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Abstract This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis

complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo

assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-

methylome mapping corrected methyltransferase variant effects previously obscured by reference-

based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles

revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic

cultures, which we formalize as ‘intercellular mosaic methylation’ (IMM). Mutation-driven IMM was

nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is

widespread and associated with differential expression in the DhsdM transcriptome, suggesting

promoter HsdM-methylation directly influences transcription. Finally, comparative and functional

analyses identified 351 sites hypervariable across isolates and numerous putative regulatory

interactions. This multi-omic integration revealed features of methylomic variability in clinical

isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation

in MTBC physiology and adaptive evolution.

Introduction
In 2017, tuberculosis (TB) killed 1.6 million people globally, the most of any infectious disease,

despite significant TB control efforts and the availability of effective TB drugs (WHO, 2017). Multi-

drug-resistant tuberculosis (MDR-TB) threatens control efforts and debilitates patients through a gru-

eling and often ineffective treatment regimen (52% success) (WHO, 2017). The primary causative

agent of TB, M. tuberculosis, has a low mutation rate, and is reported to evolve chiefly through sin-

gle nucleotide polymorphisms (SNPs) (Cohen et al., 2015). However, subpopulations of the patho-

gen consistently persist through chemotherapeutics, eventually developing full antibiotic resistance

(Jain et al., 2016). It is unclear how such a genetically static organism adapts so rapidly to drug

treatment and varied immune pressures.

DNA methylation is a plausible yet scarcely explored alternative mechanism for phenotypic varia-

tion in M. tuberculosis. M. tuberculosis encodes three known DNA methyltransferases (MTases),

MamA, MamB, and HsdM, which each target a different sequence motif for N6-adenine methylation

(Shell et al., 2013; Zhu et al., 2016). Previous studies have shown that loss-of-function (inactive)
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variants in these genes are common, and often associate with lineage (Phelan et al., 2018;

Zhu et al., 2016). These minor differences in genotype result in radically different methylomes,

potentially explaining the phenotypic variation observed between lineages (Phelan et al., 2018).

However, these studies examined only a handful of isolates from each lineage of the Mycobacterium

tuberculosis complex (MTBC), included few or no resistant isolates, and did not directly examine

kinetics at each motif, relying instead on the motifs identified from single-molecule, real-time

sequencing (SMRT-sequencing) software to classify isolates as lacking methylation of a motif

entirely.

Prokaryotic DNA methylation has been shown to mediate diverse functions (Hernday et al.,

2002; Ringquist and Smith, 1992; Wright et al., 1997), far beyond its originally understood role as

the self-protective component of Restriction-Modification systems (RM systems). MTases that lack

restriction enzymes, termed ‘orphan’ MTases (Blow et al., 2016) are highly conserved within phyla,

and nearly ubiquitous, though diverse, across phyla, suggesting orphan MTases are functionally

important (Blow et al., 2016). In M. tuberculosis, both MamA and HsdM are orphan MTases, while

MamB shares sequence homology with Type IIG RM enzymes (Zhu et al., 2016), and therefore

ostensibly has a functional restriction endonuclease domain. One emerging role for orphan MTases

is regulating transcription (Ardissone et al., 2016; Low and Casadesús, 2008). In M. tuberculosis,

MamA-mediated transcriptional regulation has been demonstrated at four promoters in M. tubercu-

losis (Shell et al., 2013), presumably through interaction with the �10 promoter element. A second

characterized mechanism of DNA methylation mediated cis-regulation is interaction between meth-

ylated bases, MTases, and transcription factors (Beaulaurier et al., 2015; Hernday et al., 2002;

Stephenson and Brown, 2016), which has been hypothesized to occur at specific sites in M. tuber-

culosis (Phelan et al., 2018; Zhu et al., 2016).

Previous interrogation of cis-regulation by DNA methylation in M. tuberculosis through SMRT-

sequencing identified seven differentially methylated sites upstream of differentially expressed

genes (Gomez-Gonzalez et al., 2019). However, only Euro-American and Indo-Oceanic (IO) isolates

were analyzed, and only the 200 base pairs (bp) upstream of differentially expressed genes were

examined for methylation, rather than a window more rigorously informed by mapped promoters

and potential mechanisms of cis-regulation. More recently, an integrative analysis of SMRT-sequenc-

ing kinetics and differential transcription (RNAseq) following MTase knockout (DhsdM) in a M. tuber-

culosis clinical isolate concluded that HsdM-methylation did not directly affect transcript levels under

their tested conditions (Chiner-Oms et al., 2019). However, the single tested condition and limited

definition of HsdM-methylated promoters (overlap with SigA Pribnow boxes) invoke skepticism

toward this conclusion. Thus, the extent of DNA methylation mediated transcriptional regulation in

the MTBC and its effect on phenotype remain open questions.

Heterogeneous DNA methylation has been reported in several bacterial species (Casadesús and

Low, 2013). Heterogeneous methylation can be caused by spontaneous mutations inactivating

MTase coding genes (Casadesús and Low, 2013), site-specific occlusion from DNA-binding proteins

(Atack et al., 2018; Beaulaurier et al., 2015; Wallecha et al., 2002), or intracellular stochastic

methylation (Beaulaurier et al., 2015). When DNA methylation regulates gene expression, hetero-

geneous methylation creates multiple phenotypes within isogenic populations (Casadesús and Low,

2013). This phenotypic plasticity aids rapid adaptation to changing environmental pressures

(Cota et al., 2016) and nutrient constraints (Atack et al., 2018) for other bacteria. However, no

study has examined heterogeneous methylation in M. tuberculosis.

Here, through comparative, functional, and heterogeneity analysis, we sought to characterize

how DNA adenine methylomes vary within and across MTBC clinical isolates.

Results

Integrative analysis of whole DNA adenine methylomes of 93 MTBC
clinical isolates
We analyzed MTBC DNA adenine methylomes through four strategies (Figure 1). First, we used fin-

ished genomes assembled from long-read sequencing data and transferred annotations of functional

and regulatory elements from virulent M. tuberculosis type strain H37Rv. This retained syntenic rela-

tionships and enabled facile comparative analyses without invoking assumptions inherent to ab initio
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Figure 1. Study design and approach to whole-methylome analysis. (A) Isolate selection. M. tuberculosis clinical isolates were obtained from

tuberculosis (TB) patient sputa from four countries of high TB-burden (India, Moldova, South Africa, and The Philippines), and Sweden (primarily

isolated from migrants originating in high TB-burden countries). Isolates were cultured, DNA extracted and sent to the Genomic Medicine Genomics

Center at UCSD for amplification-free sequencing (PacBio RSII, P6C4 chemistry). Clinical isolates were supplemented by technical replicate control runs

of avirulent reference strains, and publicly available clinical isolates along with technical triplicates of H37Rv (BioProject Nos. PRJNA555636,

PRJNA329548, PRJEB8783). (B) Methylome assembly and annotation. Raw kinetic data were log-transformed, scaled, and standardized according to

run-specific statistics in unmodified bases (Figure 1—figure supplement 1). Variation between technical replicates were used to adjust priors based on

coverage to build pdfs for a Bayesian classifier. Methylation status of characterized motifs was classified with a Bayes’ classifier based on kinetics of

unmodified and modified bases for each motif (Materials and methods). We processed all motifs of identified MTBC complex methyltransferases

(Zhu et al., 2016) and assembled the methylome of each isolate with each motif site classified as methylated, hypomethylated, or indeterminate. We

annotated each assembled methylome with overlapping and proximal features transferred by Rapid Annotation Transfer Tool (RATT) (Otto et al.,

2011) from virulent type strain H37Rv. (C) Methylome variation. We mapped MTase genotypes to methylation levels of their motifs to describe novel

Figure 1 continued on next page
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methods. Second, we included the sequencing kinetics at all MTase motif sites in every isolate. This

contrasts with the approach of prior M. tuberculosis methylome studies (Chiner-Oms et al., 2019;

Gomez-Gonzalez et al., 2019; Phelan et al., 2018; Shell et al., 2013; Zhu et al., 2016), which

examined only the MTase motifs identified by PacBio MotifMaker (https://github.com/PacificBio-

sciences/MotifMaker). This systematic approach revealed MTase genotypes with partial function,

previously mischaracterized as completely inactive (Gomez-Gonzalez et al., 2019). Third, we used

phylogenetic analysis to identify convergent MTase activity and heterogeneity analysis to character-

ize epigenomic diversity in vitro. Finally, we integrated transcription start sites (TSSs), transcription

factor binding sites (TFBSs), and sigma factor binding sites (SFBSs) into our methylomic analyses.

This helped us identify promoter methylation and potential cis (promoters and SFBSs) and trans

(TFBSs) interactions between MTase motif sites and regulatory effectors.

For every isolate, the average inter-pulse duration (IPD) ratio was calculated across the reads

mapping to each base. To characterize the noise in these measurements, we compared the IPD

ratios at each base between technical replicates of reference strain H37Ra (Figure 1—figure supple-

ment 1). We then scanned the genomes for all matches to the known target motifs (Zhu et al.,

2016) of established M. tuberculosis MTases and examined their IPD ratios (Figure 2A). Mean sin-

gle-strand coverage at target motif sites within clinical isolates ranged from 25x-152x (median = 64).

Epigenomic convergence across lineages
Comparing the distribution of these IPD ratios in each isolate established their MTase activity profile

and the functional impact of MTase mutations (Figure 2A, Supplementary file 1). Each MTase had

at least three distinct loss-of-function or partially active mutations (Figure 2A). To determine how

activity profiles distributed across M. tuberculosis evolution, we mapped the MTase genotypes to a

phylogenetic tree (Figure 2B). MTase activity converged across lineage (through multiple distinct

mutations) and varied within lineage (Figure 2B and D). The East-Asian (EAS), Euro-American, and

IO lineages each had multiple profiles among their members (Figure 2B and D). This contradicts

one previous analysis on a smaller isolate set that reported lineage-specific methylation

(Phelan et al., 2018), and corroborates the opposing conclusion reached in another recent publica-

tion (Chiner-Oms et al., 2019).

Diverse mutations drive DNA methyltransferase activity profiles
Cumulatively, the 93 M. tuberculosis and M. africanum isolates harbored 40 distinct mutations within

the known MTase genes mamA, mamB, and hsdM/hsdS, including 29 previously unreported

(Supplementary file 1). Comparing the IPD ratio at each base matching the MTase target motifs

across isolates revealed the effect of each variant on MTase activity (Figure 2A). The isolates had

four novel loss-of-function mutations: mamB H770N, mamB DELG2543, mamB INS1181-1583, and

hsdM DEL900-909. This comparison also confirmed that variant hsdS L119R inactivates MTase activ-

ity in the HsdM complex. Previously, hsdS L119R had been observed only in tandem with another

loss-of-function mutation, hsdM G173D (Chiner-Oms et al., 2019; Phelan et al., 2018). One isolate

had hsdS L119R alone, and its HsdM motifs were unmodified (Figure 2A). Twenty-nine MTase muta-

tions had no apparent effect on MTase activity, 23 of which were previously unreported

Figure 1 continued

active, partially active, and inactive alleles responsible for varying degrees of motif methylation (Supplementary file 1). We analyzed heterogeneity with

SMALR (Beaulaurier et al., 2015) to characterize the capacity for methylomic variation within isogenic colonies and to probe for phase variation. We

applied phylogenetic analysis of MTase genotypes and their corresponding methylation activity profiles to determine how DNA methylation across

evolutionary time and identify epigenetic convergence across lineages. (D) Comparative and functional methylomics. We surveyed whole methylomes

to identify motif sites and isolates with anomalous patterns. To examine motif sites consistently classified as hypomethylated for previously described

causes of hypomethylation (Beaulaurier et al., 2019), we screened against published TFBS affinities (Minch et al., 2015) for interactions with DNA

methylation (Supplementary file 5). We also screened for proximal motif sites among hypomethylated bases, which can create epigenetic ‘switches’

(Hernday et al., 2002). To identify putative cis-regulatory interactions with DNA methylation (Supplementary file 6), MTase motif sites were integrated

with promoter element annotations (transcription start sites and sigma factor binding motifs).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Kinetic data pre-processing and quality control.
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Figure 2. MTase activity patterns and genotypes across clinical and reference strains. (A), Boxplots of inter-pulse duration (IPD) ratio distributions within

MamA (top pane), HsdM (middle pane), and MamB (bottom pane) target motifs for each M. tuberculosis or M. africanum isolate. Boxplots are colored

by mamA, hsdM, and mamB genotype. In one isolate, hsdS L119S mutation disrupted methylation capacity and is marked by an asterisk (*). In each

pane, horizontal lines mark the mean log2 (IPD ratio) of motif sites for isolates with active (mint line) and inactive (red line) MTases. (B) SNP-based

phylogenetic trees with mutations mapped for each MTase. Isolates are colored by MTase genotype using the same colors as the boxplots in A, except

for MamB, which is colored by MTase activity. The phylogeny was built using maximum likelihood on a concatenation of 22,393 SNPs with M. bovis and

M. canetti as outgroups. Colors of the outer rung indicate lineage. (C) Phylogeny of isolates in this study with branches colored according to the MTase

activity profile. Colors of the outer rung indicate lineage according to the same color scheme as B. (D) Density traces of sequencing kinetics for each

isolate at every motif site, organized into panes by MTase (columns) and lineage (rows), and colored by the activity of their MTase. The fill underneath

each density trace is rendered translucent such that overlapping distributions from multiple isolates appear progressively darker as a function of the

number of overlapping distributions.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Scaled log2 (IPD ratios) for each site with MTase genotype.

Source data 2. Scaled log2 (IPD ratios) for each site across isolates with lineage metadata.

Figure supplement 1. Correction of a mischaracterized mamB variant effect via direct comparative genomics.

Figure supplement 2. Methyltransferase activity by isolate count.
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(Supplementary file 1). All isolates had at least one active MTase (Figure 2C), yet only 32/93 clinical

isolates had all three MTases active (Figure 2—figure supplement 2).

In total, 12 different mutations had reduced or inactive MTase function (three hsdM/hsdS, five

mamB, and four mamA), demonstrating that MTase disrupting mutations are repeatedly selected

for, although almost all individual mutations are monophyletic (Figure 2A and B).

Recently, mamB D59G was reported as the sole variant in a MamB inactive isolate (Chiner-

Oms et al., 2019) (SRA: ERR956955, ERR964401). We identified four Indo-Oceanic isolates with

mamB variant D59G, but all four also harbored V616A (Supplementary file 2). Two of these four iso-

lates were active and had no other mutations. However, the other two were MamB inactive and car-

ried a 1356 bp insertion that we have identified as an IS6110 insertion sequence (Figure 2—figure

supplement 1). One of these inactive isolates was the same isolate recently reported with mamB

D59G alone (Chiner-Oms et al., 2019). The prior study did not report the mamB insertion, likely due

to their reference-mapping of short reads to call MTase variants (van Dijk et al., 2018). However, it

is unclear why their methods did not capture V616A. Considering that MamB was active in isolates

carrying mamB D59G without the insertion, we conclude the insertion was responsible for inactivat-

ing MamB.

Our approach resolves the disputed functional impact of mamA variant E270A (mamAE270A), com-

mon to the EAS lineage (ref (Phelan et al., 2018) and Supplementary file 2). Nucleoside digestion

previously showed low-level methylation in mamAE270A mutants (Shell et al., 2013). However, subse-

quent SMRT-sequencing studies reported contradictory findings. Three studies reported a lack of

methylation at all MamA motif sites in mamAE270A isolates (Gomez-Gonzalez et al., 2019;

Phelan et al., 2018; Zhu et al., 2016) while another reported partial methylation in one mamAE270A

isolate, and a complete lack of methylation in two mamAE270A isolates (Chiner-Oms et al., 2019). In

the 34 isolates with mamAE270A, MamA motif sites had intermediate IPD ratios (Figure 2A, top),

indicating partial activity. Our analysis revealed three additional MTase alleles that conferred partial

MTase activity: hsdMK458N;E481A, mamAG152S, and mamBK1033T (Figure 2A). These isolates had IPD

ratio distributions consistent with neither homogenously methylated nor unmethylated sites

(Figure 2A & D).

We hypothesized that these isolates’ intermediate IPD ratios were due to heterogeneous methyl-

ation. IPD ratios are reported as the average IPD ratio observed across sequencing reads mapped

to each position, which originate from different cells. Therefore, if isolate colonies contained subpo-

pulations of cells with different methylomes, it would result in the intermediate IPD ratios we

observed. Heterogeneous methylation can be caused by different phenomena, including phase-vari-

ant MTase activity, intracellular stochastic methylation, or transient hemimethylation from a subset of

cells undergoing cell division. To distinguish between these possibilities, we examined IPD signals at

the read level using SMALR (Beaulaurier et al., 2015).

A subset of DNA MTase alleles drive constitutive intercellular mosaic
methylation in M. tuberculosis
Within each sequencing read, the software SMALR (Beaulaurier et al., 2015) calculates the average

IPD (natural log-transformed) across multiple motif sites targeted by the same MTase. This ‘native

IPD value’ will be higher in reads where each motif site is methylated, lowest in reads with no motif

sites methylated, and intermediate in reads with a fraction of motif sites methylated (Figure 3H).

Thus, the distribution of native IPD values in an isolate can discriminate homogenous methylation (or

unmethylation) from two types of heterogeneous methylation: phase-variant MTase activity and

intracellular stochastic methylation (Beaulaurier et al., 2015). Phase-variant MTase activity causes a

distinctive bimodal distribution in SMALR native IPD values, while intracellular stochastic methylation

results in a unimodal distribution with a mean between that of fully methylated and fully unmethy-

lated sequences (Beaulaurier et al., 2015). SMALR native IPD values can also potentially distinguish

transient hemimethylation from intracellular stochastic methylation and phase-variant MTase activity.

Previously, transient hemimethylation was attributed to the small fraction (0.07%) of unmethylated

reads observed in cultures with otherwise fully methylated reads (Beaulaurier et al., 2015). Transient

hemimethylation would thus likely manifest in SMALR native IPD values as a bimodal distribution

with a small minority of entirely unmethylated reads among a majority of methylated reads.

The native IPD values for MamA motif sites in each sequencing read distributed normally in the

49 mamA wild-type isolates, with a mean native IPD of 2.15 (per-isolate means: 1.96–2.28)
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(Figure 3A), indicating that MamA motifs on most reads in these isolates were entirely methylated

(Beaulaurier et al., 2015). The four isolates with inactive allele mamAW136R each distributed normally

(mean = �0.107, Figure 3B) indicating a consistent lack of MamA-methylation. In contrast, the four

isolates with partially active variant mamAG152S distributed normally with varied per-isolate means

(range: 0.22-0-1.19). Their consensus mean native IPD value (0.766) was substantially above

mamAW136R (Cohen’s d = 1.10, 95% CI 1.04–1.17; two-tailed t-test p = 3.20�10�207) and below

mamA wild-type isolates (d = 2.14, CI 2.09–2.20, p<2.23�10�308, Figure 3C, Figure 3—source data

1). Each mamAG152S isolate individually had a lower mean value than wild-type as well (d for isolate

with lowest effect size = 0.48, CI 0.39–0.57, p = 9.74�10�21). This unimodal, normal distribution of

intermediate native IPD values implies intracellular stochastic methylation, rather than phase-variant

Figure 3. Characterizing methylation heterogeneity in M.tuberculosis clinical isolates. Native IPD value (nat) is the subread-mean normalized natural log

of IPDs (as output from SMALR Beaulaurier et al., 2015) across all motif sites within a subread. (A-G) depict the distribution of mean native IPD values

among subreads for each isolate of the specified MamA or MamB allele. Each colored trace corresponds an isolate. Each pane has two reference

curves: a mean native IPD value, number of measurements (isolates), and identical standard deviation identical to those of the inactive genotypes (light

blue) and a curve with a mean native IPD value, standard deviation, and number of observations (isolates) identical to that of isolates with wild-type

MamA (A-D) or MamB (E-G) activity (light violet). (A) mamAWT. (B) mamAW136R. (C) mamAE270A. The dotted vertical line marks the mean native IPD value

for all mamAE270A isolates. (D) mamAG152S. (E-G) Putative heterogeneous methylation by mamBK1033T mutant (same as A-D, but for mamB). Only

isolates with >19 qualifying subreads are included (at least 6 CACGCAG motifs are required within the subread to qualify). (E) Wild-type MamB (n = 16

passing inclusion criteria). There is no consistent signature of stochastic heterogeneity or phase variation. (F) mamBK1033T (n = 1) appears to exhibit low

MTase activity, with mean native IPD dotted line well below that of wild-type MamB and the inactive genotypes (solid black line) and significantly

greater than the mean native IPD value of inactive genotypes, suggesting stochastic heterogeneity. This native IPD value resembles the low-level

MTase activity in isolates harboring the mamAE270A allele. (G) All qualifying isolates (n = 5) with mamB inactive alleles. Despite harboring different

nonsynonymous mamB mutations (n = 4), mamB motifs appear entirely unmethylated, with a native IPD value consistent with inactive MTase genotype

(Beaulaurier et al., 2015) and no clear signals of phase variation or intracellular stochastic heterogeneity. (H) Stochastic versus phase-variable

methylation. Conceptual illustration depicting the distinction between methylome diversity within colonies exhibiting phase-variable methylation (top)

and stochastic methylation (bottom). Each gray segment represents a chromosome from an individual cell within the colony. Each oval within the

segment represents a motif site, illustrated as methylated (mint) or unmethylated (red).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Read-level sequencing kinetics of MamA MTase motif sites in 93 MTBC clinical isolates.

Source data 2. Read-level sequencing kinetics of MamB MTase motif sites in 93 MTBC clinical isolates.

Figure supplement 1. Observed distribution of native IPD values in methionine-starved H37RvDmetA compared to simulated phase-variant mixture.
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MTase activity (Beaulaurier et al., 2015). While phase-variant MTase activity has been observed in

many bacteria, intracellular stochastic methylation has previously only been observed in a single spe-

cies, Chromohalobacter salexigens (Beaulaurier et al., 2015).

After observing this intracellular stochastic methylation in mamAG152S isolates, we analyzed het-

erogeneity in isolates with partially active MamA (E270A) and MamB (K1033T). The 34 mamAE270A

isolates had a methylated fraction (mean = 0.0558, Figure 3C) lower than those of wild-type isolates

(mean = 2.15) and higher than the methylated fraction of isolates with inactive allele W136R

(d = 0.23, p = 8.68�10�25), indicating intracellular stochastic methylation. Native IPD values for

mamB wild-type (mean = 2.24) were significantly (p = 0.0006) though slightly (d = 0.15, CI 0.05–

0.25) higher than for mamA wild-type, consistent with homogenous methylation. MamB inactive

alleles (mean = �0.235) were modestly lower (d = 0.19, CI 0.008–0.377) than inactive allele

MamAW136R with borderline statistical significance (p = 0.041), suggesting that mamAW136R may

have retained a miniscule amount of MTase activity. However, the effect of methylation of sequenc-

ing kinetics can vary between motif sequences, and so we cannot conclude from our data that lim-

ited activity is present. We therefore continue to consider mamAW136R to be an inactive allele. Like

mamAE270A, the mean native IPD value for mamBK1033T was greater than in inactive alleles (d = 0.77,

CI 0.34–1.21, p = 0.007) consistent with intracellular stochastic methylation (Figure 3E–G). Multiple

HsdM motif sites clustered together on the same subread too infrequently for analysis with SMALR,

precluding analysis of potential heterogeneity with SMALR (isolates had on average 3898.6 MamA,

822.9 MamB, and 719.4 HsdM sites).

While these intermediate native IPD value distributions for mamAE270A, mamAG152S, and

mamBK1033T are consistent with intracellular stochastic methylation, they would also be produced by

consistent methylation of some motif sites and consistent lack of methylation in the remaining sites.

By examining isolates with these partially active alleles, we see that mean IPD ratios for motif sites

distribute unimodally at intermediate values rather than bimodally (purple-filled traces for MamA

and MamB, Figure 2D). Therefore, we reject this alternative explanation and conclude that intracel-

lular stochastic methylation generates diverse combinations of methylated motif sites within the

bacilli from which the sequenced DNA was isolated. We call this epigenetic mosaicism ‘intercellular

mosaic methylation’. The methylomic diversity in intercellular mosaic methylation is distinct from the

two discrete phases generated from phase-variable methylation, instead generating a mosaic of

methylation patterns among the cells comprising an isogenic colony (Figure 3H).

Next, we asked whether methionine restriction could induce intercellular mosaic methylation in

isolates with wild-type MTase function. Methionine is directly linked to DNA methylation by its

requirement of S-adenosyl methionine (SAM) as the methyl group donor (Parveen and Cornell,

2011). We reasoned that if methionine starvation induces intercellular mosaic methylation, the effect

could be extrapolated to other nutrient restrictions that limit flux through the adenine methylation

reaction, such as precursor metabolites for SAM synthesis or trace metal ion cofactors required for

SAM biosynthesis (Czyrko et al., 2018) and adenine methylation (Bist and Rao, 2003). We ran

SMALR on published kinetic data from metA-knockout H37Rv methionine auxotrophs (DmetA)

SMRT-sequenced following 5 days of methionine starvation (Berney et al., 2015).

To test for intercellular mosaic methylation in DmetA we compared its native IPD value distribu-

tion to a mixture of wholly methylated and wholly unmethylated reads (Figure 3—figure supple-

ment 1A). This simulated mixture was sampled from mamA wild-type and inactive isolates, in

proportion to produce the same mean as DmetA. The DmetA native IPD value distribution was dis-

tinct from the simulated mixture, with fewer fully methylated reads and more partially methylated

reads (Figure 3—figure supplement 1). These results are consistent with a mixture of fully methyl-

ated reads inherited from bacilli born prior to methionine deprivation and stochastically methylated

reads from daughter strands that underwent partial re-methylation following starvation. These

results suggest that intercellular mosaic methylation can be induced by nutrient limitation (at least

for methionine, and presumably other nutrient constraints that limit flux through the adenine methyl-

transferase reaction), providing a potential mechanism of environmentally induced phenotypic

heterogeneity.

Anomalous methylation patterns in orphan MTase motif sites
Next, we surveyed all common motif sites (present in �75 isolates, n = 4,486; Supplementary file 3)

for patterns in their variation across isolates and motif sites. IPD ratio distributions were stable within
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isolates the same MTase allele except for partially active mutants (Figure 4A), consistent with prior

observations that motif sites are typically invariably methylated or invariably unmethylated

(Blow et al., 2016). Most of the isolates with anomalous methylation had mamA alleles with partial

activity, while a few isolates with hsdM alleles with full activity had anomalous methylation patterns

(arrows, Figure 4B).

Analyzing variation across motif sites of active wild-type isolates revealed three interesting fea-

tures. First, while most motif sites were primarily methylated (light yellow), a subset had significantly

lower median IPD (Figure 4A–C). Second, among the mostly methylated motif sites, a handful had

lower IPDs in a subset of isolates (Figure 4A–C, Figure 4—figure supplement 2B). The converse

was also true; some motif sites with low median IPDs had higher IPDs in a subset of isolates. Third,

partially active MTases had distinct methylation profiles with median IPDs between those of inactive

and wild-type (Figure 4D). All three features were more pronounced in HsdM and MamA motif sites

than in MamB (Figure 4A–C,E).

MamA and HsdM are orphan MTases, which frees their motif sites to remain unmethylated with-

out risking degradation from a cognate restriction enzyme (Blow et al., 2016), potentially explaining

their variable methylation (Zhu et al., 2016) compared to MamB. To corroborate MamB as a full RM

system rather than an orphan MTase, we searched InterPro database for functional domains and

identified a putative restriction endonuclease (REase) domain (Figure 4—figure supplement 1) as

its cognate REase. Single chain restriction-modification fusions are a defining characteristic of Type

IIG RM systems (Shen et al., 2011), which MamB belongs to Zhu et al., 2016. Orphaned MTases

can safely leave motif sites unmethylated, affording the opportunity to evolve essential functions

(Blow et al., 2016). At such sites, advantageous methylation states can be selected for following

prolonged culturing. Considering this, we sought to identify motif sites that were hypervariable

across strains with active MTases, reasoning that it would indicate differential selection for methyla-

tion status during culture prior to sequencing and highlight interesting differences between strains.

To find hypervariable sites, we calculated the standard deviation (SD) in IPD ratio across isolates for

each MTase site. Variation across isolates for each qualifying motif site was compared against the

distribution of SD (standard deviation of SD across MamB sites) in MamB sites (Figure 4E, Figure 4—

figure supplement 2C), because they distributed normally and with few outliers (Figure 4—figure

supplement 2A). We defined motif sites with SD �3 standard deviations above the mean SD of

MamB motif sites. Of 4486 common (in �75 isolates) MTase motif sites, 351 were hypervariable

(Supplementary file 4). These hypervariable sites fell within 204 coding regions, and within pro-

moter-proximal regions upstream (within 100 bp) of 25 TSSs (Supplementary file 4). Yet only seven

hypervariable sites were MamB motifs. Hypervariability was 9.43-fold more prevalent in motif sites

of orphan MTases than in MamB motif sites (95% CI: 4.50–23.7). This marked enrichment

(p = 3.39�10�17, two-tailed Fisher’s exact test) of hypervariable motif sites in MamA (n = 240) and

HsdM (n = 104) is consistent with the lack of selection pressure against unmethylated sites character-

istic of orphan MTases (Blow et al., 2016).

Hypomethylated MTase motif sites are rare yet remarkably consistent
across isolates
One characteristic of orphan MTases is hypomethylated sites, specific genome sites lacking or

absent of methylation despite the presence of an MTase target motif and active MTase (Blow et al.,

2016). Hypomethylated sites have previously been found in M. tuberculosis (Zhu et al., 2016) and

many other bacteria (Blow et al., 2016; Hernday et al., 2002; Ringquist and Smith, 1992). To iden-

tify hypomethylated sites in each of our isolates, we applied Bayesian classification to their sequenc-

ing kinetics. Active isolates averaged 20.7 hypomethylated HsdM sites, 13.4 hypomethylated MamA

sites, and 0.289 hypomethylated MamB sites (Figure 5—figure supplement 1), comparable to previ-

ous reports (Zhu et al., 2016). However, while rare, these hypomethylated motif sites showed

remarkable consistency, with the same MTase motif loci hypomethylated in multiple isolates. The

most conserved hypomethylated locus was within mmpL4, 1,719 bp downstream of its start. Despite

having a MamA target motif, this locus was unmethylated in 51 MamA active isolates (Table 1). In

total, 34 MamA loci and 58 HsdM loci were consistently hypomethylated (p-value<4.72E-07, cumula-

tive binomial, Supplementary file 5). These loci included 18 of the top 10 frequently hypomethy-

lated MamA and HsdM sites in a previous study of 12 MTBC strains (Table 1). This consistency
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Figure 4. Comparative methylomics identifies DNA methylation anomalies in orphan MTases and motif sites. Heat maps of sequencing kinetics for (A)

MamA, (B) HsdM, and (C) MamB motifs at all common (in �75 isolates) motif sites (y-axis), descending according to median sequencing kinetics (log2

(IPD ratio)). Isolates (x-axis) are sorted from left to right by activity level, lineage, and genotype in decreasing priority. Lineages are Indo-Oceanic (IO),

East-Asian (EAS), East-African-Indian (EAI), Euro-American (E), Ethiopian (Lineage 7), and the M. africanum lineages 5 and 6. Dots on the rotated plot

adjacent to the heatmap express the median log2 (IPD Ratio) for each site across isolates. Darker and lower dots indicate a lower median (log2 (IPD

Ratio)). Red arrows mark isolates with wild-type or near wild-type MTase activity that exhibit hypomethylation at more motif sites (dark bands) than

other wild-type isolates. Blue arrows mark two isolates with significantly fewer hypomethylated motif sites than other isolates with wild-type HsdM

activity, for unknown reasons. The green arrow in the MamB plot marks an isolate with an IPD ratio significantly higher than expected for an inactive

isolate, suggesting some MTase activity for the genotype. (D) Distribution of standard deviation (sd) sizes among MamA motif sites across isolates with

one of three methylation activity levels: partial MamA activity from the E270A mutation common to EAS isolates, the loss-of-function W136R mutation

(‘knockout mutant’), or one of the genotypes encoding MamA with wild-type methylation activity. (E) Position (x-axis) in a representative genome and

variability sd of (log2 (IPD Ratio)) in sequencing kinetics across isolates with active MTase (y-axis) at common motif sites (present in 75 or more isolates).

Motif sites within three sd of the mean for MamB motifs are gray, and the outliers (>3 sd from mean) are highlighted in red. CDSs within which each of

the top 10 most variable sites for each MTase occur are labeled, along with their palindromic partner motif site.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Sequencing kinetics for all common (in >75 isolates) MamA motifs.

Source data 2. Sequencing kinetics for all common (in >75 isolates) HsdM motifs.

Source data 3. Sequencing kinetics for all common (in >75 isolates) MamB motifs.

Source data 4. Per-site sequencing kinetics variability for all common (in >75 isolates) MamA motifs, with MamA activity.

Source data 5. Per-site sequencing kinetics variability for all common (in >75 isolates) motifs, with variability classification.

Figure supplement 1. mamB mutations mapped to InterPro functional domains and predicted 3D structure.

Figure supplement 2. Statistical features of hypomethylated and hypervariable motif sites.
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Table 1. Consistently Hypomethylated MTase Motif Sites Across Clinical M.tuberculosis isolates.

The top 20 most significant hypomethylated loci from each MTase. For each methyltransferase (‘MTase’) motif target locus (‘Gene’,

‘Sense’, and ‘Position’), we counted the number of isolates in which the isolate was hypomethylated and the total number of isolates

that possessed the locus (‘Hypomethylated’). This fraction was used to perform a cumulative binomial probability test (‘p-value’). Loci

with p-values below 4.72E-07 were considered significant at 0.01 significance level, after Bonferroni correction for multiple hypothesis

testing. Loci were assigned by our methylome annotation pipeline using H37Rv reference annotations transferred from Rapid Annota-

tion Transfer Tool (RATT) (Otto et al., 2011). For each palindromic pair, the locus with the most significant hypomethylated fraction is

reported. In case of a tie, the locus on the same strand as the gene is reported. The fraction of active isolates hypomethylated at the

partner site is included (‘Palindrome’). The surrounding 20 bases of each loci were scanned for transcription factor binding site motifs

previously characterized in M. tuberculosis (Minch et al., 2015). The most significant motif match was included (‘Top TF’). Only tran-

scription factor binding motifs with an E-value below 0.01 were scanned for, and only matches with a p-value (converted log-likelihood

ratio score) below 0.0001 were reported. MTase motif loci less than 100 bp from another locus targeted by the same MTase were

labeled (‘Yes’ in column ‘Nearby Motif’). Genes that were previously reported (Zhu et al., 2016) to contain frequently hypomethylated

sites are marked with an asterisk.

Gene Sense Position Hypomethylated p-value
Palin-
drome Top TF Annotated Function

Nearby
Motif

HsdM

rocA* sense 834 67/70 2.49E-99 67/70 Rv3488 Probable pyrroline-5-carboxylate
dehydrogenase

cobK* sense 304 50/68 6.15E-62 50/68 Rv2788 Precorrin-6X reductase Yes

Rv1461* antisense 559 47/70 3.17E-55 37/70 Rv1956 Iron-sulfur cluster assembly protein

Rv2963* sense 683 46/70 2.10E-53 46/70 Rv2788 putative ion transporter

PPE24* antisense 2275 33/33 1.31E-51 32/33 Rv3133c PPE family protein PPE24

metA* antisense 391 42/70 2.20E-46 40/70 Rv2324 homoserine O-acetyltransferase

pks6* sense 423 26/34 1.18E-33 9/34 Rv1719 Probable membrane bound polyketide synthase

PPE24* antisense 1807 17/17 6.14E-27 16/17 Rv3133c PPE family protein PPE24

pks6* sense 424 21/32 3.97E-25 14/32 Rv1719 Probable membrane bound polyketide synthase

pyrC sense 744 20/70 5.90E-15 19/70 Rv1049 Probable dihydroorotase PyrC

Rv3179 upstream 36 9/9 1.33E-14 9/9 Rv1816 Conserved protein Yes

Rv3179 upstream 49 9/9 1.33E-14 9/9 Rv1816 Conserved protein Yes

gcA* antisense 467 19/69 5.89E-14 14/69 Rv1473A Possible GDP-mannose 4,6-dehydratase

Rv2279 antisense 693 10/21 1.01E-10 9/21 Rv1776c Probable transposase

lpqG upstream 93 14/54 2.85E-10 8/54 Rv1219c Probable conserved lipoprotein LpqG

Rv2038c sense 183 14/69 9.05E-09 9/69 Rv2989 Probable sugar-transport ATP-binding protein
ABC transporter

PPE24* sense 1584 5/5 1.95E-08 5/5 Rv0818 PPE family protein PPE24

MamA

mmpL4* sense 1719 51/51 2.18E-126 49/51 Rv0678 transmembrane transport protein

Rv1049 upstream 7 39/51 1.23E-85 9/51 Oxidation-sensing regulator MosR

Rv1461* antisense 472 38/50 2.73E-83 35/50 Iron-sulfur cluster assembly protein Suf Yes

treZ* antisense 1272 31/35 2.14E-72 26/35 Maltooligosyltrehalose trehalohydrolase

accE5 downstream 447 20/33 2.89E-41 3/33 acetyl-/propionyl-coenzyme A carboxylase

PPE34* sense 1664 13/20 7.05E-28 7/20 PPE family protein PPE34

mptA* sense 23 14/31 8.02E-27 3/31 Alpha(1 ->6) mannosyltransferase

accA1* sense 598 13/25 4.65E-26 6/25 Rv0339c Probable acetyl-/propionyl-coenzyme
A carboxylase alpha chain

Yes

Rv3282* antisense 325 12/18 4.93E-26 0/18 putative nucleoside-triphosphate
diphosphatase

fadE7* sense 1069 13/43 3.09E-22 8/43 Rv3488 Acyl-CoA dehydrogenase FadE7 Yes

pks9* sense 2728 13/50 2.93E-21 3/50 Rv0023 polyketide synthase Pks9

Table 1 continued on next page
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would be unlikely if hypomethylation occurred randomly, suggesting there are conserved mecha-

nisms preventing methylation at these loci.

MamB motif sites, in contrast, were thoroughly methylated in MamB active isolates (Figure 5—

figure supplement 1C). Only two MamB motif loci were hypomethylated in a significant number of

isolates, and even these loci were methylated in most isolates (Table 1). The near uniform methyla-

tion of MamB target sites is likely to prevent DNA cleavage from its putative cognate restriction

endonuclease (Figure 4—figure supplement 1).

MamA and HsdM are palindromic, each targeting both a motif and its reverse complement

(Zhu et al., 2016). Thus, every adenine methylated by these enzymes comes with a potentially meth-

ylated partner on the opposite strand. HsdM palindromic pairs were mostly hypomethylated

together. In contrast, many MamA motif pairs were hemimethylated, with one site consistently hypo-

methylated and the other frequently methylated (Table 1). Site-specific hemimethylation functions

as part of multiple characterized processes in other bacterial species (Braun and Wright, 1986;

Roberts et al., 1985) but what role it serves in M. tuberculosis, if any, remains unknown.

Sequence contexts of most hypomethylated sites are consistent with
transcription factor occlusion
In other bacteria, hypomethylation has been attributed to transcription factors occluding MTase

access to DNA when their respective target motifs overlap (Beaulaurier et al.; Hernday et al., 2002;

Stephenson and Brown, 2016). To determine if this may be the case in M. tuberculosis, we scanned

the context sequence of each consistently hypomethylated site for TFBS motifs previously character-

ized in M. tuberculosis (Minch et al., 2015). All 58 consistently hypomethylated HsdM loci matched

at least one significant TFBS motif (p-value<0.0001, converted log-likelihood ratio score), suggesting

transcription factor occlusion was responsible. In contrast, only 14 of the 34 consistently hypomethy-

lated MamA loci significantly matched a TFBS motif (p-value<0.0001, converted log-likelihood ratio

score; Table 1). The abundance of TFBS matches at HsdM motif loci may be due to the lower strin-

gency of its motif (HsdM: GATNNNNRTAC, MamA: CTGGAG). Notably, the TFBS motif of oxida-

tion-sensing regulator mosR (Rv1049) (Peterson et al., 2014) matched multiple hypomethylated

MamA and HsdM loci, and the mosR gene itself had a hypomethylated MamA locus 7 bp upstream

of its TSS (Table 1).

Table 1 continued

Gene Sense Position Hypomethylated p-value
Palin-
drome Top TF Annotated Function

Nearby
Motif

bioB sense 796 11/49 2.04E-17 0/49 Rv1049 biotin synthetase

treZ* upstream 880 8/13 2.46E-17 5/13 Maltooligosyltrehalose trehalohydrolase

Rv1461* antisense 416 10/50 2.08E-15 2/50 Iron-sulfur cluster assembly protein Yes

Rv1278 sense 1469 9/44 4.25E-14 1/44 Putative transport protein

aldA antisense 642 8/48 6.49E-12 0/48 Rv3830c Probable NAD-dependent
aldehyde dehydrogenase AldA

Rv0370c antisense 389 8/50 9.17E-12 0/50 Possible oxidoreductase Yes

frdA* antisense 787 8/51 1.08E-11 0/51 Probable fumarate reductase FrdA

PPE34* sense 3454 4/4 1.39E-10 2/4 PPE family protein PPE34

Rv1251c antisense 1309 7/46 2.69E-10 1/46 Putative ester hydrolase

MamB

PE_PGRS54 sense 112 10/68 8.16E-24 N/A Rv0767c PE-PGRS family protein PE_PGRS54

PE_PGRS57 sense 112 9/68 3.94E-21 N/A Rv0767c PE-PGRS family protein PE_PGRS57

The online version of this article includes the following source data for Table 1:

Source data 1. Multisequence fasta file with context sequence of each consistently hypomethylated MTase Motif Locus.

Source data 2. Output file from FIMO, run with the fasta file Source data 1, and the probability weight matrices of TFBS motifs characterized in H37Rv

(Minch et al., 2015).
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One particularly intriguing example of site-specific hypomethylation was cobK 304, the HsdM

motif site 304 bp inside the gene cobK. This locus was hypomethylated in 50/68 HsdM-active iso-

lates (Table 1). The IPD ratio at cobK 304 across HsdM-active isolates was bimodal (Figure 5A), sup-

porting this finding. The 18 cobK 304 methylated isolates were all IO and grouped together in our

phylogenetic tree (Figure 5B). The context sequence around cobK 304 matched the binding site

motif of transcription factor mntR (Rv2788) (q-value = 0.0136, Table 1), a manganese dependent

repressor (Pandey et al., 2015). This could explain the 50 cobK 304 hypomethylated isolates. If

mntR bound to that site, it could prevent HsdM from methylating it. Meanwhile, genotyping mntR

revealed that all 18 IO isolates shared the variant mntR Q131* (Figure 5B), a nonsense mutation

found previously in IO isolates (Gomez-Gonzalez et al., 2019) that truncates MntR. This truncation

could explain why cobK 304 was methylated in all 18 IO isolates.

Close proximity between MTase motif sites can also cause bacterial hypomethylation

(Casadesús and Low, 2013), wherein methylation of one site is negatively associated with the other,

often forming a regulatory switch. To find evidence of this phenomenon in M. tuberculosis, we

scanned consistently hypomethylated loci for nearby MTase motifs on the same strand (Table 1),

including locus cobK 304. In most isolates, cobK 304 was only 8 bp distant from another HsdM site,

cobK 312 (together making four palindromic motif matches within cobK). In these isolates, cobK 312

was methylated while cobK 304 was hypomethylated. However, in IO isolates the HsdM motif at

cobK 312 was disrupted by a nearby deletion. If MTase crowding was responsible for the hypome-

thylation of cobK 304, then the removal of cobK 312 in IO isolates may be responsible for cobK 304

Figure 5. Evidence of transcription factor occlusion at hypomethylated MTase sites. (A) Histogram showing the distribution of IPD ratios at the HsdM

motif locus cobK:304, 304 bp downstream from the start codon of gene cobK. Included isolates have active HsdM and possess the HsdM target motif

at the cobK:304 locus. IPD ratios are normalized to the mean IPD ratio of adenine bases in their respective isolates (excluding bases targeted by known

MTase motifs) and log2-transformed. The histogram uses a bin width of 0.1. Red bars count isolates classified as ‘hypomethylated’ at the cobK site,

while mint bars count isolates classified as methylated at the site. (B) Phylogenetic tree of the 90 clinical and reference M. tuberculosis isolates and 3 M.

africanum isolates included in this study, along with outgroups M. bovis and M. canetti. Isolates are colored in the middle ring by their methylation

status at the HsdM motif site cobK:304. Red isolates are classified as hypomethylated at the cobK site; green isolates are classified as methylated at the

site, and gray isolates either have an inactive HsdM methyltransferase, or are missing the HsdM target motif 304 bp within their cobK gene. Isolates are

colored in the outer ring by the genotype of their mntR (Rv2788) gene. mntR encodes for a transcription factor whose binding motif matches the

context sequence of the cobK 304 site (p = 2.63�10�5, converted log-likelihood ratio score). Gold isolates had the variant mntR Q131STOP, a nonsense

mutation that introduces an early stop codon that truncated the gene and presumably removed its function. The blue isolates do not have a nonsense

mutation, though one isolate had the missense mutation mntR P149L.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Frequency of hypomethylation calls in each M. tuberculosis clinical isolate.

Figure supplement 2. Distribution of IPD ratios in example M. tuberculosis clinical isolates, by Bayesian classification.

Figure supplement 3. Distribution of coverage values at MTase motif sites for indeterminate and determinate calls.
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methylation in that lineage. As cobK 304 was consistent with both previously described phenomena,

it is uncertain whether its hypomethylation was caused by its neighboring MTase motif, or by occlu-

sion by transcription factor MntR.

DNA adenine methylation is widespread and distinctly patterned at
promoters
Next, we systematically probed promoters with MTase motif sites to identify common configurations

between motif sites and characterized TSSs (Cortes et al., 2013; Shell et al., 2015). Within pro-

moter regions (�50 bp upstream from the TSS), targeted adenines of MamA and HsdM motifs had

distinct peaks at the edges of the �10 element (Figure 6A). The MamA peak comprised 22 pro-

moters coincident with the �10 element in the configuration that has been shown previously to

modulate transcription (Shell et al., 2013) (4–5 and 7–8 bp upstream from TSS, Figure 7). These

included the four shown to affect transcription (Figure 7, blue stars). Notably, none of these four

were hypomethylated or hypervariable, indicating that lack of anomalous methylation in vitro does

not preclude a role in transcriptional regulation. Common (n � 75) HsdM motif sites overlapped with

the �10 element of 33 promoters. While nineteen of these match those recently reported (Chiner-

Oms et al., 2019), 13 are novel. These HsdM motif sites frequently overlap with the �10 promoter

element in a configuration analogous to that common in MamA motifs, but on the distal (�10 to

�13 bp) end (Figure 8). In total, 212 genes have common (in �75 isolates) promoter MTase motif

sites (Supplementary file 6).

Next, we scanned for SFBS motifs overlapping promoter MTase motif sites. Sigma factors SigA

and SigB overlapped MTase motif sites most frequently (Figure 6B), though SigC, SigD, SigI, and

SigF overlapped motif sites as well (Figure 6—figure supplement 1, Supplementary file 6). MamB

motif sites rarely overlapped SFBSs, while orphan MTase motif sites frequently did (Figure 6A–C).

MamA motif sites were more frequent in promoter regions than HsdM sites, however HsdM sites

more frequently overlapped a SFBS (Figure 6B, perhaps explainable by both HsdM and SigA target

motifs including the dinucleotide ‘TA’). The �10 promoter element guides formation of transcription

initiation complexes (Browning and Busby, 2016), and DNA methylation alters biophysical proper-

ties that tune promoter strength (Polaczek et al., 1998) (DNA melting temperature Gries et al.,

2010 and DNA bending during open complex formation Saecker et al., 2002). This mechanism is

particularly plausible for MTase motifs that overlap SigA SFBSs (Figure 6B). SigA is a sigma-70

homolog, which contacts the �10 promoter element at positions �7 through �12 upstream of the

TSS (Feklistov and Darst, 2011), precisely where overlap with HsdM and MamA-methylated

adenines are frequent (Figure 6). These findings provide a potential mechanism for cis-regulation of

dozens of genes with orphan MTase motifs in M. tuberculosis.

Promoters of fifteen genes harbored hypervariable motif sites. Most (11/15) were hypervariable in

both palindromic sites (Figure 6D). Seven motif sites comprise a cluster of hypervariable MamA

motif sites in the spacer between the �10 and �35 promoter elements (19–24 bp range, Figure 7).

While this region does not overlap with SFBSss, transcriptional effectors commonly bind here to

tune gene expression (Newberry and Brennan, 2004; Pandey et al., 2015), providing a candidate

mechanism driving the differences between strains and mechanistic plausibility for transcriptional

influence at these sites. No MamB promoter motif sites were hypervariable (Figure 6C), consistent

with a classic RM-system without regulatory roles, once again contrasting with the signatures of

gene regulation present at orphan MTase sites.

HsdM promoter methylation is associated with transcription levels of
downstream genes
Notably, Rv1813c is hypervariable and has a motif site 11 bp upstream of its TSS, overlapping a

SigA SFBS. Rv1813c was recently reported to be significantly under-expressed following DhsdM, but

the authors did not identify the SigA overlap with this motif site in the Rv1813c promoter (Chiner-

Oms et al., 2019). This discovery prompted us to re-evaluate the DhsdM differential expression

results recently reported to have no direct influence on transcription at methylated promoters. In

that work, the authors defined ‘differentially expressed’ genes using thresholds on both significance

(adjusted p-value�0.05) and magnitude (|log2-foldchange| � 1). Since we were interested in the

mechanism (Does HsdM promoter methylation have the capacity to influence transcription?) rather
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than the magnitude of its effect, we defined differentially expressed genes according only to signifi-

cance. With these criteria, 310 genes (Figure 6—source data 4, Supplementary file 7) were differ-

entially expressed between hsdMWT and DhsdM (DhsdM-DE). Genes with HsdM motif sites in their

promoters (n = 11) were significantly enriched among DhsdM-DE genes (p = 0.000215, OR = 4.47,

95% CI: 1.99–9.37, two-tailed Fisher’s Exact; Figure 6E). Therefore, we conclude that HsdM pro-

moter motifs are associated with expression change following HsdM knockout, though the magni-

tude of the effect is subtle in vitro (|log2-foldchange| � 1.16).

Nine of these 11 DhsdM-DE genes with HsdM promoter motifs overlapped with the �10 pro-

moter element (Figure 6E), suggesting a direct effect on transcription analogous to the configura-

tion for MamA previously described (Shell et al., 2013). Within these nine are 3 of the four genes

Figure 6. Configuration of orphan MTase motif sites at promoters suggests widespread epigenetic influence on transcription. (A) Consistent MTase-

SFBS-promoter configuration. Number of promoters with MTase motif sites (in � 50 isolates) by distance upstream of TSSs, for each MTase. The

canonical SigA �10 element binding motif is superimposed for conceptual clarity, all motif sites within the �7 to �12 bp window upstream of

annotated TSSs are included, irrespective of SFBS overlap. MTase Motifs for overrepresented configurations (peaks) are shown in the orientation and

positions that explain the observed peaks. (B) The number of promoters with the �10 element overlapping an MTase motif site (�30 isolates), for each

MTase and sigma factor. (C) Stacked histograms of the number of genes harboring promoter motif sites for each MTase. Darker shades indicate

overlap with progressively more substantiated overlap with promoter elements. In ‘full promoters’ MTase motifs overlapped a SFBS that is part of a

classical promoter architecture (Materials and methods); ‘Element’ matches overlap either the �10 or �35 SFBS the expected distance from the TSS but

have neither an extended �10 promoter element nor the complementary element; ‘Location’ matches are the distance upstream of the TSS expected

to overlap with �10 or �35 elements but do not overlap known SFBS motifs; ‘Sequence’ matches coincide with SFBSs but not in the expected position

with respect to TSS; ‘none’ are � 50 bp upstream of a TSS but meet none of the aforementioned criteria. (D) Variability (SD of log2 (IPD Ratio) across

isolates) across isolates with active MTase (y-axis) for common (�75 isolates) promoter motifs and their distance upstream of the TSS (x-axis).

Downstream genes of hypervariable motif sites (�3 SD above the mean MamB variability, red). (E) Genes with annotated HsdM promoter motifs

integrated with a recent DHsdM differential expression (DE) study (Chiner-Oms et al., 2019). All HsdM promoter motifs plotted by position within the

promoter (x-axis) and Benjamini-Hochberg adjusted -log10 (p-value) for DE (y-axis). Downstream genes of motif sites of significantly DE genes (red, BH-

adjusted p�0.05) genes overlapping the �10 element (7 to 13 bp upstream of TSS) are labeled. The two genes without overlapping sites the �10

element have both their motif sites labeled (if within 50 bp).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Frequency and downstream CDS of frequent (in � 30 isolates) MTase motif sites � 100 bp upstream of a TSS.

Source data 2. MTase motif sites overlapping �10 sigma factor binding motifs 7–13 bp upstream of the TSS.

Source data 3. Promoters harboring MTase motifs and the extent of evidence for their overlap with promoter elements.

Source data 4. Re-analysis of differential transcription data following HsdM knockout.

Source data 5. Overlaps between �10 and �35 sigma factor binding sites and promoter MTase motif sites.

Figure supplement 1. Sigma factor binding site (SFBS) motif and MTase motif overlap.
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with hypervariable HsdM-methylation in promoter motifs, suggesting that differential selection on

the methylome during growth in vitro may affect gene expression.

Discussion
Here, we assembled, annotated, and investigated DNA adenine methylomes of 93 M. tuberculosis

complex (MTBC) clinical isolates from patients in high TB-burden countries (Figure 1), the largest

survey of methylomic diversity in the MTBC to date. Through functional, comparative, integrative,

and heterogeneity analyses of these methylomes, we identified drivers and sites of variability in DNA

adenine methylomes across the MTBC. Mapping DNA methyltransferase (MTase) variants to meth-

ylomic data expanded the allele-function mappings for the three known MTBC DNA adenine methyl-

transferases (Supplementary file 1), clarified several disputed or errant reports of MTase function

(Chiner-Oms et al., 2019; Phelan et al., 2018; Shell et al., 2013; Figure 2—figure supplement 1),

and determined that the MTase variants mamAE270A, mamAG152S, and mamBK1033T conferred partial

MTase activity (Figure 2). Heterogeneity analysis revealed that these three alleles drive intracellular

stochastic methylation (Figure 3A–G), conferring Intercellular Mosaic Methylation (IMM) to 38/93

Figure 7. Methylomic variation at promoters harboring orphan MTase motifs: MamA motifs. Heatmap depicting degree of methylation (scaled log2 of

IPD ratio averaged across reads) across all 93 clinical isolates (columns) at all common (present in � 75 isolates) MamA promoter (�50 bp upstream of a

TSS) motif sites (rows). The coloring scale of the heatmap boxes max out at the median scaled IPD across all motif sites across all isolates with active

MamA allele and bottom out at 0 (corresponding to no methylation). For each isolate, HsdM activity (bottom) and lineage (top) are indicated. Isolates

within each heatmap are sorted first by activity, and then by lineage. MamA motifs in configuration with �10 promoter element akin to that of the

promoters shown to exhibit MamA-methylation-dependent transcriptional response under hypoxia (Shell et al., 2013) (blue pop-out) and those within

a region with a high density of hypervariable sites (red pop-out) are highlighted. Color of axis labels highlights the specific motif sites shown by Shell

and colleagues to affect transcriptional response to hypoxia (Shell et al., 2013) (blue) and motif sites hypervariable across isolates with active MamA

(red).

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Sequencing kinetics for all common MamA promoter motifs.

Figure supplement 1. Selected promoters with �10 SFBS-overlapping, hypervariable, or consistently hypomethylated motif sites.
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studied isolates, including 34/36 EAS isolates (Supplementary file 2). Comparative methylomic anal-

ysis identified subsets of motif sites consistently hypomethylated (Table 1, Supplementary file 5)

and hypervariable across isolates (Figure 4, Supplementary file 4). Functional and integrative analy-

ses uncovered previously unreported promoters harboring methylation motif sites (Figures 6–

8, Supplementary file 6), implicating clinically important phenotypes as potentially regulated by

DNA adenine methylation (Figure 7—figure supplement 1, Supplementary file 6), and put forth

evidence that HsdM promoter methylation directly influences transcription methylation (Figure 6E),

contradicting conclusions from previous work (Chiner-Oms et al., 2019). These findings add to the

growing body of literature demonstrating bacterial epigenomics is an important complementary

Figure 8. Methylomic variation at promoters harboring orphan MTase motifs: HsdM motifs. Similar to Figure 7 but for HsdM motif sites. Heatmap

depicting degree of methylation (scaled log2 of IPD ratio averaged across reads) across all 93 clinical isolates (columns) at all common (present in � 75

isolates) HsdM promoter (�50 bp upstream of a TSS) motif sites (rows). The coloring scale of the heatmap boxes max out at the median scaled IPD

across all motif sites across all isolates with an active HsdM allele and bottom out at 0 (corresponding to no methylation). For each isolate, HsdM

activity (bottom) and lineage (top) are indicated. Isolates are sorted first by activity, and then by lineage. ‘Putative SFBS-overlapping sites’ are those

with an analogous configuration with the �10 promoter element shown the MamA motif overlap highlighted in Figure 7, but overlapping the end of

the �10 promoter element distal to the TSS, rather than the proximal end. ‘Partner sites’ are loci at the position that includes the palindromic partners

of putative SFBS-overlapping sites. Promoter MTase motif sites with hypervariable kinetics across HsdM-active isolates (red text) or upstream of genes

differentially expressed in HsdM knockout (blue stars) are indicated. Isolates with convergent methylation levels at a subset of notable loci despite

having divergent HsdM genotypes and belonging to different lineages are indicated by asterisks (*).

The online version of this article includes the following source data for figure 8:

Source data 1. Sequencing kinetics for all common HsdM promoter motifs.
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focus to genetic and phenotypic analysis in studying microbial diversity, gene regulation, and

evolution.

Sequencing kinetics of MTase target motif sites indicated heterogeneous methylation in isolates

with MTase variants mamAE270A, mamAG152S, and mamBK1033T (Figure 2A). Read-level kinetic analy-

sis confirmed this heterogeneity, and characterized the phenomenon as intracellular stochastic meth-

ylation, rather than phase-variable methylation (Figure 3). Further heterogeneity analysis

demonstrated that methionine starvation can induce intracellular stochastic methylation in isolates

with wild-type MTase activity (Figure 3—figure supplement 1). In stochastic methylation, the meth-

ylation status of each MTase target site varies independently between cells (Beaulaurier et al.,

2015). The resulting subpopulations thus carry diverse combinations of methylated and unmethy-

lated sites, a phenomenon we have termed ‘intercellular mosaic methylation’ (IMM, Figures 3 and

9). Thus, the potential diversity of DNA methylation patterns in IMM across cells scales logarithmi-

cally with the number of motif sites targeted by the MTase exhibiting IMM.

This is not the first report of mosaic-like patterning of DNA adenine methylation in prokaryotes.

Mosaicism can result from independent ON/OFF switching of multiple phase-variable MTases

(Atack et al., 2018) or from domain movement of the target recognition domain (TRD) (Furuta and

Kobayashi, 2012), a phenomenon known as ‘DoMo’ (Furuta et al., 2014). However, IMM departs

from these two previously described types of mosaic-like methylation heterogeneity in two impor-

tant respects. First, in the degree of methylomic diversity it generates (Figure 9A). Just as indepen-

dent state-changes of multiple modification enzymes (Casadesús and Low, 2013) increases the

diversity of epigenetic bacterial lineages beyond that of individual phase variation systems, IMM

extends this diversity further still, scaling logarithmically with the number of motif sites targeted by

the stochastic MTase. In nature, the set of methylation states that manifest may be constrained

below this theoretical set by a variety of mechanisms, such as interaction with DNA-binding proteins,

or switch-like behavior between proximal MTase sites (Casadesús and Low, 2013). Nonetheless, the

number of adoptable states is large enough that states are practically certain to differ between par-

ent and daughter cells. Second, IMM is distinct in the pattern of epigenetic inheritance from parent

Figure 9. Intercellular mosaic methylation (IMM) is distinct from other forms of mosaic-like DNA methylation. Conceptual illustration contrasting DNA

methylome diversification and epigenetic inheritance between IMM and other mosaic-like mechanisms of heterogeneous DNA adenine methylation. (A)

Cartoon illustrating the nature of methylomic diversity depicts individual cells’ chromosomes (gray bars) with methylation motifs (ovals). Oval colors

represent distinct DNA methyltransferases (MTases). *Practically infinite, estimated as 21,978 (there are roughly 1,978 MamA motif sites per replisome)

under the assumption that methylation propensity on the daughter strand is independent from methylation status of other motif sites on the daughter

strand and parent strand. **Assumes there are two phases. Some phase-variable MTases with more than two phases have been described. In these

cases, potential states would be equivalent to the product of the sequence of numbers of phases for all independent phase-variable MTases.

***Calculated by Furuta and Kobayashi as the product of 1,000 DNA sequence specificities per MTase across 5 MTases in Helicobacter pylori

(Furuta and Kobayashi, 2012). (B) Diagram illustrating the relationship between daughter and parent strains as it relates to conservation of the whole

methylome (top) and at a single methylation site (bottom). Under the assumption of genuine stochasticity, IMM would practically never re-pattern the

daughter strand identically to its parent. In contrast, the methylation status at any given methylation site would match between parent and daughter

cells in 50% of cases.
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to daughter cell (Figure 9B). In mosaic-like methylomes driven by independent switching of phase-

variable MTases (canonically a frameshift) and DoMo (Furuta et al., 2014) (via homologous recom-

bining of TRDs) the methylome-patterning determinant is passed genetically to the daughter strand,

unless there is a phase change (Sánchez-Romero and Casadesús, 2020). IMM lacks a genetic basis

for transgenerational methylome inheritance and no epigenetic mechanism of inheritance for IMM in

M. tuberculosis is known at present. Consequently, our current knowledge suggests a greater

degree of methylomic diversity is spread throughout the population in each replication event, but

that any advantageous methylation patterns would lack a stabilizing mechanism. This apparent dif-

ferential capacity to produce epigenetic lineages assumes that in IMM, the methylation status of par-

ent strand motif sites has no effect on the probability of daughter strand motif sites being

methylated. Empirically testing this assumption would refine our understanding of the implications

IMM has for adaptive evolution.

Transcriptional influence by DNA adenine methylation is prevalent among human pathogens

(Casadesús and Low, 2013). Previous study of M. tuberculosis genes with MamA-methylated pro-

moters demonstrated that DNA adenine methylation directly influences the expression of genes

with MamA target motifs in their promoters (Shell et al., 2013). Our promoter annotation expands

the set of promoters potentially regulated by MamA-methylation (Figure 7, Supplementary file 6)

and our DhsdM-DE analysis (Figure 6E) strongly suggests that HsdM-methylation at promoters

directly influences transcription. This provides a potential mechanism in M. tuberculosis for hetero-

geneous methylation to produce heterogeneous phenotypes.

The physiological consequences of mycobacterial gene expression control by DNA methylation,

however, remain to be identified. Therefore, the adaptive benefits of phenotypic heterogeneity

ostensibly conferred by IMM remain hypothetical. Theoretical grounds for phenotypic heterogeneity

to confer survival benefits have been described previously (Wolf et al., 2005), as have examples of

adaptive phenotypic heterogeneity driven by DNA methylation in bacterial pathogens (Atack et al.,

2018; Low and Casadesús, 2008). The adaptive benefit of any epigenetically influenced process

depends on the degree to and manner in which it is heritable across generations. In the absence of

an identified mechanism favoring self-perpetuity, our description of IMM provides bacterial popula-

tions with a means for retaining adaptive methylation patterns, but not for amplifying them. Without

heritability, IMM-driven phenotypic heterogeneity could still confer adaptive benefit through a ‘bet-

hedging’ strategy (Casadesús and Low, 2013; Wolf et al., 2005). This hypothesis is consistent with

observations of M. tuberculosis ‘persister cells’ (Vilchèze et al., 2017), minority groups that are pre-

adapted to tolerate initial exposure to macrophage (Daniel et al., 2011) and drug pressure

(Keren et al., 2011), by entering dormancy (Jain et al., 2016) or activating efflux pumps

(Colangeli et al., 2005; Mustyala et al., 2016).

Future work examining changes in methylation patterns in strains with IMM-conferring MTases

under selective pressure would help determine whether DNA adenine methylation patterns are heri-

table in M. tuberculosis, and whether IMM is compatible with the hypothesis of ‘epigenetic-driven

adaptive evolution’ (Furuta and Kobayashi, 2012). The hypervariability of numerous orphan MTase

loci (n = 344, Supplementary file 4) could be taken to imply differential selection of methylation

patterns across isolates (in vitro). Two observations provide circumstantial evidence in support

of this interpretation. First, hypomethylation (which coincides with many hypervariable sites, Table 1,

Supplementary files 4 and 5) is a signature of epigenetic regulation in prokaryotes (Blow et al.,

2016), suggesting genes with hypervariable promoter motif sites (n = 11, Figures 6–8) are epigenet-

ically regulated, providing a potential basis for differential selection across strains. Second, several

sites are methylated at similar levels between three EAS isolates and a genetically distant (SNP

distance � 2,722) M. africanum isolate (Figures 4A and 8) suggesting convergent epigenomic selec-

tion in vitro. This convergence was not driven by MTase genotype, as the isolates had discordant

HsdM alleles. Notably, convergently methylated sites between these isolates included DhsdM-DE

persistence (raaS) and dormancy (Rv1813c and glpX) genes (Figure 6), suggesting methylation at

these sites affect promoter strength and raising the possibility that these methylation patterns have

important phenotypic consequences. However, both these observations may be due to a secondary

effect, such as MTase antagonism driven by mutations in DNA-binding proteins, as we observed at

cobK 304 (Figure 5), or some other primary factor. Taken together, the evidence from this work is

insufficient to conclude that any sites are under epigenetic selection.
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Our promoter methylation analysis produced different results than a recently published analysis

(Chiner-Oms et al., 2019) and reached opposing conclusions for the role of HsdM in regulating pro-

moter strength. While the authors conclude that ‘methylation seems to play a minimal role in shap-

ing in-vitro gene expression’, integration of our HsdM motif-harboring promoters with their DhsdM

RNAseq data shows a clear association between HsdM promoter methylation and in vitro gene

expression (Figure 6E). We believe differences in approach drove our disparate conclusions. For

their analysis, Chiner-Oms and colleagues relied on reference-mapping and a single source of TSSs,

and they focused on SigA motifs to identify promoter MTase motifs (Chiner-Oms et al., 2019). In

contrast, we transferred TSS annotations from two M. tuberculosis transcriptomic studies

(Cortes et al., 2013; Shell et al., 2015) to contiguous regions of finished de novo assemblies, and

scanned for SigA-SigM SFBS motifs (Chauhan et al., 2016) and promoters lacking known SFBSs.

These differences explain why our analysis captured the association between HsdM-methylation and

expression of downstream genes.

By integrating DNA adenine methylomes with fully-annotated genome assemblies and TSS-map-

ping data, this work generates a corpus of putative interactions between DNA methylation and regu-

latory effectors (Supplementary files 4–7), providing a basis for generating specific, testable

functional hypotheses for DNA adenine methylation in M. tuberculosis. The functions of genes with

promoter motif sites that were hypervariable (Figures 7 and 8, Figure 7—figure supplement 1) or

in stereotyped configurations with �10 promoter elements (Figures 6 and 8; Supplementary file 6)

implicate clinically important processes as under control of DNA adenine methylation

(Supplementary files 1 and 6, Figure 7—figure supplement 1). These include drug resistance,

metal ion homeostasis (corA (Park et al., 2019), lpqS (Darwin, 2015), mmpS4 (Jones et al., 2014),

higA (Schuessler et al., 2013), mbtJ (Chownk et al., 2018), and hemN McMahon et al., 2012), and

the induction and maintenance of dormancy—all functions with examples of modulation by DNA

adenine methylation in other human pathogens (Beaulaurier et al.; Brunet et al., 2020;

Cohen et al., 2016; Sánchez-Romero and Casadesús, 2020). The resistance-implicating genes

among these mediate resistance through gene regulation (whiB7-controlled expression of eis, tap,

and Rv1473 (Duan et al., 2019; Morris et al., 2005), and raaS-controlled expression of Rv1218c and

Rv1217c Wang et al., 2013), drug efflux (drrA (Mustyala et al., 2016), iniA (Colangeli et al., 2005),

Rv3728 (Gupta et al., 2010), and efflux-targets of whiB7 and raaS), and other mechanisms (glf

(Chen and Bishai, 1998), mshC (Parida et al., 2015), mshD (Vilchèze et al., 2008),

pafA (Samanovic and Darwin, 2016), Rv3050c (Nieto R et al., 2018), and gyrB (Nosova et al.,

2013).

Our finding that most (34/36, Supplementary file 2) Beijing clinical isolates exhibited constitutive

IMM prompts the question of whether IMM might contribute to their global success. Methylated

promoters implicate some hallmarks of the Beijing sublineage: facile dormancy induction, increased

host-lipid utilization, TAG accumulation in aerobic environments (Reed et al., 2007), and increased

synthesis of cell envelope components and virulence lipids (Huet et al., 2009; Figure 7—figure sup-

plement 1, Supplementary file 6). While some of these hallmarks have been attributed to genetic

factors, such as higher basal expression of the DosR-regulon (Reed et al., 2007), gaps remain in our

understanding. One hypothesis is that, in Beijing isolates, MamAE270A-driven mosaicism confers phe-

notypic heterogeneity, thereby enabling access to a greater number of phenotypic solutions during

adaptive evolution. This hypothesis could be investigated by exposing MamAWT and MamAE270A

mutants to different selection pressures and comparing evolutionary outcomes and methylomes of

the adapted strains.

We cannot extrapolate directly from the DNA methylation patterns we report here to what occurs

during infection. Sequencing kinetics are measured from DNA extracted after extensive culturing,

during which any methylomic adaptation to the host environment may have changed. Directly

sequencing from patient specimens would be ideal to assay DNA methylation patterns in vivo, but

DNA input requirements necessitate culturing prior to DNA extraction (PACBIO, 2013), as DNA

amplification erases epigenetic markings. Studying methylomic adaptation to host-like conditions

(e.g. hypoxia, host-lipids as carbon source) can reveal context-dependent selection of methylation

patterns, and time-course serial sequencing could characterize the dynamics of their selection. Cou-

pling these sequencing studies with transcriptomic, proteomic, and phenotypic assays could clarify

the relationship between DNA adenine methylation, gene expression, and phenotype.
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Throughout this manuscript we have referred to the DNA adenine methyltransferase encoded by

Rv2756c as HsdM (hsdM for the gene) and its specificity subunit encoded by Rv2761, as HsdS (hsdS

for the gene) to be consistent with previous work (Shell et al., 2013). It appears that Rv2756c was

originally referred to as HsdM based on homology to hsdM in R-M systems—before the existence of

its restriction component had been investigated—and has propagated through subsequent studies

(Chiner-Oms et al., 2019; Gomez-Gonzalez et al., 2019; Phelan et al., 2018; Zhu et al., 2016).

However, it has since been determined that Rv2756c lacks a functional HsdR component (Zhu et al.,

2016). According to the prevailing nomenclature conventions, the symbol ‘hsd’ is for Type 1 R-M

systems (Loenen et al., 2014; Roberts et al., 2003), which Rv2756c is not part of, since it lacks a

functional restriction component. Therefore, we propose that the orphan methyltransferase encoded

by Rv2756c be renamed to MamC (mamC for the gene) Mycobacterial Adenine Methyltransferase C

(since MamA and MamB are assigned to other mycobacterial DNA adenine methyltransferases).

Likewise, we propose that the specificity subunit of MamC encoded by Rv2761 be renamed to

mamS/MamS (formerly hsdS/HsdS) and the specificity subunit fragment encoded by Rv2755 (for-

merly hsdS.1/HsdS.1) to mamS.1/MamS.1. This proposed nomenclature retains the S and S.1 from

hsdS and hsdS.1, is consistent with the extant naming convention of MamA and MamB, and removes

the erroneous implication that HsdM/HsdS/HsdS.1 are part of a Type 1 R-M system.

This integrative analysis of 93 clinical isolates’ DNA adenine methylomes spotlights DNA methyla-

tion as a fundamental source of diversity in the MTBC. The results provide a basis for further investi-

gation of the roles played by DNA adenine methylation in M. tuberculosis’ physiology and adaptive

evolution. In particular, the discovery of constitutive IMM-driven by MTase genotype raises the pos-

sibility that DNA adenine methylation translates into differences in adaptive capacity between MTBC

strains.

Materials and methods

Isolate acquisition and inclusion criteria
MTBC colonies were isolated from sputa of 154 tuberculosis patients, originating from Hinduja

National Hospital (PDHNH) in Mumbai, India; Phthisiopneumology Institute (PPI) in Chisinau, Mol-

dova; Tropical Disease Foundation (TDF) in Manila, the Philippines; The National Health Laboratory

Service of South Africa (NHLS) in Johannesburg, South Africa; and World Health Organization Supra-

national References Laboratories in Stockholm, Sweden and Antwerp, Belgium (PRJNA555636). Of

these 154 isolates, 113 were originally collected by the Global Consortium for Drug-resistant Tuber-

culosis Diagnostics (Hillery et al., 2014) and chosen for resequencing.

We also included two technical replicate control runs of avirulent reference strain H37Ra reported

in a previous paper (PRJNA329548) (Elghraoui et al., 2017). An additional 24 publicly available

SMRT-sequencing reads of clinical M. tuberculosis and M. africanum isolates were downloaded from

the Sequence Read Archive, along with a triplicate run of virulent type strain H37Rv, and triplicate

samples of a metA knockout strain of H37Rv before and after five days of methionine starvation

(PRJEB8783) (Berney et al., 2015).

Of these isolates, 97 clinical M. tuberculosis isolates, 3 M. africanum isolates, and nine reference

strains passed assembly quality control. Of them, seven clinical isolates and one metA knockout iso-

late failed our methylome pipeline (five isolates had multiple contigs and three isolates had position

inconsistencies between their kinetics data and consensus sequence FASTA file). In total, our down-

stream analysis included 93 MTBC clinical isolates (including 3 M. africanum) and 8 runs of reference

strains and laboratory mutants.

Sample preparation and extraction
The M. tuberculosis and M. africanum samples were prepared and extracted at the World Health

Organization Supranational Reference Laboratory in Stockholm, Sweden, and the Institute for Geno-

mic Medicine at the University of California, San Diego in La Jolla, CA, USA. DNA preparation and

extraction was performed as previously described (Elghraoui et al., 2017). All samples were

streaked for isolation using standard microbiological methods, after which well-separated colonies

were selected, emulsified, and sub-cultured on Löwenstein–Jensen slants and incubated until growth

of a full bacterial lawn. To ensure enough bacterial material for extraction of sufficient high molecular
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weight DNA for amplification-free SMRT-sequencing well-outgrown solid cultures (Löwenstein–Jen-

sen medium). Typically, enough bacterial cells were obtained after 3–4 weeks of culture. At this

stage, cultures reached the early- to mid-stationary phase. DNA was extracted from cultures in the

stationary growth phase. DNA was extracted using Genomic-tips (Qiagen Inc, Germantown, MD,

USA) following the manufacturer’s sample preparation and lysis protocol for bacteria with the follow-

ing modifications. Each culture was harvested directly into buffer B1/RNAse solution, homogenized

by vigorous vortex mixing and inactivated at 80˚C for 1 hr. Lysozyme was added and incubated at

37˚C for 30 min followed by the addition of proteinase K and further incubation at 37˚C for an addi-

tional 60 min. Buffer B2 was added and the mixture was incubated overnight at 50˚C. The remainder

of the Genomic-tip protocol was carried out exactly as described by the manufacturer. DNA purity

and concentration were analyzed on a Nanodrop 1000 (Thermo Scientific, Waltham, MA, USA).

DNA sequencing
DNA sequencing was performed at the Institute for Genomic Medicine at the University of Califor-

nia, San Diego. DNA libraries for PacBio (Pacific Biosciences, Menlo Park, CA) were prepared using

PacBio’s DNA Template Prep Kit with no follow-up PCR amplification. Briefly, sheared DNA was end

repaired, and hairpin adapters were ligated using T4 DNA ligase. Incompletely formed SMRTbell

templates were degraded with a combination of Exonuclease III and Exonuclease VII. The resulting

DNA templates were purified using SPRI magnetic beads (AMPure, Agencourt Bioscience, Beverly,

MA) and annealed to a twofold molar excess of a sequencing primer that specifically bound to the

single-stranded loop region of the hairpin adapters. SMRTbell templates were subjected to standard

SMRT-sequencing using an engineered phi29 DNA polymerase on the PacBio RSII system according

to manufacturer’s protocol.

Genome assembly
For isolates that were sequenced on multiple SMRT cells, all SMRT cell raw reads were combined

and assembled with either HGAP2 (Chin et al., 2013) or canu (Koren et al., 2017) with default

parameters. Circularization was then performed to confirm a circular genome using minimus2 from

amos or circlator (Hunt et al., 2015). Gene dnaA was set as the first gene in each genome. Iterative

rounds of consensus polishing using BLASR (Chaisson and Tesler, 2012) and Quiver were executed

three times. Default parameters were used except max coverage was set to 1000 for Quiver.

Genomes failed assembly quality control if they could not be circularized, if their consensus polishing

resulted in five or more variants after three iterations, or if PBHoney (English et al., 2014) detected

a structural variant in the assembly supported by at least 10% of the reads. PBHoney was run with

default parameters. Full details of methods are described by Ramirez-Busby and colleagues (manu-

script in preparation).

Lineage determination
For the isolates originally collected by the Global Consortium for Drug-resistant Tuberculosis Diag-

nostics, lineage information was obtained by inputting the MIRU-VNTR and spoligotype patterns

determined previously3 into TBInsight (Shabbeer et al., 2012). For all other genomes, a custom

script, MiruHero (https://gitlab.com/LPCDRP/miru-hero), determined lineage. MiruHero takes in

FASTA files with the whole genome sequences M. tuberculosis strains and in silico determines the

strain’s spoligotype and MIRU type. MiruHero then determines the strain’s lineage by applying the

same spoligotype and MIRU type interpretation rules used by TBInsight.

Genome annotation
Gene annotations were transferred to each isolate from a well-characterized reference, virulent M.

tuberculosis type strain H37Rv (Lew et al., 2011) with additional functional annotations curated

from literature (Modlin et al., 2018). The transfer step was implemented using the Rapid Annotation

Transfer Tool (RATT Otto et al., 2011) with the ‘Strain’ parameter. For each isolate, RATT read a

FASTA file with the isolate’s whole genome sequence, and read the curated reference annotation

EMBL file of H37Rv, then created an EMBL annotation file for the isolate. RATT transfers annotated

genome features to an isolate in regions of sequence similarity to the reference, adjusting genome

position based on synteny blocks. RATT transferred both genes and transcriptional start sites (TSS)
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from our curated H37Rv annotation. These TSSs were originally determined experimentally in the

H37Rv strain by Cortes et al., 2013 and Shell et al., 2015.

MTase genotyping
To determine the genotype of the MTase genes mamA (Rv3263), mamB (Rv2024c), and hsdM

(Rv2756c)/hsdS (Rv2761c) in each isolate, first eggNOG-mapper (Powell et al., 2012) identified

these genes in each clinical isolate. However, MamB and HsdM are inactive in virulent type strain

H37Rv (Zhu et al., 2016), we did not use the H37Rv genes as the wild-type allele. Instead, sequenc-

ing kinetics and the previously characterized target motifs were used to determine which isolates

had active copies of each MTase gene, and the most common allele among active isolates was

defined as the wild-type sequence. To call variants in these genes using these wild-type sequences,

BLASTn then aligned the wild-type sequences against all genes predicted in each isolate by Prodigal

(Hyatt et al., 2010). Each matching nucleotide sequence was translated into an amino acid

sequence using transeq (EMBOSS 6.6.0.0, available online at www.ebi.ac.uk/Tools/emboss/transeq/

index.html) to obtain nonsynonymous variants and truncations. The amino acid sequences were then

aligned using MAFFT (Katoh and Standley, 2013) v7.205 with the – clustalout option, and a custom

script converted the alignment to a genotype. To verify the identity of the 1356 bp mamB insertion

variant, BLASTn aligned the M. tuberculosis insertion element IS6110 against the variant mamB gene

(Figure 2—figure supplement 1). The IS6110 sequence is included in Supplementary file 8.

Phylogenetic analysis
The genomes of Mycobacterium canettii CIPT 140070010 (NC_019951.1) and Mycobacterium bovis

BCG Pasteur 1173P2 (AM408590.1) were used as outgroups. Then, dnadiff (Marçais et al., 2018)

(v1.3) aligned each assembled genome to M. tuberculosis H37Rv (NC_000962.3) to call SNPs and

small indels with default parameters. A custom Perl script then converted the out.snps file from dna-

diff for each isolate into a VCF v4.0 file. A multi-FASTA file of concatenated variants was then cre-

ated using each isolate’s VCF file. The resulting multi-FASTA file was used to create a maximum

likelihood phylogenetic tree using RAxML version 8.2 (Stamatakis, 2014), specifying a general time-

reversible model of nucleotide evolution with 100 bootstrap replicates. All other settings were

default. To visualize the phylogenetic distribution of MTase genotypes, a custom python script con-

verted a CSV file with the MTase genotypes of each isolate into a tree color annotation file. The tree

color annotation file and RAxML tree file were then uploaded to the Interactive Tree of Life (iTOL)

(Letunic and Bork, 2016) webtool for visualization.

Determination of IPD of MTase motif sites
To determine the IPD ratio at each nucleotide in each isolate, we ran SMRTanalysis with the Base

Modification Detection with Motif Finding protocol with default parameters. A custom R script then

scanned the FASTA sequence file of each isolate for matches to the MTase target motifs previously

characterized in M. tuberculosis (Zhu et al., 2016) (https://gitlab.com/LPCDRP/dna-methylation/-/

tree/publication/targets), then extracted the IPD ratio of the targeted adenine in each matching site

from the Base Modification output. These IPD ratios were then log-transformed to produce a normal

distribution and standardized by subtracting the mean IPD ratio (also log-transformed) of all

adenines outside of MTase motifs in the isolate.

MTase motif locus assignment
To track MTase motif sites across isolates, each MTase motif site in each isolate was assigned a locus

tag based on the nearest gene. For each isolate, a custom python script read a CSV file with the

genome positions of each MTase motif site in the isolate, and the isolate’s genome annotation

EMBL file. Using the genome positions of annotated coding sequences (CDS), the script identified

the nearest gene boundary (CDS start or CDS stop) to each MTase motif site and assigned each site

a locus tag. The locus tag contained the gene name of the neighboring gene boundary, the distance

in nucleotides between the MTase site and the gene’s CDS start position, an indicator whether the

MTase site was on the same strand as the gene (sense) or the opposite strand (antisense), and an

indicator whether the gene was downstream or upstream of the CDS start.
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Characterizing the kinetic error profile across technical replicates
We characterized the error profile of sequencing kinetics by comparing the IPD ratio of each base

between replicate sequencing runs, and measuring how that variance increased with coverage. We

used two sequencing runs on DNA isolated from avirulent type strain H37Ra sequenced at UCSD,

and two publicly available sequencing runs on virulent type strain H37Rv (Bioproject accession

PRJEB8783). We first log-transformed the IPD ratio of each base to account for the skewed distribu-

tion of ratio values (Figure 1—figure supplement 1A–B). We then plotted the difference in log-

transformed IPD ratio of each base between runs by genome position (Figure 1—figure supple-

ment 1C) and by per base coverage (Figure 1—figure supplement 1D). Using R’s cor.test function

with the ‘pearson’ method, we tested the significance of the correlation between per base coverage

and the difference in log-transformed IPD ratio of each base between runs (Figure 1—figure sup-

plement 1D).

Characterization of MTase activity of MTase genotypes
For each MTase and each isolate, a custom R script plotted the distribution of log-transformed,

scaled IPD ratios of each MTase motif site (Figure 2A & D). For all three MTases, MTase genotype

reliably corresponded to distribution of sequencing at their respective motif sites. For most isolates,

sequencing kinetics centered around 0 (consistent with no methylation) or around a narrow band

consistent with full m6A methylation. MTase genotypes for these cases were labeled accordingly as

‘fully active’ or ‘inactive’ (loss-of-function). MTase genotypes for the remaining minority of cases,

where sequencing kinetics distributed around a mean between 0 and the value around which fully

active isolates distributed, were labeled as ‘partially active’.

Identification of hypervariable MTase motif loci
For each MTase, a custom R script found the set of MTase motif site loci present in at least 75 iso-

lates. For each locus, summary statistics (mean, median, and standard deviation) of mean log2 (IPD

Ratio) were calculated exclusively from isolates with active genotypes of the relevant MTase. The

same was then performed to obtain median and standard deviation of mean log2 (IPD Ratio) for

inactive isolates of each activity profile for each MTase, and, for MamA, for isolates with the common

E270A mamA genotype. Hypervariable HsdM, MamA, and MamB motif sites were classified as those

more than 3 s.D above the mean variability (standard deviation across isolates with active MamB at

that site) for MamB motif sites, since they had the fewest outliers and are not an orphan MTase.

Heterogeneous methylation analysis
SMALR (Beaulaurier et al., 2015) requires a de novo assembled genome FASTA file, a target motif,

and a cmp.h5 file with aligned reads, to extract the IPD data from each MTase target motif site

within each read. We ran SMALR on 96 samples using the MamA target motif CTGGAG. The isolates

had the following mamA genotypes: 49 were wild-type, four were W136R, four were G152S, and 34

were E270A. We also ran SMALR on 70 isolates using the MamB target motif CACGCAG. The iso-

lates had the following mamB genotypes: 60 were wild-type, nine had an loss-of-function variant,

and one had the partially active variant K1033T. We then filtered out isolates with fewer than 20 total

reads from downstream analysis. We additionally ran SMALR with the MamA target motif CTGGAG

on one isolate assembled from published sequencing reads from a DmetA mutant of H37Rv that was

SMRT-sequenced following 5 days of methionine starvation (Berney et al., 2015).

For each isolate, a cmp.h5 was generated by aligning its reads to its assembled FASTA file using

BLASR (Chaisson and Tesler, 2012). SMALR was run on each isolate with the SMp (single-molecule,

pooled distribution) argument. For MamA sites, the motif argument was set to CTGGAG, the modi-

fied position within the motif to 5, and the minimum number of motif sites per read to 6. For MamB

sites, the motif argument was set to CACGCAG, the modified position to 6, and the motifs per read

threshold to 6. The native IPD value of each read was used in place of SMp score. This substitution is

susceptible to noise from local sequence contexts, but should still resolve differences between iso-

lates and distinguish methylated and unmethylated reads (Beaulaurier et al., 2015). The distribution

of native IPD values within each isolate for MamA and MamB sites was visualized using ggplot2

(Wickham, 2016), and comparisons between genotypes was performed using two-tailed Student’s
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t-tests with the t.test and effect sizes estimated with cohen.d functions in R (R Development Core

Team, 2018).

Identification of promoters
To identify MTase motif sites in probable gene promoters, for each isolate a custom python script

read a CSV file with the genome positions of each MTase motif site in the isolate, and the isolate’s

genome annotation EMBL file. The script scanned the surrounding sequence on either strand of

each MTase motif site for Sigma Factor Binding Sight (SFBS) motifs previously characterized in M.

tuberculosis (Chauhan et al., 2016) (https://gitlab.com/LPCDRP/dna-methylation/-/tree/publication/

targets). If a SFBS motif match overlapped with an MTase motif site, the MTase motif site was

labeled with the sigma factor type corresponding to the SFBS motif (Sigma Factor A through Sigma

Factor M, �10 element or �35 element). The script then compared the genome position and strand

of the SFBS motif match to the genome position and strand of each annotated TSS in the isolate’s

genome annotation EMBL file. To meet the most stringent criteria for probable promoter sites (‘full

promoters’, Figure 6C) an SFBS motif had to be the appropriate nucleotide distance upstream from

an annotated TSS. If the SFBS motif match was the �10 component of a SFBS motif, the script

checked if a there was a TSS on the same strand with a genome position 8 to 12 bp downstream of

the matching sequence. If the SFBS match was a �35 component of a SFBS, the script instead

checked for a TSS between 30 and 40 bp downstream. To capture MTase promoter interactions

excluded by this conservative definition of SFBS, for the analysis in Figure 6C, categories were

assigned indicating the substantiveness of the evidence supporting overlap with promoter elements.

The following logic was executed programmatically in R to assign categories: ‘Element’ matches

overlap either the �10 or �35 SFBS the expected distance from the TSS (see above) but have nei-

ther an extended �10 promoter element nor the complementary element; ‘Location’ matches are at

the appropriate distance upstream of the TSS to overlap with �10 or �35 elements but do not over-

lap known SFBS motifs; ‘Sequence’ matches coincide with SFBSs but not in the expected position

with respect to TSS; ‘none’ are within 50 bp upstream of a TSS but meet criteria for none of the

aforementioned categories.

Bayesian classification of base-specific methylation status
Even within isolates with active MTase genotypes, not every base with an MTase target motif was

methylated. To identify MTase motif sites with no base modification (hypomethylated sites) despite

an active MTase we took a Bayesian approach. In each isolate a custom R script estimated the distri-

bution of normalized IPD ratios among unmodified bases by calculating the standard deviation and

mean normalized IPD ratios of bases not within MTase motifs. The script then estimated the distribu-

tion of methylated bases by calculating the standard deviation and mean of bases targeted by

MTase motifs. This estimate assumed that most bases targeted by MTase motifs were methylated,

which held true in isolates with active MTase genotypes (Figure 2A). For each MTase motif site, the

script calculated the conditional probability of the base belonging to either the modified or unmodi-

fied population, given its normalized IPD ratio and coverage. The script classified all bases more

than nine times more likely to belong to the unmodified population as hypomethylated, all bases

more than nine times more likely to belong to the modified population as methylated, and the

remaining bases as indeterminate.

The coverage of each MTase site in each isolate was used to adjust the standard deviation of the

distributions used to calculate its conditional probability, as bases with lower coverage have less

consistent IPD ratios (Figure 1—figure supplement 1D). To perform this coverage adjustment, for

each isolate we trained a model to estimate the expected standard deviation of any base given its

coverage. After log-transforming and normalizing the IPD ratios of all bases in an isolate, the script

calculated each base’s number of standard deviations from the median normalized IPD ratio. Next,

linear regression estimated the relationship between these standard deviations and the inverse cov-

erage of each base. The resulting model estimated the standard deviation for each possible cover-

age value. When estimating the conditional probabilities of each MTase motif site, the code first

calculated the mean and standard deviation of normalized IPD ratios in adenines within and without

MTase motifs. It then multiplied these two standard deviations by the standard deviation predicted

from the sequencing coverage at that MTase motif site. These adjusted standard deviations were
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then used to estimate the distribution of normalized IPD ratios and calculate the conditional proba-

bility of the MTase motif site belonging to those distributions.

Conserved hypomethylation patterns
Using the Bayesian classification of each MTase motif target and the loci labeled by our methylome

annotation pipeline, we searched for hypomethylated loci that occurred in multiple isolates. For

each locus, a custom R script counted the number of isolates with that locus, including only isolates

with active genotypes of the MTase targeting the locus. Our script also counted the number of these

isolates in which the locus was hypomethylated. To estimate the significance of these findings, we

used a cumulative binomial test, with the first count as the sample size and the second count as the

number of successes. To find the probability of hypomethylation for each Bernoulli trial if hypome-

thylation occurred randomly, we calculated the total frequency of hypomethylation among MTase

motif sites in active isolates. A separate per trial probability was calculated for MamA, MamB, and

HsdM. The Bonferroni correction adjusted for multiple hypothesis testing, by dividing the signifi-

cance threshold by the total number of unique loci in this study. No reference strains were included

in the analysis of hypomethylated loci.

Transcription factor binding motif scanning
We searched for Transcription Factor (TF) binding motifs near hypomethylated bases using the com-

mand line motif scanner FIMO (Grant et al., 2011) version 4.12.0. For each hypomethylated locus in

an MTase target motif, we extracted the sequence surrounding the locus, 20 bases on each side in a

randomly selected representative isolate (only isolates hypomethylated at that locus were chosen).

The context sequences were combined into a multisequence FASTA file. Position-dependent letter-

probability matrices of each TF binding motif were kindly provided by Minch and colleagues

(Minch et al., 2015), who derived them from a ChIP-Seq experiment on virulent M. tuberculosis

type strain H37Rv. We then ran FIMO using each TF motif on the context FASTA file with a threshold

p-value of 0.01. For comparison we also scanned for TF motifs in the context sequences of consis-

tently methylated loci (consistently methylated loci here defined as loci present in at least 30 isolates

and methylated in at least 95% of those isolates). Custom scripts then parsed the FIMO output files

for each TF binding motif and counted the number of methylated loci and the number of hypome-

thylated loci matching each TF with a q-value of at least 0.1.

To genotype the transcription factor MntR in each isolate, we used the same method used for the

MTase genotyping. The wild-type sequence of mntR (Rv2788) was taken from the annotated refer-

ence genome H37Rv. BLASTn aligned the wild-type sequence against all genes predicted in each

isolate by Prodigal (Hyatt et al., 2010). Each matching nucleotide sequence was translated into an

amino acid sequence using transeq (EMBOSS 6.6.0.0, available online at www.ebi.ac.uk/Tools/

emboss/transeq/index.html) to obtain nonsynonymous variants and truncations. The amino acid

sequences were then aligned using MAFFT (Katoh and Standley, 2013) v7.205 with the –clustalout

option, and a custom script converted the alignment to a genotype.

Proximal motif site search
Multiple MTase motif sites in close proximity targeted by the same MTase can also potentially cause

hypomethylation (Casadesús and Low, 2013). To find potential cases of this phenomenon, for each

isolate a custom R script read a CSV file with the genome positions of each MTase motif site in the

isolate. For each MTase motif site, the script found the nearest MTase motif site of the same type

(MamA, MamB, and HsdM) and the same strand, then recorded the nucleotide distance between

them. If the distance was less than 100 bp, the sites were considered neighbors (‘Nearby Motif,’

Table 1).

RNA-Seq analysis
Supplementary table 9 of https://www.nature.com/articles/s41467-019-11948-6 was downloaded

and merged by locus tag with our annotated promoters for HsdM. A Benjamini-Hochberg adjusted

p-value threshold of 0.05 was set as the criteria for being considered ‘differentially expressed’, using

the column labeled ‘padj (BH)’. Two-sided Fisher’s exact test was implemented in R to test for inde-

pendence of HsdM motif site presence in the promoter and differentially expressed genes following
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hsdM knockout. Genes with an HsdM-targeted adenine within 50 bp upstream of the TSS were con-

sidered to have an HsdM promoter motif.
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kinetics signals of bases targeted by the MTase motif in that isolate, and from them inferred the

activity of the variant MTase, reported here. Variants that were not present in our dataset could

potentially be with respect to H37Rv instead of a wild-type MTase. *R47W and G154D were only

found in H37Rv and H37Ra. **Inferred to be deleterious, since only found in conjunction with D59G

and V616A, which result in wild-type methylation patterns in the absence of this insertion. ***Also

inferred to be deleterious, since only found in conjunction with V616A. ****K458N only found in tan-

dem with E481A. *****Consensus activity should be taken as tentative, since this genotype was not

observed in our study, and some previously reported as loss-of-function were revealed to be partially

active with our method of examining all motif instances. ‘unknown’ means that the effect of the

specified mutation cannot be inferred because it does not occur in isolation. †For hsdM variant

E481A, our study sequenced the same isolate as Chiner-Oms and colleagues, but our genotyping

showed both E481A and K458N in hsdM, while they only reported E481A. Both studies showed a

mild reduction in HsdM activity for this isolate, but it is unclear which mutation causes the reduction,

or whether the effect is epistatic.

. Supplementary file 2. MTBC isolates by MTase genotype and activity. Methylation activity for the

three MTBC m6A DNA methyltransferases and the genotypes of the genes encoding the proteins

that comprise them. Each row corresponds to an isolate.

. Supplementary file 3. Shared MTase motif loci Common MTase motif loci present in > 74 isolates.

MTase motif site loci were assigned by our methylome annotation pipeline, using characterized

MTase target motifs, and nearby genes transferred from H37Rv references by Rapid Annotation

Transfer Tool (RATT).

. Supplementary file 4. Methylation anomalies Microsoft Excel file containing hypervariable and dif-

ferentially variable motif sites present in > 74 isolates. Sheet one contains all hypervariable motif

sites, defined as any site more than 3 SDs above the mean SD size across isolates, calculated using

the distribution of log2 (IPD Ratios) at mamB motif sites. It specifies the coordinates with respect to

proximal TSSs and CDS, as well as the standard deviation and median across motif sites of the speci-

fied genotype. Sheets 2 and 3 hold the CDSs and TSSs implicated in these analyses and the particu-

lar set (s) of variable motif sites they belong to.

. Supplementary file 5. Hypomethylation analysis Consistently hypomethylated MTase motif site loci

across 93 clinical isolates. MTase motif site loci were assigned by our methylome annotation pipe-

line, using proximal H37Rv gene references transferred by Rapid Annotation Transfer Tool (RATT).

Consistently hypomethylated loci were classified as unmodified by our Bayesian analysis in a signifi-

cant number of isolates in which the relevant MTase was mostly active. Significance was calculated

using cumulative binomial test, setting the number of MTase-active isolates where a locus was pres-

ent as the number of trials, and the number of said isolates where the locus was hypomethylated as

the number of successes. At a 0.01 significance level, the threshold p-value for significance was

4.72E-07, after a Bonferroni correction for the number of loci tested. Sheet one contains hypomethy-

lated MamA motif site loci. Sheet two contains the hypomethylated MamB loci, and sheet three con-

tains hypomethylated HsdM loci.

. Supplementary file 6. Promoter methylation patterns Frequencies of MTase motif sites relative

locations upstream of TSSs in putative promoters and motif sites present across most isolates.

Sheets 1 and 3 are organized locus-wise, with frequencies of common loci and their overlap with

Sigma-factor consensus motifs are each locus for –10 and –35 consensus sigma factor binding sites.

Sheets 2 and 4 use the same underlying data as 1 and 3 but report the frequencies of relative distan-

ces upstream of TSS that MTase motifs and SFBSs overlap. Sheet five is similar to sheets 1 and 3,

but instead reports all MTase motif sites within 100 bp of TSSs, rather than only the subset that over-

lap SFBSs. Sheet six lists all loci found across 30 or more isolates that fall within 50 base pairs

upstream of a TSS, and for each Sigma Factor lists whether it overlaps with the –10 or –35 motifs,

and whether it overlaps with a sigma factor in an arrangement indicative of a true promoter. Sheet

seven is similar to six but each row represents a promoter containing at least one MTase motif.

. Supplementary file 7. HsdM knockout RNAseq re-analysis.

. Supplementary file 8. Fasta file containing the nucleotide sequence for insertion sequence IS6110.

. Transparent reporting form
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Data availability

Sequencing data for all M. tuberculosis clinical strains analyzed in this study are deposited under Bio-

Project accessions PRJNA555636 and PRJEB8783. All data generated or analyzed for this study are

included in the manuscript and supporting files. Source data files have been provided for figures

and tables.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Minch K 2015 The DNA-binding network of
Mycobacterium tuberculosis ChIP-
seq dataset

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=PRJNA255984

NCBI BioProject,
PRJNA255984

Elghraoui A, Modlin
SJ, Valafar F

2017 Mycobacterium tuberculosis H37Ra
genome sequencing and assembly

https://www.ncbi.nlm.
nih.gov/bioproject/
329548

NCBI BioProject,
SRX1959957,
SRX1959958

Berney M 2015 Determining the methylome of
Mycobacterium tuberculosis

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=PRJEB8783

NCBI BioProject,
PRJEB8783

Valafar F 2020 Mycobacterium tuberculosis
reference-quality clinical genomes

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=PRJNA555636

NCBI BioProject,
PRJNA555636

References
Ardissone S, Redder P, Russo G, Frandi A, Fumeaux C, Patrignani A, Schlapbach R, Falquet L, Viollier PH. 2016.
Cell cycle constraints and environmental control of local DNA hypomethylation in a-Proteobacteria. PLOS
Genetics 12:e1006499. DOI: https://doi.org/10.1371/journal.pgen.1006499, PMID: 27997543

Atack JM, Tan A, Bakaletz LO, Jennings MP, Seib KL. 2018. Phasevarions of bacterial pathogens: methylomics
sheds new light on old enemies. Trends in Microbiology 26:715–726. DOI: https://doi.org/10.1016/j.tim.2018.
01.008, PMID: 29452952

Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C, Deikus G, Shen N, Munera D, Waldor MK, Chess A,
Blaser MJ, Schadt EE, Fang G. 2015. Single molecule-level detection and long read-based phasing of
epigenetic variations in bacterial methylomes. Nature Communications 6:7438. DOI: https://doi.org/10.1038/
ncomms8438, PMID: 26074426

Beaulaurier J, Schadt EE, Fang G. 2019. Deciphering bacterial epigenomes using modern sequencing
technologies. Nature Reviews Genetics 20:157–172. DOI: https://doi.org/10.1038/s41576-018-0081-3,
PMID: 30546107

Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan J, Wang F,
Jacobs WR. 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of
Mycobacterium tuberculosis. PNAS 112:10008–10013. DOI: https://doi.org/10.1073/pnas.1513033112,
PMID: 26221021

Bist P, Rao DN. 2003. Identification and mutational analysis of mg 2+binding site in eco P15I DNA
Methyltransferase. Journal of Biological Chemistry 278:41837–41848. DOI: https://doi.org/10.1074/jbc.
M307053200

Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom RR,
Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ.
2016. The epigenomic landscape of prokaryotes. PLOS Genetics 12:e1005854. DOI: https://doi.org/10.1371/
journal.pgen.1005854, PMID: 26870957

Braun RE, Wright A. 1986. DNA methylation differentially enhances the expression of one of the two E. coli dnaA
promoters in vivo and in vitro. Molecular and General Genetics MGG 202:246–250. DOI: https://doi.org/10.
1007/BF00331644, PMID: 3010047

Browning DF, Busby SJ. 2016. Local and global regulation of transcription initiation in Bacteria. Nature Reviews
Microbiology 14:638–650. DOI: https://doi.org/10.1038/nrmicro.2016.103, PMID: 27498839

Brunet YR, Bernard CS, Cascales E. 2020. Fur-Dam Regulatory Interplay at an Internal Promoter of the
Enteroaggregative Escherichia coli Type VI Secretion sci1 Gene Cluster . Journal of Bacteriology 202:00075-20.
DOI: https://doi.org/10.1128/JB.00075-20
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