine similarity distributions in a large textual corpora?
Figure 1—figure supplement 1E illustrates a cosine similarity probability density function (PDF)

graph to visually describe the implementation of the word2vec-like Vector Space Model in various

N-dimensional spaces. As described in the Materials and methods section, the system is a Semantic

Bio-Knowledge Graph of nodes representing the words/phrases chosen to be represented as vec-

tors and edge weights determined by measures of Semantic Association Strength (e.g. the

cosine similarity between a pair of word embeddings represented as vectors in a large dimensional

space). The cosine similarity ranges from 0 (representing no semantic association) to 1 (representing

strongest association). This metric of association can reflect the contextual similarity of the entities in

the Biomedical Corpora. The typical dimensionality used by our neural network for generating the

Global Scores is n = 300 dimensions. This is because, as can be seen in the graph, the distribution is

highly peaked with most of the mass centered around 0 – that is, a randomly chosen pair of vectors

typically are orthogonal or close to orthogonal. Furthermore, over 300 dimensions, the distributions

all have sufficiently long tails with the most interesting (salient) biomedical associations.

Single-cell RNA-seq analysis platform
The objective of the single cell platform is to enable dynamic visualization and analysis of single-cell

RNA-sequencing data. Currently, there are over 30 scRNAseq studies available for analysis in the

Single Cell app, including studies from human donors/patients covering tissues such as adipose tis-

sue, blood, bone marrow, colon, esophagus, liver, lung, kidney, ovary, nasal epithelium, pancreas,

placenta, prostate, retina, small intestine, and spleen. Because no pan-tissue reference dataset yet

exists for humans, we have manually selected individual studies to maximally cover the set of human

tissues. In some cases, these studies contain cells from both healthy donors and patients affected by

a specified pathology such as ulcerative colitis (colon) or asthma (lung). There are also a number of

murine scRNAseq studies covering tissues including adipose tissue, airway epithelium, blood, bone

marrow, brain, breast, colon, heart, kidney, liver, lung, ovary, pancreas, placenta, prostate, skeletal

muscle, skin, spleen, stomach, small intestine, testis, thymus, tongue, trachea, urinary bladder,

uterus, and vasculature. Note that two of these murine studies (Tabula Muris and Mouse Cell Atlas)

include ~20 tissues each.
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Single-cell data processing pipeline
For each study, a counts matrix was downloaded from a public data repository such as the Gene

Expression Omnibus (GEO) or the Broad Institute Single Cell Portal (Supplementary file 1). Note

that this data has not been re-processed from the raw sequencing output, and so it is likely that

alignment and quantification of gene expression was performed using different tools for different

studies. In some cases, multiple complementary datasets have been generated from a single publica-

tion. In these cases, we have generated separate entries in the Single Cell platform.

While counts matrices have been generated using different technologies (e.g. Drop-Seq, 10x

Genomics, etc.) and different alignment/pre-processing pipelines, all counts matrices were scaled

such that each cell contains a total of 10,000 scaled counts (i.e. the sum of expression values for all

genes equals 10,000 in each individual cell). All data were uniformly processed using the Seurat v3

package (Butler et al., 2018). In short, this pipeline involves the following steps. First, we identify

2000 variable genes across the given dataset and then perform linear dimensionality reduction by

principal component analysis (PCA). Using the set of principal components which contribute >80%

of variance across the dataset, we then do the following: (i) perform graph-based clustering to iden-

tify groups of cells with similar expression profiles (Louvain clustering), (ii) compute UMAP and tSNE

coordinates for each individual cell (used for data visualization) and (iii) annotate cell clusters. Note

that the three human pancreatic datasets (GSE81076, GSE85241, GSE86469) were integrated

together in a shared multi-dimensional space using CCA (Canonical Correlation Analysis) and the

integration method in the Seurat v3 package (Butler et al., 2018). Cell clustering and computation

of dimensionality reduction coordinates were performed on this integrated dataset.

Cell cluster annotation
In cases where publicly deposited counts matrices are accompanied by author-assigned annotations

for individual cells or clusters, we have retained these cell annotations for display in the platform and

accompanying analyses. For any study which was not accompanied by a metadata file containing

cluster annotations, we have manually labeled clusters based on sets of canonical ‘cluster-defining

genes.’ In these cases, we have attempted to leverage annotations and descriptions of gene expres-

sion patterns described by study authors in the manuscript text and figures corresponding to the

data being analyzed.

Metrics to summarize cluster-level gene expression
The platform allows users to query any gene in any selected study. The corresponding data is dis-

played in commonly employed formats including a series of violin plots and as a set of dimensional-

ity reduction plots. Expression is summarized by listing the percent of cells expressing Gene G in

each annotated cluster and the mean expression of Gene G in each cluster. To measure the specific-

ity of Gene G expression to each Cluster C, we compute a Cohen’s D value which assesses the effect

size between the mean expression of Gene G in cluster C and the mean expression of Gene G in all

other clusters. Specifically, the Cohen’s D formula is given as follows: (MeanC - MeanA)/(sqrt(StDevC
2

+ StDevA
2 )) , where C represents the cluster of interest and A represents the complement of C (i.e.

all other cell clusters). Note that this is functionally similar to the computation of paired fold change

values and p-values between clusters which is frequently used to identify cluster-defining genes.

Gene-gene cosine similarity
Within the platform, we support the run-time computation of cosine similarity (i.e. 1 - cosine dis-

tance) between the queried gene and all other genes. This provides a measure of expression similar-

ity across cells and can be used to identify co-regulated and co-expressed genes. Specifically, to

perform this computation, we construct a ‘gene expression vector’ for each gene G. This corre-

sponds to the set of CP10K values for gene G in each individual cell from the selected populations

in the selected study.

Profiling expression of coronavirus receptors in single-cell datasets
For each single-cell dataset, we examined the expression of ACE2, TMPRSS2, ANPEP, and DPP4.

We generally considered a cell population to potentially express a gene if at least 5% of cells from

that cluster showed non-zero expression of this gene. For each dataset, we show a figure which
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includes a UMAP dimensionality reduction plot colored by annotated cell type along with identical

plots colored by the expression level of each coronavirus receptor in all individual cells. In some

cases, we also show violin plots from the platform which automatically integrate literature-derived

insights to highlight whether there exist textual associations between the queried gene and the tis-

sue/cell types identified in the selected study.

FDA Adverse Event Reporting System (FAERS) analysis
The FAERS application of the nferX platform supports viewing adverse event profiles of all marketed

products through multiple lenses - Count, Proportional Reporting Ratio (PRR), and an nferX Adverse

Event (AE) Score. AEScore ¼ lnðcountÞ � 1= 1þ e�ðprr�1:5Þ
� �

. Count is the raw number of reports

between a drug and an adverse event. The proportional reporting ratio (PRR) is a simple way to get

a measure of how common an adverse event for a particular drug is compared to how common the

event is in the overall database. A PRR >1 for a drug-event combination indicates that a greater pro-

portion of the reports for the drug are for the event than the proportion of events in the rest of the

database, while a PRR of 2 for a drug event combination indicates that the proportion of reports for

the drug-event combination is twice the proportion of the event in the overall database. The PRR is

computed as follows:

PRR¼ ðm=nÞ= ðM�mÞ=ðN� nÞð Þ

m = number of reports with drug and event
n = number of reports with drug
M = number of reports with event in database
N = number of reports in database

Count of an event with a query drug is a good first measure of association. But it has the problem

that generally common events will often show up at the top, where we are often more interested in

events that are differentially associated with the query drug over other drugs. An issue with PRR is

that it is noisy when the total number of event reports is small. If there are three reports of some

oddly specific event and one occurs with the query drug, that event will likely have a very high

PRR, but it may not be the event we would be most interested in for a drug (in FAERS such rare

events are often not even proper adverse events) - we want events that occur often, and also are dif-

ferentially associated with a drug - a balance between count and PRR.

The AE score tries to strike this balance in an all-in-one measure. It up-weights events that occur

often for the query drug (this is the ln(count) term), and that are differentially associated with the

query drug (this is the sigmoid term).

The sigmoid(PRR-1.5) term ranges smoothly from 0 to 1. It’s equal to 0.5 at PRR = 1.5. When

PRR = 6, sigmoid(PRR-1.5)=0.99; so PRR values >= 6 are all treated roughly equivalently by the AE

score. Thus, extremely high PRRs due to small counts will not swing the AE score much beyond

PRR = 6, and the ln(count) term will down-weight those small-count cases, so that they do not show

up at the top of the AE score list.

A nice property of AE score is that, for a given query drug, the AE scores of the events with that

drug turn out to roughly follow an exponential distribution, particularly at the tails. We can then fit

exponential distributions to the scores, and analyze them. A benefit of the exponential fit is that we

can make more robust claims about how significant a certain score is for a query drug, even if the

empirical data is sparse/noisy at the tails for a particular drug.
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