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ABSTRACT The composition of gut- associated microbial communities changes during intestinal 
inflammation, including an expansion of Enterobacteriaceae populations. The mechanisms under-
lying microbiota changes during inflammation are incompletely understood. Here, we analyzed 
previously published metagenomic datasets with a focus on microbial hydrogen metabolism. The 
bacterial genomes in the inflamed murine gut and in patients with inflammatory bowel disease 
contained more genes encoding predicted hydrogen- utilizing hydrogenases compared to commu-
nities found under non- inflamed conditions. To validate these findings, we investigated hydrogen 
metabolism of Escherichia coli, a representative Enterobacteriaceae, in mouse models of colitis. E. 
coli mutants lacking hydrogenase- 1 and hydrogenase- 2 displayed decreased fitness during coloni-
zation of the inflamed cecum and colon. Utilization of molecular hydrogen was in part dependent 
on respiration of inflammation- derived electron acceptors. This work highlights the contribution of 
hydrogenases to alterations of the gut microbiota in the context of non- infectious colitis.

Introduction
The mammalian distal gut is densely colonized by a community of bacteria, archaea, viruses, and 
eukaryotic microorganisms, collectively termed the gut microbiota. Under homeostatic conditions, 
the gut microbiota is dominated by obligate anaerobic bacteria in the Bacteroidetes and Firmic-
utes phyla (Eckburg, 2005; Moore and Holdeman, 1974). Members of the phyla Actinobacteria, 
Verrucomicrobia, and Proteobacteria constitute minor populations in the healthy gut microbiota. 
Obligate anaerobic bacteria successfully colonize the healthy gut due to their ability to degrade the 
available complex polysaccharides (Kaoutari et al., 2013) (reviewed in Cockburn and Koropatkin, 
2016; Koropatkin, 2012) and their ability to thrive in an anaerobic environment through fermentation 
(Hartman, 2009; Jalili- Firoozinezhad, 2019; Litvak et al., 2018).

During intestinal inflammation, the composition of the gut microbiota changes compared to the 
homeostatic state. Microbial diversity decreases (Manichanh, 2006; Mirsepasi- Lauridsen, 2018), the 
prevalence of mucolytic bacteria in the mucosa increases (Png, 2010), and populations of Entero-
bacteriaceae family members expand (Haberman, 2014; Kotlowski, 2007; Lupp, 2007). Disease- 
associated changes in gut microbiota composition have been observed in patients with inflammatory 
bowel disease (IBD) (Frank, 2007; Kotlowski, 2007), enteric pathogen infection (Lupp, 2007; 
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Stecher et al., 2007; Wang et al., 2019), necrotizing enterocolitis (Mai et al., 2011), and in animal 
models of colitis (Garrett, 2007; Lupp, 2007). Experiments in animal models suggest that mucosal 
host responses contribute to microbiota changes (Winter and Bäumler, 2014; Winter, 2013) and, 
conversely, microbial communities can instigate or perpetuate disease in the context of genetic 
susceptibility (Garrett, 2010; Manichanh, 2012; Zhu, 2018).

In IBD patients, disease- associated changes in the microbiota composition, genetic coding 
capacity, and fecal metabolite concentrations not only correlate (Franzosa, 2019), but the availability 
of certain metabolites impacts microbial community structure (Fornelos, 2020; Hughes, 2017). The 
inflammatory response produces reactive oxygen and nitrogen species, which when degraded in the 
gut lumen produce the electron acceptors tetrathionate, nitrate, and oxygen (Chanin, 2020; Winter, 
2010; Winter, 2013). Additionally, changes in colonocyte metabolism during inflammation also result 
in an increased availability of the electron acceptor oxygen (Cevallos, 2019; Hughes, 2017; Litvak, 
2019; Lopez, 2016; Rivera- Chavez, 2016). Findings from murine models of colitis suggest that the 
metabolic versatility of Enterobacteriaceae, particularly the ability to utilize a large repertoire of 
terminal electron acceptors, allows Enterobacteriaceae family members to thrive in the inflamed gut. 
Enterobacteriaceae utilize these inflammation- derived electron acceptors to perform anaerobic and 
aerobic respiration in the inflamed gut, thus gaining a fitness advantage over bacteria that rely on 
fermentation, a less energetically favorable metabolism. A functioning electron transport chain also 
enables utilization of poorly accessible carbon sources (Faber et al., 2017; Fornelos, 2020; Price- 
Carter, 2001; Spiga and Winter, 2019).

The role of respiratory dehydrogenases in inflammation- associated outgrowth of Enterobacteria-
ceae during non- infectious colitis is underexplored. A functioning electron transport chain requires 
oxidation of an electron donor by a respiratory dehydrogenase, shuttling liberated electrons to the 
quinone pool, and reduction of an electron acceptor via terminal reductases and oxidases. Reduction 
potentials and gene regulation determine which combinations of electron- donating and -accepting 
reactions occur under physiological conditions (Unden et  al., 2014). Formate dehydrogenases 
contribute to the expansion of Enterobacteriaceae in murine models of IBD (Hughes, 2017). Under 
laboratory conditions, Enterobacteriaceae utilize several other molecules as electron donors, such as 
molecular hydrogen (H2). Therefore, we focused on investigating H2 metabolism in the inflamed gut 
in the current study.

Hydrogenases are a diverse family of metalloenzymes that catalyze the oxidation and/or produc-
tion of molecular hydrogen (Benoit et  al., 2020; Pinske and Sawers, 2016). These enzymes are 
typically classified based on the metal content of the active site and their biochemical activity (Peters, 
1998; Shima, 2008; Anne, 1995). The active site of [NiFe]-hydrogenases contains nickel and iron, 
while the active site of [Fe]-hydrogenases and [FeFe]-hydrogenases includes one or two iron atoms, 
respectively. Based on their activity, hydrogenases can be further categorized into uptake, evolving, 
bidirectional, bifurcating, and sensory enzymes (Greening, 2016; Vignais and Billoud, 2007). Uptake 
hydrogenases convert H2 to two protons and two electrons, with the two electrons often partici-
pating in an electron transport chain. Conversely, hydrogenases defined as evolving are responsible 
for production of H2. Bidirectional hydrogenases can produce or oxidize H2 (reviewed in Tamagnini, 
2007). Bifurcating hydrogenases are enzymes involved in H2 metabolism that use an exergonic reac-
tion (e.g., oxidation of ferredoxin) to drive an endergonic reaction (e.g., oxidation of NADH) without 
an ion gradient (Li, 2008; Schut and Adams, 2009). Electron bifurcation was only recently demon-
strated, yet the genomes of many anaerobes encode predicted bifurcating hydrogenases (Greening, 
2016; Schut and Adams, 2009). Sensory hydrogenases detect changes in H2 partial pressure and 
then activate regulatory cascades controlling expression of additional hydrogenases (Lenz and Fried-
rich, 1998), but additional study is required to characterize the many putative sensory hydrogenases 
present in obligate anaerobes (Greening, 2016).

Microbial H2 metabolism in the inflamed gut is incompletely understood. Here, we mined previously 
published shotgun metagenomic sequencing datasets of human IBD patients and healthy controls 
(Franzosa, 2019) as well as a mouse model of inflammation (Hughes, 2017) with a focus on hydroge-
nases. Furthermore, we assessed whether hydrogenase activity enhances fitness of Escherichia coli in 
murine models of colitis. Our data suggest that utilization of molecular hydrogen contributes to the 
outgrowth of Enterobacteriaceae in the inflamed gut.

https://doi.org/10.7554/eLife.58609
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Results
Shotgun metagenomic sequencing of the murine and human gut 
microbiota reveals changes in bacterial hydrogen metabolism coding 
capacity during intestinal inflammation
To investigate H2 metabolism in the inflamed gut, we reanalyzed a previously published dataset of 
shotgun metagenomic sequencing of cecal microbiota from a murine colitis model (Hughes, 2017). 
Cecal samples for metagenomic sequencing were collected from animals that were treated with 
dextran sulfate sodium (DSS) in the drinking water to induce epithelial injury and subsequent mucosal 
inflammation (Chassaing, 2014) or mock treated (Hughes, 2017). Comparing DSS- treated to mock- 
treated animals, we observed disparate abundance of various hydrogenases and their respective 
subunits, with enrichment of genes encoding some hydrogenases and depletion of others (Figure 1—
figure supplement 1). This initial analysis suggested that H2 metabolism might be altered during 
intestinal inflammation and motivated our subsequent studies.

Hydrogenase activity can be predicted based on primary sequence (Søndergaard et al., 2016). 
The HydDB database has been widely utilized to classify hydrogenases (Dong, 2020; Mei, 2020; 
Panwar, 2020; Park et al., 2020; Picone et al., 2020; Stairs et al., 2020; Wong, 2020; Yu et al., 
2020). We confirmed the reliability of gene annotations in the HydDB database using a simulated 
metagenomic dataset of hydrogenase- containing and hydrogenase- free genomes (see Materials 
and methods for details). To evaluate the abundance of hydrogenases with different activities in 
the murine colitis model, reads from the metagenomic sequencing experiment were aligned to the 
curated HydDB hydrogenase database and segregated based on predicted activity (Søndergaard 
et al., 2016). The number of normalized reads that aligned to predicted bifurcating hydrogenases 
was virtually unchanged (Figure 1A). The relative abundance of predicted bidirectional, evolving and 
sensory hydrogenases decreased modestly in the DSS- treated mice; however, this difference was 
not statistically significant (Figure  1A). Notably, reads aligned to predicted uptake hydrogenases, 
enzymes responsible for oxidation of H2 via respiration, had a significantly higher abundance in DSS- 
treated mice than in mock- treated mice (p<0.05) (Figure 1A).

We next sought to determine whether uptake hydrogenases are differentially abundant in IBD 
patients compared to healthy individuals. We analyzed a previously published shotgun metagenomic 
sequencing of stool samples from IBD patients and non- IBD controls (Franzosa, 2019). The stool 
samples used in the study by Franzosa and colleagues were collected from individuals enrolled in 
PRISM the Prospective Registry in IBD Study at Massachusetts General Hospital; Boston, USA (Fran-
zosa, 2019) and in two studies in the Netherlands: LifeLines DEEP (Tigchelaar et al., 2015) and NLIBD 
(Franzosa, 2019). We aligned metagenomic reads from the aforementioned cohorts to the HydDB 
hydrogenase database (Søndergaard et al., 2016) to assess the abundance of genes encoding hydro-
genases with predicted functions (Figure 1B–C). Mirroring our observations in the murine model of 
colitis, we detected a significantly higher abundance of predicted uptake hydrogenases in patients 
with IBD than non- IBD controls (p<0.001 for patients with Crohn’s disease; p<0.01 for patients with 
ulcerative colitis; Figure 1B–C). Reads that aligned to predicted bifurcating or sensory hydrogenases 
were slightly more abundant in the ulcerative colitis patients (Figure 1C), but virtually unchanged in 
the Crohn’s disease patients (Figure 1B). In contrast with our findings in the murine gut (Figure 1A), 
there was a significantly higher abundance of reads that aligned to predicted evolving hydrogenases 
in IBD samples (Figure 1B–C). These data suggest that microbial H2 metabolism is altered in human 
IBD patients and in a mouse model of inflammation. Furthermore, the increase in relative abundance 
of predicted uptake hydrogenase genes during gut inflammation suggests that organisms that encode 
H2- utilizing hydrogenases may have a fitness advantage during intestinal inflammation.

Hydrogen utilization promotes fitness of E. coli in the inflamed gut
To investigate whether changes in H2 metabolism contribute to the inflammation- associated expansion 
of Enterobacteriaceae populations, we focused on commensal E. coli as a representative organism. The 
E. coli K- 12 genome encodes four hydrogenases: two H2- oxidizing enzymes, hydrogenase- 1 (Hyd- 1) 
and hydrogenase- 2 (Hyd- 2), and two H2- evolving enzymes (hydrogenase- 3 and hydrogenase- 4). Hyd- 1 
and Hyd- 2 are encoded by the hya and hyb operons, respectively (Figure 2A). We therefore hypothe-
sized that Hyd- 1 and Hyd- 2 might provide a fitness advantage to Enterobacteriaceae in the inflamed 

https://doi.org/10.7554/eLife.58609
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Figure 1. Mapping of metagenomic sequencing data from murine cecal samples and human stool to bacterial hydrogenases. (A) Shotgun 
metagenomic sequencing of mock or dextran sulfate sodium (DSS)- treated mice with endogenous Enterobacteriaceae (obtained from Charles 
River) was previously performed to generate the analyzed dataset (ENA accession number PRJEB15095; Hughes, 2017). Reads were aligned to the 
HydDB hydrogenase database (Søndergaard et al., 2016) and segregated based on predicted hydrogenase activity. Each symbol corresponds to 
the average number of normalized reads that map to a specific sequence in the mock or DSS- treated animals (six mice per group). Averages equal 
to zero were assigned a value of 0.05. (B, C) Analysis of a previously published metagenomic sequencing dataset from stool samples collected from 
non- inflammatory bowel disease (IBD) controls and patients with Crohn’s disease or ulcerative colitis (SRA BioProject number PRJNA400072; Franzosa, 
2019). Reads from non- IBD controls (55 samples) and patients with Crohn’s disease (87 samples) (B) or ulcerative colitis (76 samples) (C) were aligned to 
the HydDB hydrogenase database of predicted hydrogenase activities (Søndergaard et al., 2016). Each symbol corresponds to the average number 
of normalized reads that map to a specific hydrogenase sequence. Averages equal to zero were assigned a value of 0.0005. Medians are labeled with a 
red solid line, and error bars correspond to interquartile ranges. Statistical significance was determined by Bonferroni- corrected Mann–Whitney U- test 
(*p<0.05; **p<0.01, ***p<0.001; ns: not statistically significant). See also Figure 1—figure supplement 1, a Figure 1—source data 1, Figure 1—
source data 2, and Figure 1—source data 3.

The online version of this article includes the following figure supplement(s) for figure 1:

Source data 1. Mapping of metagenomic sequencing of murine cecal content to hydrogenases.

Source data 2. Mapping of metagenomic sequencing of non- inflammatory bowel disease controls and patients with Crohn’s disease to hydrogenases.

Source data 3. Mapping of metagenomic sequencing of non- inflammatory bowel disease controls and patients with ulcerative colitis to hydrogenases.

Figure supplement 1. Shotgun metagenomic sequence analysis of the cecal microbiota in the dextran sulfate sodium (DSS) colitis model.

https://doi.org/10.7554/eLife.58609
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gut. To determine the contribution of H2 utilization, we used two commensal E. coli strains. Nissle 1917 
(EcN) was originally isolated from a human (Grozdanov, 2004) and MP1 is a mouse isolate (Lasaro, 
2014). We initially generated isogenic mutants lacking Hyd- 1 and Hyd- 2 activity (Δhya Δhyb mutant) 
(Figure 2A). As expected, inactivation of Hyd- 1 and Hyd- 2 activity had no discernible effect on growth 
of EcN under standard, aerobic laboratory conditions (Figure 2—figure supplement 1A). We next 
co- cultured the EcN wild- type and an isogenic Δhya Δhyb mutant under anaerobic conditions in the 
presence of 5% molecular hydrogen with mucin as a carbon source (Figure 2—figure supplement 

Figure 2. Hydrogenases provide a competitive fitness advantage for E. coli during acute colitis. (A) Schematic representation of the hydrogenase- 1 and 
hydrogenase- 2 encoding gene loci in E. coli Nissle 1917 (EcN) and MP1. The DNA regions that were removed from the Δhya and Δhyb mutants in EcN 
and MP1 are indicated in black (EcN) and brown (MP1), respectively. (B–D) Groups of wild- type (WT) male (C, D) and female (D) C57BL/6 mice devoid 
of native Enterobacteriaceae were treated with 3% dextran sulfate sodium (DSS) in the drinking water. Mice were orally inoculated with a 1:1 ratio of 
the WT strain and an isogenic Δhya Δhyb mutant on day 4 of DSS treatment. (B) Schematic representation of the colitis model. (C, D) Intestinal content 
was collected on day 9 to determine the abundance of the EcN (C) or MP1 (D) WT strain (black bars) or isogenic Δhya Δhyb mutant (gray bars). The 
competitive index (CI) is indicated above each set of bars. Each symbol corresponds to one mouse. Bars represent geometric means ± 95% confidence 
intervals. Statistical significance was determined by paired Student’s t- test of the log- transformed data (**p<0.01; ***p<0.001). See also Figure 2—
figure supplement 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. In vitro analysis of E. coli wild- type (WT) and hydrogenase- deficient mutant strains.

Figure supplement 2. Assessment of bacterial fitness in the murine intestinal lumen.

https://doi.org/10.7554/eLife.58609
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1B). After 18 hr, the ratio of the two strains, corrected by the corresponding ratio in the inoculum, was 
determined (competitive index). Consistent with previous reports (Yamamoto and Ishimoto, 1978), 
H2 utilization only provided a growth advantage when an external electron acceptor, such as fumarate, 
was added to the media. The Hyd- 2 enzyme is primarily responsible for enhancing growth under these 
culture conditions since a mutant lacking both Hyd- 1 and Hyd- 2 (Δhya Δhyb) was outcompeted by a 
strain only lacking Hyd- 1 (Δhya); conversely, a Δhyb and a Δhya Δhyb mutant were equally fit in this 
assay (Figure 2—figure supplement 1B). Genetic complementation restored the phenotype of Hyd- 
2- deficiency (Figure 2—figure supplement 1C).

We next examined whether Hyd- 1 and Hyd- 2 contribute to E. coli colonization of the murine large 
intestine. C57BL/6 mice acquired from the Jackson Laboratory (Bar Harbor, ME) do not have any 
detectable endogenous Enterobacteriaceae (data not shown), which facilitates engraftment and 
recovery of exogenously introduced E. coli. To facilitate recovery of exogenously introduced E. coli 
strains, the wild- type and mutant strains were marked with low- copy number plasmids (Wang and 
Kushner, 1991; Winter, 2013; Figure 2—figure supplement 2A,B). Groups of mice were given DSS 
in the drinking water to induce colitis (Figure 2B). On day 4, coinciding with disease onset as deter-
mined by body weight loss (Figure 2—figure supplement 2C,D), mice were orally inoculated with 
an equal mixture of the respective wild- type strain and the isogenic Δhya Δhyb mutant strain. Five 
days after colonization, the abundance of each strain in the colonic and cecal content was determined 
and the competitive index was calculated (Figure 2C,D). The EcN wild- type strain outcompeted the 
Δhya Δhyb mutant in the colonic and cecal content (12- fold in the colon and 5.8- fold in the cecum; 
Figure 2C), while the MP1 wild- type strain was recovered in significantly higher numbers than the 
uptake hydrogenase- deficient mutant in the colonic and cecal content (25- fold and 22- fold, respec-
tively; Figure 2D).

We also determined whether hya and hyb promote gut colonization in the absence of a close 
competitor (Figure 3). Mice were treated with DSS and colonized with either the EcN wild- type strain 
or an isogenic Δhya Δhyb mutant and colonization of the large intestine content assessed after 5 

Figure 3. Hydrogenases enhance growth of E. coli in a colitis model. Wild- type (WT) female C57BL/6 mice were treated with 3% dextran sulfate sodium 
(DSS) in the drinking water to induce colitis. On day 4 of DSS treatment, mice were orally inoculated with either the WT E. coli Nissle 1917 (EcN) strain 
or the isogenic Δhya Δhyb mutant strain. (A) Schematic representation of the experiment. (B) Intestinal content was collected 9 days later to determine 
the abundance of E. coli in the colon and cecum. Each symbol corresponds to the E. coli bacterial abundance in one mouse. Bars represent geometric 
means ± 95% confidence intervals. Black bars, WT. Gray bars, Δhya Δhyb mutant. Statistical significance was determined by unpaired Student’s t- test of 
the log- transformed data (*p<0.05; **p<0.01).

https://doi.org/10.7554/eLife.58609
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days (Figure 3A). Consistent with our observations in the competitive colonization experiments, the 
wild- type strain was more abundant in the colonic and cecal content than the uptake hydrogenase- 
deficient mutant (4.7- fold and 5.1- fold, respectively; Figure 3B). Collectively, these results suggest 
that H2 utilization via Hyd- 1 and Hyd- 2 enhances fitness and contributes to E. coli colonization of the 
inflamed large intestine.

Hydrogen utilization contributes to the expansion of E. coli during 
intestinal inflammation
We next wanted to assess whether H2- utilizing hydrogenases contributed to inflammation- associated 
expansion of E. coli populations, where C57BL/6 mice are colonized with E. coli prior to induction of 
colitis. We chose to use the MP1 strain for this experiment as it is a mouse commensal isolate that 

Figure 4. Hydrogenases contribute to expansion of E. coli in the inflamed gut. Groups of wild- type (WT) male C57BL/6 mice were orally inoculated with 
a 1:1 ratio of the E. coli MP1 WT strain and the isogenic Δhya Δhyb mutant. On the same day as the oral inoculation, mice received water or 3% dextran 
sulfate sodium (DSS) in the drinking water. (A) Schematic representation of experiment. (B) Mouse body weights. Data points represent geometric 
means ± standard error (mock- treated, black circles; DSS- treated, gray squares). (C) Hematoxylin and eosin- stained colonic and cecal sections were 
scored by a veterinary pathologist for submucosal edema (light gray bars), immune infiltration by polymorphonuclear cells (PMN) (dark gray bars), 
epithelial damage (medium gray bars), and exudate (black bars). Bars for each histopathology category correspond to the average per group. (D, E) The 
abundance of each strain was determined in the colonic (D) and cecal (E) content (WT strain, black bars; Δhya Δhyb mutant, gray bars). The competitive 
index (CI) is indicated above the sets of DSS- treated bars. Each symbol corresponds to one mouse. Dashed line corresponds to the limit of detection. 
Samples with values below the limit of detection were assigned a value of 10 CFU/g. Bars represent geometric means ± 95% confidence intervals. 
Statistical significance was determined by paired Student’s t- test of the log- transformed data (***p<0.001).

https://doi.org/10.7554/eLife.58609
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colonizes the mouse intestinal tract in the absence of inflammation (Lasaro, 2014). Groups of mice 
were orally inoculated with a mixture of the MP1 wild- type strain and the Δhya Δhyb mutant. One group 
received DSS treatment, while the other group was mock- treated (no inflammation) (Figure 4A–C). 
Under homeostatic conditions, the wild- type strain and the Δhya Δhyb mutant colonized the colon 
and cecum at low levels (Figure 4D and E). However, the wild- type strain had a marked fitness advan-
tage over the Δhya Δhyb mutant in the DSS- treated mice (Figure 4D and E). Of note, the MP1 wild- 
type strain outcompeted the Δhya Δhyb mutant to a higher degree in this experiment than in the 
previous experiment in which E. coli strains were introduced at the onset of inflammation (Figure 2D).

To better understand E. coli H2 metabolism in the context of gut inflammation, we colonized groups 
of DSS- treated mice with a mixture of the MP1 wild- type and the Δhya Δhyb mutant and acquired 

Figure 5. Hydrogenase- dependent fitness of E. coli correlates with intestinal inflammation. Groups of wild- type (WT) male (2–3 per group) and female 
(3–4 per group) C57BL/6 mice were orally inoculated with a 1:1 ratio of the E. coli MP1 WT strain and the isogenic Δhya Δhyb mutant. On the same 
day as the oral inoculation, mice received 3% dextran sulfate sodium in the drinking water. Groups of mice were euthanized on days 1, 3, 5, 7, and 9 
after inoculation. (A) Mouse body weights. Data points represent geometric means ± standard error. (B) Colon lengths. Each symbol corresponds to 
data from one mouse. Bars represent geometric means ± 95% confidence intervals. (C, D) The competitive indices of the WT strain and the Δhya Δhyb 
mutant in the colonic (C) and cecal (D) contents were determined. Each symbol corresponds to one mouse. Bars represent geometric means ± 95% 
confidence intervals. Statistical significance was determined by the Kruskal–Wallis test with Dunn’s post hoc multiple analyses test (*p<0.05; **p<0.01; 
***p<0.001). See also Figure 5—figure supplements 1–4.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Expression of pro- inflammatory markers in time- course experiment.

Figure supplement 2. Development of pathological lesions during dextran sulfate sodium treatment.

Figure supplement 3. Hydrogenase- dependent competitive fitness of E. coli correlates with colon length.

Figure supplement 4. Hydrogenases do not provide a competitive fitness advantage to E. coli in healthy mice colonized for 3 days.

https://doi.org/10.7554/eLife.58609
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samples in 2- day intervals (Figure 5). Disease severity and intestinal inflammation developed over 
time, as quantified by loss of body weight (Figure 5A), diminished colon length (Figure 5B), increased 
mRNA levels of pro- inflammatory cytokines (Cxcl1 and Tnfa) (Figure 5—figure supplement 1A,B), 
and manifestation of pathological changes (Figure 5—figure supplement 2A,B). At the same time 
as inflammation developed, the magnitude of the phenotype conferred by H2 utilization in E. coli 
increased and stayed constant at later time points (Figure 5C–D). Notably, colon length, a sensitive 
measure of colitis, was inversely correlated with the competitive fitness advantage of the wild- type 
strain over the Δhya Δhyb mutant (Figure 5—figure supplement 3A,B). In the absence of inflamma-
tion, the fitness of the wild- type strain and the Δhya Δhyb mutant were somewhat comparable at 3 
days (Figure 5—figure supplement 4) and 9 days and after initial colonization (Figure 4D–E). Taken 
together, we conclude that Hyd- 1 and Hyd- 2 provide a notable fitness advantage to E. coli during the 
inflammation- associated expansion of the Enterobacteriaceae population.

Figure 6. Hydrogenases promote fitness of E. coli in piroxicam- accelerated Il10-/- colitis models. Groups of Il10-/- C57BL/6 and Il10-/- BALB/c mice 
received piroxicam- fortified diet. Mice were orally inoculated with a 1:1 ratio of the E. coli wild- type (WT) strain and the isogenic Δhya Δhyb mutant on 
day 2 of piroxicam treatment. Nissle 1917 (EcN) and MP1 strains of E. coli were used. (A) Schematic representations of colitis models. (B) Body weights. 
Data points represent geometric means ± standard error (EcN- colonized Il10-/- C57BL/6, white triangles; EcN- colonized Il10-/- BALB/c, black circles; 
MP1- colonized Il10-/- BALB/c, gray squares). Four mice were excluded from analysis of the MP1- colonized Il10-/- BALB/c mice on days 11–12 as the body 
weights of those mice were not available. (C) Abundance of the EcN WT strain and the Δhya Δhyb strain in the intestinal content of piroxicam- treated 
Il10-/- male C57BL/6. (D) Abundance of the EcN WT strain and the Δhya Δhyb strain in the intestinal content of piroxicam- treated Il10-/- male BALB/c 
mice. (E) Abundance of the MP1 WT strain and the Δhya Δhyb mutant in the intestinal content of piroxicam- treated Il10-/- male and female BALB/c. (C–E) 
CI: competitive index. Each symbol corresponds to one mouse. Dashed line corresponds to the limit of detection. Samples with values below the limit 
of detection were assigned a value of 10 CFU/g. Bars represent geometric means ± 95% confidence intervals. Statistical significance was determined by 
paired Student’s t- test of the log- transformed data (*p<0.05; ***p<0.001).

https://doi.org/10.7554/eLife.58609
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Hyd-1 and Hyd-2 enhance fitness of E. coli in the piroxicam-accelerated 
Il10-/- colitis model
DSS promotes mucosal inflammation by causing epithelial injury (Cooper, 1993). To determine 
whether H2 utilization also provides a fitness advantage to E. coli in a colitis model in which inflamma-
tion was induced by a different mechanism, we used a genetic model of colitis. Conventionally raised 
mice deficient for the anti- inflammatory cytokine IL- 10 (encoded by Il10) develop colitis spontaneously 
(Kuhn, 1993; Sellon, 1998). This process can be accelerated via oral administration of piroxicam, a 
nonselective nonsteroidal anti- inflammatory drug (Berg et al., 2002). Groups of Il10-/- mice were fed 
piroxicam- fortified chow instead of regular chow over the course of the experiment and were orally 
inoculated with an equal mixture of wild- type E. coli EcN or MP1 strain and the respective isogenic 
Δhya Δhyb mutants 2 days after the start of the piroxicam treatment (Figure 6A). We used three 
different experimental designs in which we varied the mouse genetic background, piroxicam dose, 
duration of the experiment, and E. coli strain used (Figure 6A). Mice exhibited differential suscepti-
bility and weight loss was most prominent in the C57BL/6 background (Figure 6B). Importantly, the 
wild- type E. coli strains significantly outcompeted the Δhya Δhyb mutants, regardless of the experi-
mental setting (Figure 6C–E). Taken together, H2 utilization provides a fitness advantage to E. coli in 
both chemically induced and genetically induced models of murine colitis.

Hydrogen utilization in the inflamed gut partially depends on fumarate, 
nitrate, and oxygen respiration
Hyd- 1 and Hyd- 2 are both H2- utilizing, membrane- bound hydrogenases that transfer electrons from 
H2 oxidation to the electron transport chain. In vitro, hydrogen oxidation is coupled to fumarate 
reduction and nitrate respiration (Figure 2—figure supplement 1B; Laurinavichene and Tsygankov, 
2001; Yamamoto and Ishimoto, 1978). The redox potential of the nitrate/nitrite couple is more 
favorable than that of fumarate/succinate. As such, nitrate is the preferred electron acceptor for H2 
utilization in E. coli (Figure 7A).

During gut inflammation, levels of inducible nitric oxide synthase (Nos2) increase (Figure 5—figure 
supplement 1C; Singer, 1996; Winter, 2013) enabling nitrate respiration, which supports growth 
of Enterobacteriaceae family members (Hughes, 2017; Winter, 2013). In addition, E. coli respires 
oxygen using the cytochrome bd- II oxidase enzyme (AppBCX) (Chanin, 2020). We therefore exam-
ined whether H2 utilization in the murine gut was dependent on fumarate reductase, cytochrome 
bd- II oxidase, or nitrate reductase activity. We assessed the fitness advantage provided by Hyd- 1 and 
Hyd- 2 in the presence (wild- type strain vs. a Δhya Δhyb mutant) and absence of a specific reductase 
(e.g., Δfrd mutant vs. Δfrd Δhya Δhyb mutant) in the DSS colitis model (Figure 7B–C). The competitive 
advantage conferred by Hyd- 1 and Hyd- 2 was significantly reduced in the absence of fumarate reduc-
tase, cytochrome bd- II oxidase, or nitrate reductase activity. Consistent with the idea that all three 
electron acceptors contribute to the H2 utilization phenotype, inactivation of each reductase did not 
completely abolish the phenotype (Figure 7B–C).

Prior work had revealed sex- specific differences in the development of disease in the DSS colitis 
model (Bábíčková et al., 2015). When we stratified the data shown in Figure 7B–C according to 
mouse sex, we observed no striking differences in the magnitude of E. coli H2 utilization in male and 
female mice (Figure 7—figure supplement 1).

Hyd-1 and Hyd-2 individually contribute to fitness of E. coli
Hyd- 1 and Hyd- 2 are members of distinct [NiFe]-hydrogenase subgroups, differing in subunit compo-
sition and the range of redox potentials at which they function optimally (Beaton et  al., 2018; 
Greening, 2016; Lukey, 2010; Volbeda et al., 2013) (reviewed in Pinske and Sawers, 2016). There-
fore, we decided to investigate which hydrogenase mediated the fitness advantage conferred by 
H2 utilization. In the DSS colitis model (Figure 8A), the EcN wild- type strain outcompeted the Δhya 
mutant in the colonic and cecal content (3.3- fold and 2.2- fold, respectively) (Figure 8B). Similarly, the 
Δhyb mutant was recovered in significantly lower numbers than the EcN wild- type strain from both 
colonic and cecal content (6.4- fold and 4.7- fold, respectively; Figure 8C). We thus conclude that both 
Hyd- 1 and Hyd- 2 provide a fitness advantage for E. coli during colitis.

https://doi.org/10.7554/eLife.58609
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Discussion
Molecular hydrogen metabolism is widely utilized across microbial phyla, and hydrogenases are 
used by bacteria in diverse ecosystems (Adam and Perner, 2018; Greening, 2016; Jordaan et al., 
2020; Piché-Choquette and Constant, 2019; Wolf, 2016). H2 metabolism supports microbial respi-
ration, fermentation, and carbon fixation (Vignais and Billoud, 2007). Recent work by Greening and 

Figure 7. Utilization of various electron acceptors facilitates hydrogenase- dependent competitive outgrowth of E. coli. (A) Mucin broth supplemented 
with or without the electron acceptors fumarate (25 mM) and nitrate (0.4 mM or 40 mM) was inoculated with an equal mixture of the indicated EcN 
strains. Cultures were incubated anaerobically, in the presence of 5% H2, for 18 hr and the competitive index was determined. Each symbol corresponds 
to a biological replicate. Bars represent geometric means ± 95% confidence intervals. WT: wild- type strain; NR: narG narZ napA mutant. Statistical 
significance was determined for the indicated comparisons using ANOVA with Sidak’s multiple comparisons test of the log- transformed data (**p<0.01, 
***p<0.001; ns: not statistically significant). (B, C) Groups of WT male and female C57BL/6 mice were treated with 3% dextran sulfate sodium (DSS) in 
the drinking water. Mice were orally inoculated with a 1:1 ratio of the indicated E. coli Nissle 1917 (EcN) strains on day 4 of DSS treatment. Colonic (B) 
and cecal (C) content was collected after 9 days of DSS treatment to determine the competitive indices. Each symbol corresponds to one mouse. Bars 
represent geometric means ± 95% confidence intervals. Statistical significance was determined by the Kruskal–Wallis test with Dunn’s post hoc multiple 
analyses test (*p<0.05; **p<0.01; ***p<0.001). See also Figure 7—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Hydrogenases confer a competitive fitness advantage to E. coli during colitis, independent of mouse sex.

https://doi.org/10.7554/eLife.58609
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colleagues provides a detailed classification system of hydrogenases, enabling prediction of biological 
function (Greening, 2016; Søndergaard et al., 2016). In our study, we used the HydDB classification 
to analyze H2 metabolism in the murine and human gastrointestinal tracts, of which there is still an 
incomplete understanding (Benoit et al., 2020). Our data suggests that H2 metabolism is perturbed 
during murine non- infectious colitis and in human IBD patients. We propose that animal models of 
colitis could be useful tools to probe the physiological role of H2 metabolism in the gut microbiota. 
Our work also highlights the value of analyzing large datasets based on knowledge of enzymatic 
functions. The HydDB database allowed us to identify inflammation- associated changes in microbial 
H2 metabolism in the mouse and human gut that were not obvious based on standard bioinformatic 
analyses of shotgun metagenomic sequencing.

H2 is a key metabolite involved in cross- feeding between members of the gut microbiota (reviewed 
in Smith, 2019). H2 production can be used to dispose of electrons; H2 consumption allows for the 
utilization of H2 as a high- energy electron donor. H2 metabolism supports gut colonization of metha-
nogens, acetogens, and sulfate- reducing bacteria (Bernalier, 1996; Rey, 2013; Ruaud et al., 2020; 
Samuel, 2007), and these microbes, in turn, prevent the accumulation of a high H2 partial pressure 

Figure 8. Both hya and hyb enhance fitness of E. coli Nissle 1917 in the inflamed gut. Groups of male (3–4 per group) and female (5 per group) wild- type 
(WT) C57BL/6 mice received 3% dextran sulfate sodium (DSS) in the drinking water. After 4 days of DSS treatment, the mice were orally inoculated with 
a 1:1 ratio of the WT E. coli Nissle 1917 strain and the indicated isogenic mutants. (A) Mouse body weights. Data points represent geometric means 
± standard error. (B) Abundance of the WT strain (black bars) and the isogenic Hyd- 1 mutant (Δhya mutant; blue bars) in the intestinal content. (C) 
Abundance of the WT strain (black bars) and the isogenic Hyd- 2 mutant (Δhyb mutant; green bars) in the intestinal content. (B, C) The competitive index 
(CI) is indicated above each set of bars. Each symbol corresponds to one mouse. Bars represent geometric means ± 95% confidence intervals. Statistical 
significance was determined by paired Student’s t- test of the log- transformed data (**p<0.01; ***p<0.001).

https://doi.org/10.7554/eLife.58609
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that can inhibit polysaccharide fermentation (Samuel and Gordon, 2006; Stams, 1994). The increased 
abundance of genes encoding uptake hydrogenases in microbial communities in the inflamed gut and 
the enhanced fitness advantage provided by H2 oxidation to E. coli in murine models of colitis are 
consistent with an inflammation- disruption of H2 syntrophic networks. Previous work with Clostridium 
difficile established that C. difficile expands due to accumulation of the metabolite succinate via loss 
of microbial consumption (Ferreyra, 2014). The lack of succinate consumption by the microbiota was 
shown to occur during antibiotic treatment, chemically induced motility disturbance, and impaired 
IL- 22- mediated host glycosylation (Ferreyra, 2014; Nagao- Kitamoto, 2020). It is conceivable that 
changes in microbe- microbe H2 exchange during inflammation might allow E. coli to access a H2 pool.

Simple electron transport chains typically catalyze two sets of redox reactions that involve proton 
transfer across the membrane; in one reaction, an electron donor is oxidized, and electrons are trans-
ferred to the quinone pool; in the other reaction, electrons from the quinone pool are used to reduce 
a terminal electron acceptor. Here, we demonstrate that in the inflamed intestine, H2 utilization via 
Hyd- 1 and Hyd- 2 requires fumarate reductase, cytochrome bd- II oxidase, or nitrate reductase activity 
(Figure 9). Nitrate is generated as a by- product of reactive nitrogen species metabolism and nitrate 
respiration contributes to the expansion of Enterobacteriaceae family members during flares (Hughes, 
2017; Winter, 2013). Detoxification of inflammatory reactive oxygen species in the inflamed gut gives 
E. coli access to molecular oxygen and facilitates respiration via AppBCX (Chanin, 2020). Curiously, 
Hyd- 1 is oxygen- tolerant (Lukey, 2011; Volbeda et al., 2012) but induced under anaerobic conditions 
(Brøndsted and Atlung, 1994; Richard et al., 1999). The fact that bacterial nitrate respiration and 
AppBCX- dependent oxygen respiration are consequences of the host’s inflammatory reactive oxygen 
and nitrogen metabolism may in part explain why H2 utilization contributes to the bloom of E. coli 
in mouse models of colitis. The concentration of free fumarate is very low in the large intestine, but 

Figure 9. Graphical representation of findings. During inflammation, E. coli couples oxidation of molecular hydrogen via hydrogenase- 1 (Hyd- 1) and 
hydrogenase- 2 (Hyd- 2) to the reduction of oxygen, nitrate, and fumarate. Inflammatory reactive oxygen species (ROS) and reactive nitrogen species 
(RNS) leaking into the gut lumen allow for AppBCX (App)- mediated oxygen respiration and nitrate respiration (NR). Frd: fumarate reductase.

https://doi.org/10.7554/eLife.58609


 Research article Immunology and Inflammation | Microbiology and Infectious Disease

Hughes et al. eLife 2021;10:e58609. DOI: https:// doi. org/ 10. 7554/ eLife. 58609  14 of 27

fumarate can readily be generated from other sources such as aspartate or malate (Nguyen, 2020; 
Schubert et al., 2021). Abolishing utilization of a single- electron acceptor did not entirely abrogate 
H2 utilization. This outcome is consistent with a scenario in which these three electron acceptors 
couple to Hyd- 1 or Hyd- 2 in different, spatially distinct, subpopulations or at different time points as 
inflammation develops.

While we failed to find evidence that Hyd- 1 and Hyd- 2 enhance E. coli fitness in the absence of 
inflammation, it is possible that H2 utilization still occurs in this setting. For example, it is conceivable 
that our assays were not sensitive enough to detect small fitness defects, that H2 oxidation occurs in 
the absence of inflammation but redundant electron- donating enzymes in the electron transport chain 
mask the phenotype, or that E. coli’s access to the H2 pool is dependent on other microbes. Another 
caveat of our study is that we were not able perform functional analyses of Hyd- 1 in vitro.

Hydrogenases are also widespread in enteric pathogens (Benoit et al., 2020) and H2 metabolism 
contributes to gut colonization by Helicobacter pylori (Olson and Maier, 2002), Campylobacter jejuni 
(Weerakoon, 2009), and Salmonella enterica serovar Typhimurium (STm) (Maier, 2013). H2 uptake 
is important for STm virulence (Lamichhane- Khadka, 2015; Maier, 2004), and it facilitates STm gut 
colonization (Maier et al., 2014; Maier, 2013) and fecal shedding (Lam and Monack, 2014). The 
role of hydrogenases with regards to STm systemic colonization has resulted in different outcomes, 
depending on the bacterial strain, route of inoculation, mouse background, and gut microbiota status 
(Craig, 2013; Maier et al., 2014). In our study, we observed that H2 uptake contributes to gut colo-
nization in a mouse and human commensal E. coli strain, and both Hyd- 1 and Hyd- 2 play a role in 
facilitating E. coli gut colonization during non- infectious colitis.

Materials and methods
Bacterial strains, plasmids, and primers
All bacterial strains and plasmids are listed in Appendix 1—key resources table. Primers are listed in 
Appendix 1—key resources table and Supplementary file 1. E. coli strains were routinely grown in 
LB broth (10 g/l tryptone, 5 g/l yeast extract, 10 g/l sodium chloride) or on LB plates (LB broth, 15 
g/l agar) under aerobic conditions at 30°C or 37°C. When necessary, the antibiotics chloramphenicol 
(Cm), kanamycin (Kan), and carbenicillin (Carb) were added at concentrations of 15 mg/l, 100 mg/l, 
and 100 mg/l, respectively.

Suicide plasmids were constructed with use of a Gibson Assembly Cloning Kit (New England 
Biolabs, Ipswich, MA). To generate pEL1 and pEL2, regions upstream and downstream of hyaABC 
and hybABC, respectively, were PCR amplified from E. coli Nissle 1917 (EcN) with Q5 Hot Start High- 
Fidelity DNA Polymerase (New England Biolabs). The upstream and downstream regions of the genes 
of interest were inserted into SphI- digested pRDH10 by Gibson cloning. For pEL29 and pEL30, E. coli 
MP1 was used as the PCR template and the flanking regions of the genes of interest were inserted 
into SphI- digested pGP706. For pEL35, flanking regions of frdABCD were PCR amplified from EcN 
and inserted into SphI- digested pGP706. Prior to mutagenesis, plasmid inserts were sequenced to 
check for point mutations.

Suicide plasmids were propagated in DH5α λpir. S17- 1 λpir was used as the donor strain to 
introduce suicide plasmids into EcN (pSW172) or MP1 (pSW172) strains via conjugation. Conjuga-
tion experiments were performed at 30°C to enable stable replication of the temperature- sensitive 
plasmid pSW172. Exconjugants in which the suicide plasmid had integrated into the chromosome 
were selected at 30°C with LB plates containing Cm and Carb (for the cloning with vector pRDH10) 
or Kan and Carb (for the cloning with vector pGP706). Mutants in which second crossover events 
had occurred were selected by plating on sucrose plates (5% sucrose, 15 g/l agar, 8 g/l nutrient 
broth base). Clean, unmarked deletions were confirmed by PCR. pSW172 was cured by growing the 
bacteria at 37°C. The strains EL5, EL11, EL15, EL252, EL276, EL284, EL347, EL350, and EL363 were 
generated using this cloning strategy.

To construct pEL32 for complementation of hyb, the promoter region of hyb and the coding 
sequence of hybABC were PCR amplified from EcN with Q5 Hot Start High- Fidelity DNA Polymerase 
(New England Biolabs, Ipswich, MA). The sequences of interest were inserted into EcoRI- digested 
pWSK129 via Gibson Assembly (New England Biolabs). pEL32 was electroporated into the appro-
priate EcN strain to test complementation of the hyb deletion.

https://doi.org/10.7554/eLife.58609
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Mouse experiments
Specific pathogen- free (SPF) mice were used for the experiments. Male and female 6–18- week- old 
wild- type (WT) C57BL/6, Il10-/- C57BL/6, and Il10-/- BALB/c mice were used. Five mice at most were 
housed per cage. Mice were randomly assigned to groups prior to experimentation. Mice included 
animals obtained from the Jackson Laboratory (Bar Harbor, ME) and animals originally from the Jackson 
Laboratory (Bar Harbor) and bred under SPF conditions in a barrier facility at UT Southwestern. Mice 
were on a 12 hr light/dark cycle and had access to food and water ad libitum. All mouse experiments 
were reviewed and approved by the Institute of Animal Care and Use Committee at UT Southwestern.

E. coli colonization experiments in the DSS-induced colitis model
Male and female WT C57BL/6 mice were used. Colitis was induced by administering a filter- sterilized 
solution of 3% (wt/vol) DSS (Alfa Aesar, Haverhill, MA) in water to drink. Mouse body weights and 
health were monitored daily. For competitive colonization experiments, mice were inoculated by oral 
gavage with 5 × 108 CFU of each indicated E. coli strain in LB broth at the indicated time points. 
For the single colonization experiment (Figure 3), mice were orally inoculated with 1 × 109 CFU of 
either the wild- type strain or the mutant. After 8 days of DSS treatment, DSS- supplemented water 
was switched to regular drinking water for 1 day. Then, mice were euthanized, and colonic and cecal 
contents were harvested in sterile phosphate- buffered saline (PBS; pH = 7.4) and placed on ice. To 
determine the abundance of the respective strains, 10- fold serial dilutions of intestinal content were 
plated on LB agar plates containing Kan or Carb. Wild- type and mutant strains were marked with the 
low- copy plasmids pWSK129 (KanR) or pWSK29 (CarbR) to facilitate recovery from competitive coloni-
zation experiments. Colon length and colonic and cecal tissue samples were collected from the indi-
cated experiments. Colonic and cecal tissue for quantification of mRNA was flash frozen and stored 
at –80°C. Colonic and cecal tissue for histopathology analysis was collected in 10% buffered formalin 
phosphate (Thermo Fisher) for fixation.

E. coli colonization experiment in healthy mice
Male and female WT C57BL/6 mice were used. Mice were inoculated by oral gavage with 5 × 108 CFU 
each of the wild- type MP1 strain and the Δhya Δhyb mutant in LB broth. Mice were euthanized 3 days 
after colonization, and colonic and cecal contents were collected as described previously.

E. coli colonization experiments in piroxicam-accelerated Il10-/- colitis 
model
Male and female 11–18- week- old Il10-/- C57BL/6 and Il10-/- BALB/c mice were used. Il10-/- C57BL/6 
received piroxicam- fortified diet (100 ppm; Teklad custom research diets, Envigo, Indianapolis, IN) 
instead of the regular mouse chow (Teklad global 16% protein diet, irradiated, Envigo 2916) for 9 days 
total. Il10-/- BALB/c mice were fed piroxicam- fortified diet (50 ppm for EcN- colonized mice and 100 
ppm for MP1- colonized mice) for 16 days total. The piroxicam diet was changed daily. Two days after 
the start of piroxicam treatment, mice were orally inoculated with 5 × 108 CFU of each indicated E. 
coli strain. At the end of the experiment, mice were euthanized and samples collected as described 
previously. Cages of mice in which the mice did not lose body weight or colonize with the indicated E. 
coli strains were excluded from analysis.

Histopathology analysis
Colonic and cecal tissue was formalin- fixed (10% buffered formalin phosphate; Thermo Fisher), 
embedded in paraffin, and stained with hematoxylin and eosin. The samples were blinded and scored 
by a veterinary pathologist according to criteria described in Winter, 2013.

Intestinal mRNA analysis
The relative transcription levels of Cxcl1, Nos2, and Tnfa genes were determined by RT- qPCR and 
normalized to Gapdh mRNA levels. RNA was extracted via the TRI reagent method (Molecular 
Research Center), mRNA was purified with NEBNext Poly(A) mRNA Magnetic Isolation Module (New 
England Biolabs), and cDNA was then synthesized with TaqMan reverse transcription reagents (Life 
Technologies). qPCR was performed in a QuantStudio 6 Flex Instrument (Life Technologies) with SYBR 

https://doi.org/10.7554/eLife.58609
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Green (Applied Biosystems) using the primers listed in Appendix 1—key resources table. Results were 
analyzed using the comparative Ct method.

Growth curves
Growth curves were performed in filter sterilized (0.22 μm) M9 minimal medium (6.8 g/l sodium phos-
phate dibasic anhydrous, 3 g/l potassium phosphate monobasic anhydrous, 0.5 g/l sodium chloride, 1 
g/l ammonium chloride, 1 mM magnesium sulfate, 0.1 mM calcium chloride; pH = 7.0) supplemented 
with 20 mM glucose as the carbon source. The indicated E. coli strains were grown aerobically in LB 
broth at 37°C overnight. Then, strains were diluted in M9 medium supplemented with glucose at a 
final concentration of 1 × 108 CFU/ml. Cultures were incubated aerobically at 37°C with shaking at 
250 rpm. The optical density at 600 nm (OD600) was measured every 30 min. The experiment was 
performed in triplicate for each strain.

Growth of E. coli strains in mucin broth
Porcine stomach mucin type II (100 mg) (Sigma) was sterilized by suspending mucin in 1 ml of 70% 
ethanol and incubating at 65°C for 2 hr. The suspension was then cooled overnight at room tempera-
ture (25°C) and the ethanol was aspirated. Mucin pellets were further dried using a vacufuge plus 
centrifuge (Eppendorf).

Mucin broth was generated by suspending 0.5% [w/v] dried sterile mucin in No- Carbon E medium 
(NCE) (3.94 g/l monopotassium phosphate, 5.9 g/l dipotassium phosphate, 4.68 g/l ammonium 
sodium hydrogen phosphate tetrahydrate, 2.46 g/l magnesium sulfate heptahydrate), supplemented 
with 1 mM magnesium sulfate. Where indicated, mucin broth was either supplemented with water, 
nitrate (0.4 mM or 40 mM, as indicated), or fumarate (25 mM). Overnight cultures of the indicated 
E. coli strains were used to inoculate the mucin broth at a concentration of 1 × 103 CFU/ml of each 
strain. Cultures were incubated anaerobically (90% N2, 5% CO2, 5% H2; Sheldon Manufacturing) for 18 
hr at 37°C in glass flasks (high surface area- to- volume ratio). Then, the abundance of the respective 
strains was determined by plating 10- fold serial dilutions on LB agar plates containing Kan or Carb. 
Wild- type and mutant strains were marked with the low- copy plasmids pWSK129 (KanR) or pWSK29 
(AmpR/CarbR) to facilitate recovery from competitive growth experiments.

Metagenomic analysis of murine samples
A published metagenomic dataset of DSS- induced murine colitis mode, available at the European 
Nucleotide Archive, accession number PRJEB15095 (Hughes, 2017), was reanalyzed to evaluate 
hydrogenase abundance in the cecal microbial community. Raw reads were processed using BBMap 
software suite (DOE Joint Genome Institute, Walnut Creek, CA) to remove adapters and low- quality 
reads. Reads were then decontaminated against mouse genome using Bowtie2 (Langmead and 
Salzberg, 2012). Global, untargeted mapping was performed using diamond blast (Buchfink, 2015) 
against the NCBI non- redundant database. Mapped reads were parsed, annotated, and visualized 
using the MEGAN5 metagenomic software suite (Huson, 2007; Huson et al., 2016).

To evaluate the abundance of different hydrogenase categories in this metagenomic dataset, 
diamond blast (reporting e- value cutoff: 0.001; Buchfink, 2015) was used to blast clean, filtered reads 
against the HydDB hydrogenase database (Søndergaard et al., 2016). Raw hits of individual samples 
were summarized using the  FMAP_ table. pl function in FMAP (Kim, 2016) with the -c parameter. 
The differential abundance of each hydrogenase category was then calculated using DESeq2 (Love, 
2014), normalizing to the total number of reads aligned to all hydrogenases queried.

To test the accuracy of annotations in the HydDB database, we aligned simulated metagenomic 
datasets of hydrogenase- containing and hydrogenase- free genomes to the HydDB database and 
compared the relative abundance of mapped reads between datasets. Genomes of five representa-
tive members of the gut microbiome were used as a starting point. The hydrogenase- free genomes 
were generated by removing sequences of all known hydrogenases from the corresponding wild- 
type genomes. 100 bp, paired- end illumine reads were simulated using the genomes of represen-
tative members of various phyla in the gut microbiome (Akkermansia muciniphila ATCC BAA- 835, 
Bacteroides fragilis NCTC 9343, Faecalibacterium prausnitzii APC918/95b, Bacteroides thetaiotao-
micron VPI- 5482, and E. coli Nissle 1917). The simulation was performed using ART (Huang, 2012) 
to achieve 2000- fold coverage (parameter: -f 2000) of the respective genomes. Sequences of known 
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hydrogenases were removed from the stated genomes and reads of the in silico knock- out genomes 
were simulated as stated above. The simulated reads from the wild- type and corresponding hydro-
genases knock- out genomes were aligned to the HydDB database using Diamond blast with default 
parameters. Mapped reads were quantified using FMAP as stated above. In the simulated datasets, 
reads mapped to the known hydrogenases were significantly more abundant in the hydrogenase- 
containing dataset than in the hydrogenase- free dataset. However, 21 HydDB entries (out of 3248) 
had higher than twofold enrichment of reads that mapped to the hydrogenase- free dataset than 
the hydrogenase- containing dataset. This suggested that those 21 HydDB entries may be incorrectly 
annotated or may share too high of homology with non- hydrogenase encoding DNA sequences of 
the representative gut microbiome genomes to be reliably annotated as hydrogenases in our study. 
Therefore, the HydDB entries that had twofold or greater relative abundance of reads in the hydroge-
nase knock- out dataset than in the wild- type dataset were removed from the classification of hydro-
genases to yield a curated list of mapped hydrogenases (Figure 1—source data 1).

Metagenomic analysis of human samples
A published metagenomic sequencing dataset of stool samples from IBD patients and non- IBD 
controls (available via SRA with BioProject number PRJNA400072, Franzosa, 2019) was analyzed 
to evaluate hydrogenase abundance. Of note, of the 220 samples in this dataset, 218 samples were 
analyzed as the data of two samples were corrupted. Reads were trimmed and filtered against the 
human genome, and then aligned to the hydrogenase database (Søndergaard et al., 2016) using 
diamond blast (reporting e- value cutoff: 0.001, Buchfink, 2015). Raw hits of individual samples were 
summarized using the  FMAP_ table. pl function in FMAP (Kim, 2016) with the -c parameter. The differ-
ential abundance of each hydrogenase category was then calculated using DESeq2 (Love, 2014), 
normalizing to the total number of reads aligned to all hydrogenases queried. The HydDB entries 
previously excluded in the murine metagenomic analysis, based on our in silico HydDB validation, 
were also excluded from the human sample analysis (Figure 1—source data 2 and 3).

Statistical analysis
Data were analyzed and graphs created using Microsoft Excel, PowerPoint, GraphPad Prism, and 
BioRender. p values <0.05 were considered statistically significant.
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Appendix 1

Appendix 1—key resources table 

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain, strain 
background 
(Mus 
musculus) C57BL/6

Jackson Laboratory 
or bred at UT 
Southwestern 
(originally from 
Jackson Laboratory)

Jackson 
Laboratory 
Cat# 
000664 Wild- type

Genetic 
reagent (M. 
musculus) Il10-/- C57BL/6

Bred at UT 
Southwestern 
(originally from 
Jackson Laboratory)

Jackson 
Laboratory 
Cat# 
002251 B6.129P2-Il10tm1Cgn/J

Genetic 
reagent (M. 
musculus) Il10-/- BALB/c

Bred at UT 
Southwestern 
(originally from 
Jackson Laboratory)

Jackson 
Laboratory 
Cat# 
004333 C.129P2(B6)- Il10tm1Cgn/J

Strain, strain 
background 
(Escherichia 
coli) Nissle 1917 (EcN) Grozdanov, 2004 Wild- type strain (O6:K5:H1)

Strain, strain 
background 
(E. coli) S17- 1 λpir Simon et al., 1983 zxx::RP4 2- (Tetr::Mu) (Kanr::Tn7) λpir

Genetic 
reagent (E. 
coli) EL5

This study; 
Winter lab, UT 
Southwestern EcN ΔhyaABC

Genetic 
reagent (E. 
coli) EL11

This study; 
Winter lab, UT 
Southwestern EcN ΔhybABC

Genetic 
reagent (E. 
coli) EL15

This study; 
Winter lab, UT 
Southwestern EcN ΔhyaABC ΔhybABC

Genetic 
reagent (E. 
coli) EL252

This study; 
Winter lab, UT 
Southwestern MP1 ΔhyaABC

Genetic 
reagent (E. 
coli) EL276

This study; 
Winter lab, UT 
Southwestern MP1 ΔhyaABC ΔhybABC

Genetic 
reagent (E. 
coli) EL284

This study; 
Winter lab, UT 
Southwestern

EcN
ΔnarG
ΔnapA
ΔnarZ
ΔhyaABC ΔhybABC

Genetic 
reagent (E. 
coli) EL347

This study; 
Winter lab, UT 
Southwestern

EcN
ΔfrdABCD

Genetic 
reagent (E. 
coli) EL350

This study; 
Winter lab, UT 
Southwestern

EcN
ΔfrdABCD
ΔhyaABC ΔhybABC

Genetic 
reagent (E. 
coli) EL363

This study; 
Winter lab, UT 
Southwestern

EcN
ΔappC
ΔhyaABC ΔhybABC

Genetic 
reagent (E. 
coli) MW139 Chanin, 2020

EcN
ΔappC
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Genetic 
reagent (E. 
coli) SW930 Winter, 2013

EcN
ΔnarG
ΔnapA
ΔnarZ

Recombinant 
DNA reagent pEL1

This study; 
Winter lab, UT 
Southwestern

Upstream and downstream regions of EcN 
hyaABC in pRDH10

Recombinant 
DNA reagent pEL2

This study; 
Winter lab, UT 
Southwestern

Upstream and downstream regions of EcN 
hybABC in pRDH10

Recombinant 
DNA reagent pEL29

This study; 
Winter lab, UT 
Southwestern

Upstream and downstream regions of MP1 
hyaABC in pGP706

Recombinant 
DNA reagent pEL30

This study; 
Winter lab, UT 
Southwestern

Upstream and downstream regions of MP1 
hybABC in pGP706

Recombinant 
DNA reagent pEL32

This study; 
Winter lab, UT 
Southwestern

Promoter and coding sequence of EcN 
hybABC in pWSK129

Recombinant 
DNA reagent pEL35

This study; 
Winter lab, UT 
Southwestern

Upstream and downstream regions of EcN 
frdABCD in pGP706

Recombinant 
DNA reagent pGP706 Hughes, 2017 ori(R6K) mobRP4 sacRB Kanr

Recombinant 
DNA reagent pRDH10 Kingsley, 1999 ori(R6K) mobRP4 sacRB Tetr Cmr

Recombinant 
DNA reagent pSW172 Winter, 2013 ori(R101) repA101ts Carbr

Recombinant 
DNA reagent pSW296 Chanin, 2020

Upstream and downstream regions of EcN 
appC in pRDH10

Recombinant 
DNA reagent pWSK129

Wang and 
Kushner, 1991 ori(pSC101) Kanr

Recombinant 
DNA reagent pWSK29

Wang and 
Kushner, 1991 ori(pSC101) Carbr

Sequence- 
based reagent

Primers used for 
mutagenesis

This study; 
Winter lab, UT 
Southwestern

PCR 
primers

Primers used for mutagenesis in this study 
are listed in Supplementary file 1

Sequence- 
based reagent

mouse GapDH 
RT- qPCR Forward 
Primer

Spandidos, 2008; 
Spandidos et al., 
2010; Wang and 
Seed, 2003

Primer 
Bank ID 
6679937a1  AGGT CGGT GTGA ACGG ATTTG

Sequence- 
based reagent

Mouse GapDH 
RT- qPCR Reverse 
Primer

Spandidos, 2008; 
Spandidos et al., 
2010; Wang and 
Seed, 2003

Primer 
Bank ID 
6679937a1  TGTA GACC ATGT AGTT GAGGTCA

Sequence- 
based reagent

Mouse Cxcl1 RT- 
qPCR Primer Godinez, 2008  TGCACCCAAACCGAAGTCAT

Sequence- 
based reagent

Mouse Cxcl1 RT- 
qPCR Primer Godinez, 2008  TTGT CAGA AGCC AGCG TTCAC

Sequence- 
based reagent

Mouse Nos2 RT- 
qPCR Primer Godinez, 2008  TTGG GTCT TGTT CACT CCACGG
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence- 
based reagent

Mouse Nos2 RT- 
qPCR Primer Godinez, 2008  CCTC TTTC AGGT CACT TTGGTAGG

Sequence- 
based reagent

Mouse Tnfa RT- 
qPCR Forward 
Primer Wilson, 2008  AGCC AGGA GGGA GAAC AGAAAC

Sequence- 
based reagent

mouse Tnfa RT- 
qPCR Primer Wilson, 2008  CCAG TGAG TGAA AGGG ACAGAACC

Commercial 
assay or kit

Gibson Assembly 
Master Mix

New England 
Biolabs Cat# E2611

Commercial 
assay or kit

Q5 Hot Start 2 x 
Master Mix

New England 
Biolabs

Cat# 
M0494

Commercial 
assay or kit

QIAfilter Plasmid 
Midi Kit QIAGEN Cat# 12245

Commercial 
assay or kit

QIAEX II Gel 
Extraction Kit QIAGEN Cat# 20021

Commercial 
assay or kit TRI Reagent

Molecular Research 
Center

Cat# 
TR118

Commercial 
assay or kit

NEBNext Poly(A) 
mRNA Magnetic 
Isolation Module

New England 
Biolabs Cat# E7490

Commercial 
assay or kit

TaqMan Reverse 
Transcription 
Reagents Applied Biosystems

Cat# 
N8080234

Commercial 
assay or kit

SYBR Green qPCR 
Master Mix Applied Biosystems

Cat# 
4309155

Chemical 
compound, 
drug

Mucin from 
porcine stomach, 
Type II Sigma

Cat# 
M2378

Lot#
SLCD8300

Chemical 
compound, 
drug Sodium nitrate Sigma Cat# S5506 Lot# MKCC4317

Chemical 
compound, 
drug

Sodium fumurate 
dibasic Sigma Cat# F1506

Lot#
BCCC8774

Chemical 
compound, 
drug

Dextran sulfate 
sodium salt, MW 
ca 40,000 Alfa Aesar

Cat# 
J63606 Lots# T17A050, U03C023, S13C040, U01F027

Chemical 
compound, 
drug

Piroxicam diet
(50 ppm, 100 ppm) Envigo

Custom 
diet

Chemical 
compound, 
drug

LB Broth, Miller 
(Luria Bertani) Becton Dickinson

Cat# 
244620

Chemical 
compound, 
drug Kanamycin sulfate Thermo Fisher

Cat# 
BP906

Chemical 
compound, 
drug Chloramphenicol Thermo Fisher

Cat# 
BP904
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Chemical 
compound, 
drug

Carbenicillin, 
disodium salt VWR Cat# J358

Software, 
algorithm Excel Microsoft Office

https://www. microsoft. com/ en- us/ microsoft- 
365/ excel

Software, 
algorithm Prism v9.0 GraphPad

https://www. graphpad. com/ scientific- 
software/ prism/

Software, 
algorithm MacVector MacVector https:// macvector. com/

Software, 
algorithm QuantStudio 6 Thermo Fisher

https://www. thermofisher. com/ us/ en/ home/ 
life- science/ pcr/ real- time- pcr/ real- time- pcr- 
instruments/ quantstudio- systems/ models/ 
quantstudio- 6- 7- flex. html

Software, 
algorithm BioRender https://www. BioRender. com

Software, 
algorithm PowerPoint Microsoft Office

https://www. microsoft. com/ en- us/ microsoft- 
365/ powerpoint

Software, 
algorithm

BBMap software 
suite

Joint Genome 
Institute https:// jgi. doe. gov/ data- and- tools/ bbtools/

Software, 
algorithm Bowtie 2

Langmead and 
Salzberg, 2012

http:// bowtie- bio. sourceforge. net/ bowtie2/ 
index. shtml

Software, 
algorithm DIAMOND Buchfink, 2015 https:// github. com/ bbuchfink/ diamond

Software, 
algorithm MEGAN5

Huson, 2007; 
Huson et al., 2016

https:// software- ab. informatik. uni- 
tuebingen. de/ download/ megan5/ welcome. 
html

Software, 
algorithm FMAP Kim, 2016 https:// github. com/ jiwoongbio/ FMAP

Software, 
algorithm DESeq2 Love, 2014

https:// bioconductor. org/ packages/ release/ 
bioc/ html/ DESeq2. html

Software, 
algorithm ART Huang, 2012

https://www. niehs. nih. gov/ research/ 
resources/ software/ biostatistics/ art/ index. 
cfm

Other
Anaerobic 
Chamber

Sheldon 
Manufacturing

Bactron
300

Other

European 
Nucleotide 
Archive, 
accession number 
PRJEB15095 Hughes, 2017

Metagenomic sequencing of cecal 
microbiota from DSS colitis mouse model

Other

SRA, BioProject 
number 
PRJNA400072 Franzosa, 2019 Human gut metagenome

Other HydDB 
Hydrogenase 
Database

Søndergaard 
et al., 2016
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