Transcription termination and antitermination of bacterial CRISPR arrays

  1. Anne M Stringer
  2. Gabriele Baniulyte
  3. Erica Lasek-Nesselquist
  4. Kimberley D Seed
  5. Joseph T Wade  Is a corresponding author
  1. Wadsworth Center, New York State Department of Health, United States
  2. University of California, Berkeley, United States

Abstract

A hallmark of CRISPR-Cas immunity systems is the CRISPR array, a genomic locus consisting of short, repeated sequences ('repeats') interspersed with short, variable sequences ('spacers'). CRISPR arrays are transcribed and processed into individual CRISPR RNAs that each include a single spacer, and direct Cas proteins to complementary sequence in invading nucleic acid. Most bacterial CRISPR array transcripts are unusually long for untranslated RNA, suggesting the existence of mechanisms to prevent premature transcription termination by Rho, a conserved bacterial transcription termination factor that rapidly terminates untranslated RNA. We show that Rho can prematurely terminate transcription of bacterial CRISPR arrays, and we identify a widespread antitermination mechanism that antagonizes Rho to facilitate complete transcription of CRISPR arrays. Thus, our data highlight the importance of transcription termination and antitermination in the evolution of bacterial CRISPR-Cas systems.

Data availability

Raw ChIP-seq data are available from EBI ArrayExpress/ENA using accession number E-MTAB-7242. Raw sequencing data for conjugation experiments involving V. cholerae are available from EBI ArrayExpress/ENA using accession number E-MTAB-9631.

The following data sets were generated

Article and author information

Author details

  1. Anne M Stringer

    Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriele Baniulyte

    Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0235-7938
  3. Erica Lasek-Nesselquist

    Bioinformatics Core Facility, Wadsworth Center, New York State Department of Health, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kimberley D Seed

    Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0139-1600
  5. Joseph T Wade

    Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, United States
    For correspondence
    joseph.wade@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9779-3160

Funding

National Institute of General Medical Sciences (R01GM122836)

  • Joseph T Wade

National Institute of Allergy and Infectious Diseases (R21AI126416)

  • Joseph T Wade

National Institute of Allergy and Infectious Diseases (R01AI127652)

  • Kimberley D Seed

Burroughs Wellcome Fund (Investigators in the Pathogenesis of Infectious Disease Award)

  • Kimberley D Seed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Blake Wiedenheft, Montana State University, United States

Version history

  1. Received: April 23, 2020
  2. Accepted: October 29, 2020
  3. Accepted Manuscript published: October 30, 2020 (version 1)
  4. Version of Record published: November 13, 2020 (version 2)

Copyright

© 2020, Stringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,705
    views
  • 256
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne M Stringer
  2. Gabriele Baniulyte
  3. Erica Lasek-Nesselquist
  4. Kimberley D Seed
  5. Joseph T Wade
(2020)
Transcription termination and antitermination of bacterial CRISPR arrays
eLife 9:e58182.
https://doi.org/10.7554/eLife.58182

Share this article

https://doi.org/10.7554/eLife.58182

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.