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Abstract Climate regions form the basis of many ecological, evolutionary, and conservation

studies. However, our understanding of climate regions is limited to how they shape vegetation:

they do not account for the distribution of animals. Here, we develop a network-based framework

to identify important climates worldwide based on regularities in realized niches of about 26,000

tetrapods. We show that high-energy climates, including deserts, tropical savannas, and steppes,

are consistent across animal- and plant-derived classifications, indicating similar underlying climatic

determinants. Conversely, temperate climates differ across all groups, suggesting that these

climates allow for idiosyncratic adaptations. Finally, we show how the integration of niche

classifications with geographical information enables the detection of climatic transition zones and

the signal of geographic and historical processes. Our results identify the climates shaping the

distribution of tetrapods and call for caution when using general climate classifications to study the

ecology, evolution, or conservation of specific taxa.

Introduction
Climate governs the basis of life on Earth. Besides historical contingencies and geographical barriers,

abiotic conditions determine species ranges (Woodward, 1987; Hoffmann and Parsons, 1997;

Calatayud et al., 2019b) and derived diversity patterns (Hawkins et al., 2003; Kreft and Jetz,

2007; Mendoza and Araújo, 2019). On a global scale, distinctive climate types impose generalized

constraints that shape species pools adapted to particular climates (Whittaker, 1962). Identifying

the boundaries of these climate types is a fundamental challenge to understanding how life organ-

izes on Earth, with acute implications in diverse disciplines given the current climate change.

Pythagoras proposed a classification of climate regimes of the known world in the 6th century BC

(Sanderson, 1999). Still, it was not until the 19th century that geographers laid the foundations for

such classifications (Oliver, 1991). By that time, researchers noticed the close relationship between

the distribution of various life forms, especially vegetation types, and climate (Oliver, 1991). For

instance, Köppen built his long-standing climate classification from pioneer plant classifications,

assuming that vegetation types carry information about climatic conditions (Kottek et al., 2006;

Thornthwaite, 1943). This assumption has received considerable support (Rohli et al., 2015), and

researchers and stakeholders use Köppen’s classification system in a wide range of disciplines,

including climatology (Spinoni et al., 2015), geography (Gentine et al., 2012), conservation plan-

ning (Tobin et al., 2014), and ecology (Garcia et al., 2014).

But the general climatic conditions derived from plant species may not apply to other organisms.

Plants’ and animals’ climatic determinants will likely differ, given their large physiological differences.

Although diversity patterns of plants and animals are relatively congruent, the climatic correlates of

these patterns vary (Whittaker et al., 2007; Qian and Ricklefs, 2008). Hence, if climatic adaptations

vary among taxa, so will the boundaries defining their climate types. In Thornthwaite, 1943 words,
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the ‘truly active factors’ describing a climate type may vary among organisms, and it remains

unknown whether Köppen’s climate classification can indicate the active climatic factors for other

organisms than plants. Despite several attempts to refine or propose alternative climate types or

regions (Trewartha, 1954; Holdridge, 1947; Thornthwaite, 1948; Netzel and Stepinski, 2016;

Gardner et al., 2020), quantitative studies defining climatic regions for other organisms are still

lacking.

The current information on species distributions and global climatic variables, together with

recent advances in niche modeling and classification techniques, provides an unprecedented oppor-

tunity to identify the climatic boundaries shaping the distribution of faunas and floras across the

globe. The last decades have witnessed a tremendous collective effort to record occurrences of a

large number of species (GBIF, 2019), which has resulted in comprehensive datasets of the distribu-

tional ranges of several groups of species (IUCN, 2015; BirdLife, 2015; Roll et al., 2017). Also, data

on climatic variables at a global scale have been developed at high spatial resolutions (Fick and Hij-

mans, 2017; Trabucco and Zomer, 2009). Combining these two sources of information, we can

characterize the realized climatic niches of different taxa and find regularities among them. For

example, projecting these realized climatic niches into a climatic space (Broennimann et al., 2012)

should, if climatic boundaries exist, reveal co-occurring groups of species across particular portions

of the climatic space. Thus, identifying these niche domains should uncover the main climatic bound-

aries shaping the organization of life (Figure 1).

In addition to the climate, dispersal barriers and historical contingencies influence the shape of

niche domains (Warren et al., 2014; Calatayud et al., 2016; Calatayud et al., 2019b). Therefore,

similar climates can have different effects across different geographic regions (Ricklefs, 1987). For

instance, while a given climate in some parts of the Earth may lead to specific species pools, the

same climate in other parts of the Earth may not. Such a potential lack of specific species can occur,

for example, because the required adaptations have not appeared (Flohr et al., 2013), the adapted

eLife digest There are many distinct climates on Earth, from tropical savannas and temperate

forests to dry deserts. Historically, each region has been defined by how its annual weather patterns

shape the type of vegetation present. For example, hot and humid environments support the

growth of evergreen forests that would not survive in drier places.

Identifying the boundaries between climate regions is key to understanding how life is organized

on Earth and predicting how climate change will affect different species. Current climate

classifications, however, do not account for where animals can be found or how local conditions,

such as precipitation and average temperatures, shape the distribution of different animal species.

To bridge this gap, Calatayud et al. analyzed the preferred climate of about 26,000 animal species,

including amphibians, birds, mammals and reptiles.

For each species, Calatayud et al. calculated the annual rainfall and temperature of its local

environment, or ‘niche’, using previously collected data. They then used a computer algorithm to

group together climates that had similar species. This identified 16 climate regions which govern the

distribution of the animals studied. Calatayud et al. found that these newly defined climatic regions

resembled some of the regions classified using plants. This was particularly true for high-energy

climates that had lower levels of rainfall and hot temperatures, such as deserts and the tropical

savanna.

The animals and plant species living in high-energy regions were found to be fairly consistent

across both classification systems. Whereas the species present in milder and colder climates, such

as temperate forests or Mediterranean climates, were found to be much more varied. This suggests

that temperate climates are harder to classify and may affect the distribution of plants and animals

differently. It also implies that less extreme conditions support a larger range of species than harsher

climates in which only species with certain adaptations are able to survive.

These findings build the basis for a better understanding of how climates shape ecosystems.

More specific climate classifications, based on such analyses, could be used to inform conservation

strategies for animal species in the face of climate change.
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species have not been able to disperse (Tuomisto et al., 2003), or the area is too small to hold large

species pools (Connor and McCoy, 1979). Studying the signature of these historical and geographi-

cal processes, known as geographical signals, in niche domains can provide valuable information

about the potential mechanisms behind them and their associated climatic regions.

We explore the global climate regions of tetrapods by characterizing the climatic niche domains

of amphibians, birds, mammals, and reptiles. Tetrapods are a well-suited group for our purpose.

First, comprehensive databases are available, including the distributional ranges of most species in

the group (IUCN, 2015; BirdLife, 2015; Roll et al., 2017). Second, the different classes of tetrapods

have diverse capabilities to disperse and withstand abiotic conditions, allowing us to investigate

whether various capabilities influence climatic classifications. Third, accumulated evidence about the

main climatic factors controlling the distribution of these species simplifies the selection of appropri-

ate climatic variables. In particular, the distribution of tetrapods is strongly determined by the water

and energy aspects of climate (Hawkins et al., 2003; Currie, 1991; Tingley et al., 2009;

Gouveia et al., 2014; Pie et al., 2017; Cooper et al., 2011). Finally, researchers study tetrapods in

several disparate fields – from animal husbandry (Abecia et al., 2017) to ecological

(Englert Duursma et al., 2019) and evolutionary studies (Rolland et al., 2014) – where a description

of their climatic regions can be especially useful.

In our classification approach, we project the realized niche of each tetrapod species onto a

binned two-dimensional space representing water and energy, the primary climatic factors impacting

their geographic distribution (Figure 1). After translating this climatic niche space into a weighted

bipartite network, we apply a network community detection algorithm to identify climatic niche

domains with similar species pools. Finally, by mapping the climatic niche domains back onto the

Earth’s surface, we provide the climatic regions.

The detected climatic regions support the notion that similar climatic determinants underlie ani-

mal and plant distributions in high-energy regions, including deserts, tropical savannas, and steppe

regions. However, differences in temperate climates across all groups indicate that specific climatic

regions for each group of taxa are required to address ecological, evolutionary, and conservation

questions.

Figure 1. Workflow to identify niche domains and climatic regions. Using the climatic conditions a given species experiences within its range (A), we

project species niches into a climatic space discretized in an optimal number of bins (Appendix 1) (B). We translate the binned data into a weighted

bipartite network, where climatic bins and species form the nodes and the probabilities of finding the species in the bins form the weighted links (C).

Using a network community detection algorithm, we identify domains of the climatic space with similar species (D, upper). The climatic conditions

defining these domains delineate the corresponding climatic regions of the Earth (D, lower). The striped climatic bin links to species classified in both

climatic domains, and, therefore, it represents a diffuse transition with low specificity.
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Results

Classification of climatic niches
We first identified the species niche domains by calculating the proportion of observations of each

species within each bin of a two-dimensional climatic space defined by potential evapotranspiration

(PET) and annual precipitation (AP; Figure 1, ’Materials and methods’ and Appendix 1). We repre-

sented this data as a weighted bipartite network, where climatic bins and species form two disjunct

sets of nodes and the probabilities of finding the species in the bins form the link weights. Using a

hierarchical network clustering algorithm (Rosvall and Bergstrom, 2008; Rosvall and Bergstrom,

2011), we obtained groups of climatic bins holding similar species, niche domains, and the species

associated with them.

We found similarities among tetrapods classes in the detected niche domains but also observed

some differences (Figure 2). For instance, the number of major domains with 50 or more species in

the lower hierarchical level is similar (ranging from 13 to 15) across tetrapods classes. However,

mammals and birds show a domain of low-energy inputs, whereas reptiles present some domains

across arid conditions, that is, with high energy and low water availability (Figure 2). Finally, we clas-

sified the climatic space of tetrapods by using all species jointly. The clustering algorithm divided

the niche space of tetrapods into 16 main domains that are similar to those of the independent clas-

ses, and some of the particularities described above did not appear (Figure 2).

Since uncertainties related to the ranges of species exist, we employed a bootstrap and a signifi-

cance clustering procedure (Rosvall and Bergstrom, 2010; Calatayud et al., 2019a) to assess the

domains’ robustness (’Materials and methods’). While several domains were well supported, we

Figure 2. Tetrapods’ niche domains across the climatic space. The climatic niche domains of each group shown across a space defined by potential

evapotranspiration (PET) as a surrogate of energy and annual precipitation (AP) as a surrogate of water inputs. Tetrapods’ domains are labeled so that

E and W represent energy and water, respectively, and superscripts H, M, and L mean high, medium, and low, respectively. Numerical subscripts

differentiate domains of similar climates. Numbers between 0 and 1 indicate the bootstrap support. The dotted line represents the domains at the

highest hierarchical level. Domains of less than 50 species are colored dark gray. Domain colors across groups only indicate similar climatic regions. To

characterize the climatic space, we used 17 divisions of both PET and AP for all groups except for amphibians, where we used 18 (see Appendix 1).

The online version of this article includes the following source data for figure 2:

Source data 1. niches domains and the species associated to them.
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found that the niche domains corresponding to intermediate energy (between approximately 1000

and 1500 PET units; EM climates in Figure 2) and low to moderate water (up to approximately 800

ml; WL to WM) were less robust. This robustness analysis shows that these niche domains are more

challenging to classify.

Animal vs previous plant-based climate regions
While Köppen’s climate classification is based on expert knowledge on vegetation physiognomy and

the distribution of vegetation types, its wide use makes it worthwhile to compare the climate regions

derived from this classification system to the ones produced here. Hence, we studied the geographic

location of the climatic conditions associated to niche domains, the climatic regions shown in Fig-

ures 1 and 3, which allowed for a more precise comparison between groups and Köppen’s plant-

based regions. The similarities among the regions of tetrapods classes measured as adjusted mutual

information (AMI) ranged from 0.57 to 0.68, with mean AMI = 0.62 (Table 1). Moreover, the regions

based on the niche domains of all tetrapods together were to some extent congruent with the

regions of its independent classes (mean AMI = 0.71, ranging from 0.66 to 0.77). Köppen’s regions

were more dissimilar to the regions of all tetrapods together (AMI = 0.44) and the regions of each

class of tetrapods independently (mean AMI = 0.44, ranging from 0.40 to 0.47).

Focusing on particular regions, we saw that climates of high energy (EH) were consistent among

tetrapod groups and Köppen’s classification. Desert climates (high energy and low water, EHWL, Fig-

ure 3, and Appendix 1—figure 1) were the most similar across all groups. Tropical savanna and

steppe climates (high energy and medium water, EHWM) were also consistently defined, though

both of these Köppen regions were classified together for all groups but reptiles (Figures 2 and 3

and Appendix 1—figure 1). Similarly, Köppen’s tropical rainforest and tropical monsoon climates

were for the most part well recovered (Appendix 1—figure 1). However, we found three different

tropical-humid regions, each one mostly corresponding to one of the three larger masses of tropical

rainforests: Amazonian, African, and Southeast Asian rainforests; EHWH
1, EHWH

2, and EHWH
3,

respectively (Figures 2 and 3). Regarding regions of low energy, we found a slightly higher level of

disagreement between Köppen’s and tetrapods’ regions (Figure 3). Finally, temperate climates

(medium energy EM) were the least congruent between tetrapod groups and Köppen’s regions.

These regions of medium energy were at the same time the least congruent among groups and the

least supported by the bootstrap analyses, suggesting that these climates could impose less restric-

tive conditions in general and allow the appearance of idiosyncratic and variable adaptations.

Climatic transition zones
A complete understanding of niche domains and their associated climatic regions entails the explo-

ration of whether their boundaries represent abrupt or diffuse transitions. Climatic conditions corre-

sponding to diffuse transitions should present low specificity levels to the domain where they

belong (Figure 1). Hence, we can consider specificity as the opposite of transitivity. Our network

approach allows us to calculate this specificity by the dual classification of climatic bins and species

into the same niche domains (Figure 1). We computed the specificity of each climatic bin as the ratio

between the link weights of the species classified in the same domain and the total link weights (Ber-

nardo-Madrid et al., 2019; Calatayud et al., 2019b). Then, we projected these values geographi-

cally. As expected, lower specificity values were in general associated with the boundaries of the

climatic regions (Figure 4A and Appendix 1—figure 2). Beyond boundaries, our results also

revealed that harsh conditions, such as desert and continental-polar climates (EHWL and ELWL), pres-

ent the highest specificity levels, regardless of the group (Figure 4A and Appendix 1—figure 2),

reflecting the difficulty of colonizing these climates. Conversely, temperate regions showed the low-

est levels of specificity. These regions were also weakly supported in the bootstrap analyses, and we

found that bootstrap p-values and mean specificity were significantly correlated (standard general-

ized linear mixed model [GLMM] coeff. 6.21; p < 0.001 conditional = 0.29, see ’Materials and meth-

ods’). Together with the higher variability of these regions across groups, this result further supports

the idea that these climatic conditions could impose less restrictive conditions to tetrapods.
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Figure 3. Tetrapod groups and Köppen’s climatic regions. (A) Geographic location of tetrapods’ niche domains and Köppen’s climatic regions. See

also Appendix 1—figure 1. Colors according to Figure 2. (B) Tetrapods’ climatic regions are labeled according to Figure 2.

The online version of this article includes the following source data for figure 3:

Source data 1. rasters with climate regions for each studied group.
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Geographical signal in climatic regions
Historical and geographical processes may lead to species pools adapted to a given climate in some

regions of the Earth but not in others. To search for this geographical signal, we first compared the

distribution of the climatic conditions and species grouped within the same niche domain. A geo-

graphic mismatch between species and climate distributions would point to portions of the climatic

regions that are defined by species occurring in other geographic areas. Exploring these patterns

for each niche domain revealed notable geographic agreement between species and climatic condi-

tions of the same domain (Figure 4B and Appendix 1—figures 3–7). Nevertheless, we found some

Table 1. Similarity of climatic regions measured by adjusted mutual information.

Köppen Tetrapods Amphibians Reptiles Birds

Tetrapods 0.44 – – – –

Amphibians 0.40 0.66 – – –

Reptiles 0.45 0.70 0.58 – –

Birds 0.45 0.77 0.61 0.64 –

Mammals 0.47 0.72 0.57 0.66 0.68

Figure 4. The geographic location of climatic domains and their associated species provides insights into the mechanism underlying the climatic

regions. (A) Geographic projection of the specificity of climatic bins to their niche domain. (B) An example showing a bird’s niche domain with a low

geographical signal. The distribution of the climatic conditions (black line) and the species (colored richness values) belonging to the same niche

domain was mostly congruent. (C) An example of an amphibian’s niche domain showing a high geographical signal, reflected in a substantial mismatch

between the distribution of climatic conditions and species belonging to the same domain. (D) A quantitative approximation of the geographical

signal, ranging between 0 and 1, for the different taxonomic groups (see ’Materials and methods’).

Calatayud et al. eLife 2021;10:e58397. DOI: https://doi.org/10.7554/eLife.58397 7 of 26

Research article Ecology

https://doi.org/10.7554/eLife.58397


differences across groups and regions. More extreme climates showed larger mismatches between

the distribution of species and climates. For instance, for all groups but reptiles, desert climate

(EHWL) was mostly defined by species inhabiting Australia and to a lesser extent by species from the

Namibian desert and the Horn of Africa, with few or no species inhabiting the Sahara desert

(Figure 4C and Appendix 1—figures 3–7). Similarly, the northern climatic regions of amphibians

and reptiles were defined by species at lower latitudes (Appendix 1—figures

3 and 4). Approaching the geographical signal more quantitatively (see ’Materials and methods’),

we found a stronger signal for the worst dispersers, amphibians and reptiles, than for mammals and

birds (Figure 4D), suggesting that dispersal capabilities can contribute to the geographical signal in

the niche domains. Finally, all tetrapods together showed the lowest geographical signal, which sug-

gests that, in addition to dispersion, increased evolutionary time can reduce the geographical signal.

Discussion
We detected 16 climatic regions governing the distribution of tetrapods. Despite the substantial

physiological and functional differences among the groups, some of their niche domains and climatic

regions are consistent. These climatic regions also resemble Köppen’s regions and correspond, in

general, with extreme climates, being arid climates specially congruent across groups. These cli-

mates also presented overall low levels of transitivity, showing that species adapted to other cli-

mates have more difficulty withstanding these conditions. These results suggest that extreme

climates impose strong adaptive barriers, producing a filtering of species (Butterfield, 2015;

Cadotte and Tucker, 2017) even across distinctive evolutionary lineages.

Conversely, milder climatic conditions, especially temperate climates, showed the lowest statisti-

cal support and congruence across groups, as well as the highest transitivity. These results indicate

that temperate climates are more difficult to classify (low support and congruence) due to the over-

lap in the climatic space of species pools with different climatic optima (high transitivity). Two com-

plementary reasons can explain this ambiguity: first, while we used two variables widely recognized

to shape the distributions of tetrapods, alternative variables, such as seasonal changes in energy and

precipitation (Köppen and Geiger, 1930), may also influence species inhabiting temperate regions.

Including these variables might help to further separate temperate species pools across the climatic

space. Second, the climatic conditions of these domains may not prevent the colonization of species

with other realized optima or preferences, which would generate the observed overlap in the cli-

matic space (i.e., high transitivity) across milder conditions. Questions remain about the relative con-

tribution of each process. Similarly, the exact causes and consequences of the climatic transition

zones call for future investigation.

We also found some domains that were well supported but unique for each group. These differ-

ences between groups seem to relate to the particular physiological adaptations of each group. For

instance, homeothermic birds and mammals defined a region of low energy, consistent with Köp-

pen’s polar climates, that reptiles and amphibians lacked. Similarly, reptiles, a group that includes

several groups adapted to arid environments (Pie et al., 2017), defined some regions of low precipi-

tation and high PET. Hence, our results stress that caution is needed when generalizing the climate

classification to other groups of organisms, and question the validity of using plant-based classifica-

tions for studies dealing with animals.

Beyond niche domains, our results also show differences in the geographical signal across groups.

That amphibians – the group with the lowest dispersal capacity – showed the highest geographical

signal suggests that dispersal processes play an essential role: species that are worse dispersers

have more difficulties tracking their preferred climates (Araújo and Pearson, 2005), limiting the col-

onization of disjoint areas with similar climates. Moreover, all tetrapods together showed the lowest

geographical signal, suggesting that increased evolutionary time can reduce this geographic pattern.

That is, an extended evolutionary time that enables the appearance of convergent adaptations to

similar climates in different geographic regions (Mazel et al., 2017) may reduce the geographical

signal in niche domains. Alternatively, tetrapods include taxa with varying dispersal strategies – such

as the high active dispersal of birds and the elevated survival probabilities of reptiles to passive

transoceanic dispersal – which may also influence the geographical signal. In any case, the ultimate

causes and consequences of this signal require further attention. Why are some amphibians able to

inhabit arid conditions in the Australian desert but not in the Sahara desert (Appendi 1—figure 3)?
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Why can some reptiles withstand cold climates around the Himalayan mountains but not in the

northern hemisphere (Appendi 1—figure 4)? These are some examples of the emerging fundamen-

tal questions related to the geographical signal. Answering them would require studying the adapta-

tions that allow the species to tolerate particular climatic conditions and the abiotic, biotic, and

historical differences between regions (Moncrieff et al., 2015) that favor these adaptations in some

places but not in others. Moreover, the geographical signal idea could also help unravel idiosyncratic

processes occurring at smaller scales by comparing local climate regions with global or regional

ones. These examples form exciting avenues for future historical biogeographical and evolutionary

studies.

Our results and data-driven methodology have the potential to bring us closer to a definition of

climatic regions that represent active factors for the spatial organization of life. Nevertheless, it

would be interesting to improve some aspects in future studies. First, while we used a notable num-

ber of species (about 26,000), they are taxonomically biased and only represent a small fraction of

terrestrial organisms. Second, we used two climatic variables widely known to affect the distribution

and diversity patterns of animals and plants in general (Currie, 1991; Hawkins et al., 2003), but

other climatic variables might refine some of the least supported regions. Finally, our domains repre-

sent portions of the realized climatic niche space, which entails two sources of uncertainty. On the

one hand, the estimation of realized niches depends on the data quality, scale, and treatment

choices. On the other hand, the realized niche space may be influenced by historical, geographical,

and biotic factors beyond pure climate (Warren et al., 2014; Calatayud et al., 2019b;

Soberón, 2007). Hence, using fundamental rather than realized niches may also improve the accu-

racy of defining climatic regions. At the current pace of biological data accumulation and computa-

tional development, it is reasonable to expect that some of these limitations will soon be overcome.

Meanwhile, the considerable congruence of several climatic regions across the studied groups and

Köppen’s system provides confidence in their robustness. Hence, it is likely that using better data

would not produce regions substantially different from those presented here.

Regardless of how generalizable the results are, the niche domains and their associated species

pools and climatic regions can be used as a basis for ecological, evolutionary, and conservation stud-

ies concerning tetrapods. Some of the many questions that the results reported here (data available

in source data of Figures 2 and 3) can help to answer include: Are the species belonging to different

niche domains similarly conserved or protected, or both (Hanson et al., 2020)? To what extent do

the differences between the four classes of tetrapods reflect phylogenetic and functional differences,

and are such differences to be found in other taxonomic groups? Is the adaptation to niche domains

evolutionarily constrained? Do diversification, extinction, or speciation rates differ among the species

associated with different domains? Moreover, combining niche domains with bioregions based on

pools of species (Bernardo-Madrid et al., 2019) or lineages (Holt et al., 2013) can also help answer

several relevant questions: Are introductions more common between bioregions with the same cli-

mate types? To what extent does the current climate govern bioregions? Do ecological and evolu-

tionary processes differ between different bioregions with same climate types (Moncrieff et al.,

2015)?

In conclusion, our data-driven climate classification reveals major climatic boundaries organizing

the distribution of tetrapods on Earth. Questions remain regarding the mechanism underlying the

differences between groups in the climatic regions and the geographical signal. Nevertheless, these

differences across groups highlight the need for classifications of climates specific to each group to

study their ecology, evolution, or conservation.

Materials and methods

Data
We obtained the distribution ranges of mammals and amphibians from the IUCN, 2015, of birds

from BirdLife, 2015, and of reptiles from Roll et al., 2017. We included only the native range of ter-

restrial species in the analyses in all instances. In the case of birds, we only used the breeding

ranges. Moreover, since there is a higher uncertainty when determining the realized niches of nar-

row-ranging species (Lehmann et al., 2002), we arbitrarily removed the species whose ranges were
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less than five grid cells of 0.5˚. After this cleaning of the data, we used 3657 amphibians, 7204 rep-

tiles, 4574 mammals, and 10,684 birds, for a total of 26,119 tetrapod species.

We approximated the species’ Grinnellian niches (Soberón, 2007) with two climatic variables that

represent energy and water inputs. While we could have used several other variables, we chose

energy and water as they best explain climatic effects on species distributions (Hawkins et al.,

2003). As surrogates for energy and water inputs, we used mean annual PET and AP, respectively.

Both variables have been shown to be important factors for tetrapod species distributions (Cur-

rie, 1991; Tingley et al., 2009; Gouveia et al., 2014). Moreover, they have also been used in previ-

ous climate classifications (Thornthwaite, 1948) and are regularly used to derive other drivers of

species distributions such as the UNEP aridity index (Unep and Thomas, 1992; Fuller et al., 2016).

We obtained PET from Trabucco and Zomer, 2009 and AP from Fick and Hijmans, 2017, both at a

0.08˚ resolution. Finally, we obtained Köppen’s climatic regions from Kottek et al., 2006 and

Rubel et al., 2017.

Niche characterization
We characterized the realized climatic niche of each species using an approach similar to the one

proposed in Broennimann et al., 2012. We divided the climatic space formed by PET and AP into

bins and calculated the proportion of occurrences a given species has in each climatic bin. Both the

shape of the divisions and the number of divisions of each climatic axis affect the result. For instance,

dividing the axis into regular intervals can destroy critical information if the climatic values more

important for the species distributions are skewed toward any extreme of the distribution or if the

climatic values are represented non-uniformly across the globe (as for AP, Appendix 1—figure 8).

Similarly, the grain size to divide the climatic space may affect subsequent results (Levin, 1992;

Daru et al., 2020). Dividing the space into too few intervals destroys information, whereas using too

many divisions can generate niche domains with only a few species. To overcome the first issue, we

divided the axes into quantiles based on the distribution of climatic values across the Earth. By doing

so, we obtained an almost uniformly divided PET axis (Appendix 1—figure 8). Contrarily, the num-

ber of divisions of the AP axis was skewed toward low values, which resulted in a higher resolution

over the presumably more relevant low-precipitation conditions (Appendix 1—figure 8). To solve

the second issue, we selected the lowest number of divisions that maximized the gain in information

(see Appendix 1). The optimal number of axis divisions was 17 in all cases but amphibians, where it

was 18.

Next we accounted for potential commission errors, which may affect the estimated climates a

species experiences. Specifically, range maps can overestimate the area occupied by a species,

which directly influences the niche characterization (Rondinini et al., 2006). Because range maps

typically represent the species’ maximum geographical extent (Rondinini et al., 2006; La Sorte and

Hawkins, 2007), extracting the climatic values that a species range covers from a well-fitting 0.08˚

high-resolution climatic raster can reduce commission errors at the species range’s borders. But with

many pixels inside the species range, the noise from extreme and unrepresentative climatic values

can increase the error (La Sorte and Hawkins, 2007). Conversely, extracting climatic values from a

coarser raster can reduce the commission errors inside a range by averaging out extreme values at

the cost of increasing commission errors over the borders. To alleviate the effects of these potential

errors, we first extracted the climatic values from the high-resolution rasters (0.08˚). Then, we com-

puted the average climatic values among selected raster pixels located within cells of 0.5˚. In this

way, we reduced the effects of commission errors both at the borders of and inside species ranges.

Finally, mean climatic values may not accurately represent the cells’ climates when there is high cli-

mate variability or the values are non-normally distributed. Comparing results obtained from differ-

ent cell sizes is an indirect way to asses the influence of distorted mean values. Instead, we chose to

directly explore the effects of high climatic variability and non-normal distributions with non-

parametric bootstrap analysis: we resampled climatic values within 0.5˚ cells with replacement (see

below).

Niche domains and climatic regions identification
We employed a network community detection approach to identify the niche domains and the spe-

cies mainly associated with them. For each group of species, we first generated a weighted bipartite
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network where species and climatic bins formed the disjoint sets of nodes, and the proportion of

occurrences of species in intervals of the climatic values corresponding to the climatic bins formed

the weighted links. To identify the niche domains, we used the hierarchical version of the

community detection algorithm known as Infomap (Rosvall and Bergstrom, 2008). Infomap capital-

izes on the minimum description length principle of information theory, which equates finding regu-

larities and compression: the model that finds most regularities in a given set of data can compress

the data the most (Rissanen, 1978). In our case, modules of highly interconnected climatic bins and

species form the regularities, and describing the network with an optimal set of communities corre-

sponds to minimizing the description length (Bernardo-Madrid et al., 2019; Rosvall and Berg-

strom, 2008). Among the many community-detection algorithms available, we used Infomap

because it can find hierarchically nested communities and is known for its high performance

(Lancichinetti and Fortunato, 2009), also for regionalizations (Bernardo-Madrid et al., 2019;

Bloomfield et al., 2018; Vilhena and Antonelli, 2015). We ran the algorithm 1000 times, selecting

the network partition with the best quality.

To consider the uncertainty associated with both the species ranges and the community detec-

tion, we conducted a bootstrap analysis. For each species, we resampled with replacement from the

distribution of climatic values within species ranges at a resolution of 0.08˚. We averaged climatic val-

ues occurring within 0.5˚ cells and calculated the proportion of occurrences in each climatic bin. With

resampled data from all species, we generated a bootstrapped network and clustered it with Info-

map 1000 times. We repeated this procedure for 100 bootstrap networks and followed the commu-

nity-stability approach proposed in Calatayud et al., 2019a to calculate the niche domains’ support.

For each identified domain, we calculated the proportion of bootstrap networks with a domain more

similar to Jaccard index 0.5 (Calatayud et al., 2019a).

With obtained niche domains, we detected the climatic regions by identifying areas across the

Earth’s surface that hold the climatic conditions grouped within each niche domain. Finally, to com-

pare climatic regions across tetrapod groups and with Köppen’s classification, we calculated the

AMI. AMI measures the mutual information between two partitions, the classifications of raster pixels

into climatic regions in this case, correcting for the similarity between partitions that are just due to

chance (Vinh et al., 2010). The index is 1 when the partitions are equal and tends to 0 otherwise.

Climatic transition zones
The joint classification of climatic bins and species into domains D allowed us to calculate the bins’

specificity. Though species belong to single domains, typically together with the bins to which they

have many and strong links, they may also have links to bins in other domains. Bins that contain spe-

cies from different domains have low specificity and form a transition zone between domains

(Figure 1; Calatayud et al., 2019b; Bernardo-Madrid et al., 2019). We calculated the specificity SDi
of a climatic bin i in domain D as the sum of link weights wi;j from bin i to species j assigned to the

same domain as the bin, divided by the sum of link weights from bin i to all species j such that

SDi ¼

P
j2Dwi;jP
jwi;j

fori2D: (1)

This index is 1 when the bin connects only to species in the same domain and tends to 0

otherwise.

We projected the specificity values into the geographic space. To all geographical raster cells q

with the climate of climatic bin i, which we call raster cell set Qi, we assigned bin i’s specificity. The

projected specificity is SPq .

Finally, we explored the relationship between the average SD and bootstrap support. We fitted a

logistic GLMM of bootstrap p-values as a function of the mean SD and the taxonomic group. We

used the R (R Development Core Team, 2018) package lme4 (Bates et al., 2015) with the mean SD

as a fixed term and the taxonomic group as a random intercept term.

Geographical signal
To quantify the geographical signal, we compared the geographically projected specificity SP with

the actual specificity based on the pool of species that co-occur geographically. Large differences
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between the species co-occurring in the climatic and geographic spaces indicate a strong geo-

graphic signal. For instance, when species assigned to the same domain co-occur only in a portion

of the corresponding geographical space, geographical areas with mismatching species contribute

to a strong geographical signal. Areas that host most of the species associated with a niche domain

have a higher actual specificity than the projected indicates. Areas that are not, or only scarcely, col-

onized by these species have a lower actual specificity than the projected indicates.

Using Equation 1, we calculated the actual specificity of a geographical raster cell q, whose cor-

responding climatic bin i is in domain D (q 2 Qi and i 2 D), as the ratio between the sum of link

weights from bin i to species in raster cell q that belong to its associated domain and the total link

weight from bin i to all species in q,

SAq ¼

P
j2D;qwi;jP
j2qwi;j

forq2Q%iandi 2D: (2)

To calculate the geographical signal G, we averaged the absolute difference between the pro-

jected and actual specificity of each climatic raster cell q at 0.5˚ resolution,

G¼
1

N

XN

q¼1

jSAq � SPq j; (3)

where N is the total number of raster cells. This index is 0 when there is no geographical signal and

tends to 1 for high signals.
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Appendix 1

Selecting the number of bins
Dividing the climatic space into an optimal number of bins is critical because it can affect subsequent

classifications. On the one hand, an insufficient number of bins may destroy information. For

instance, in the extreme case of using only one bin, all the species will belong to the same climatic

niche. On the other hand, an excess of bins may lead to niche domains with only a few specialist spe-

cies, which are not suitable for a global climate classification. The optimal value is in between these

extremes. Intuitively, the differences in the species’ climatic niches increase with the number of bins.

Yet, when the bins are enough to capture the main differences among species’ niches, increasing

the number of bins will not increase these differences. In other words, when the number of bins is

sufficient to describe the main information of the system, more bins will not significantly increase the

information contained in the species niches. Therefore, when the number of bins already captures

the main information, the slope of the relationship between the differences in species’ niches and

the number of bins becomes less pronounced.

To measure the average differences between the niches, we used the well-known Jensen–Shan-

non divergence (JSD). Assuming that each species niche is a probability distribution Pi across the

discretized climatic niche space,

JSD¼Hð
Xn

i¼1

Pi

n
Þ�

Xn

i¼1

HðPiÞ

n
; (4)

where HðPÞ is the Shannon entropy for the species niche P and n is the number of species. The JSD

is bounded between 0, when the probability distributions are equal, and log2ðnÞ, when the distribu-

tions are completely dissimilar. To make results comparable, we normalized JSD by log2ðnÞ.

We discretized the climatic space by dividing PET and AP in quantiles, ranging from 5 to 50 and

increasing in steps of 5. We used the same number n of quantiles in both variables, so the 2D cli-

matic space has n2 bins. For each division, we computed the proportion of observations of each spe-

cies in each bin and calculated the JSD using all species. Finally, we fitted a piecewise regression of

the increments of JSD (DJSD) as a function of the number of divisions. We found that the optimal

number of divisions was 17 in all cases but amphibians, where it was 18 (Appendi 1—figure 9).
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Supporting figures

Appendix 1—figure 1. Tetrapod groups and Köppen’s climatic regions. (A) Geographic location of

tetrapods’ niche domains and Köppen’s climatic regions. (B) Alluvial diagram comparing the climatic

regions between classifications. In the stacks of boxes, one for each classification, a box represents a

climatic region, and the height of the box is proportional to the number of raster cells of the climatic

region. Streamlines connecting boxes in different stacks depict the number of raster cells shared

between climatic regions of different classifications. Colors according to Figure 2.
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Appendix 1—figure 2. Geographic projection of the specificity of the climatic bins (SP) for the stud-

ied groups.
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Appendix 1—figure 3. Distribution of the climatic conditions (black line) and the species (colored

richness values) belonging to the same niche domains of amphibians.
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Appendix 1—figure 4. Distribution of the climatic conditions (black line) and the species (colored

richness values) belonging to the same niche domains of reptiles.
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Appendix 1—figure 5. Distribution of the climatic conditions (black line) and the species (colored

richness values) belonging to the same niche domains of birds.
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Appendix 1—figure 6. Distribution of the climatic conditions (black line) and the species (colored

richness values) belonging to the same niche domains of mammals.
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Appendix 1—figure 7. Distribution of the climatic conditions (black line) and the species (colored

richness values) belonging to the same niche domains of tetrapods.
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Appendix 1—figure 8. Distribution of (a) annual precipitation and (b) potential evapotranspiration

values. Seventeen divisions of each climatic variable are presented with red dotted lines.
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Appendix 1—figure 9. Predictions of piecewise regression of the increment in Jensen–Shannon

divergence (DJSD) as a function of the number of divisions in the variables defining the climatic space

of all studied groups. The breakpoints and the coefficient of determinations are also provided.
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