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Abstract The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people,

including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-

CoV-2 exists. The novel coronavirus canonically utilizes the angiotensin-converting enzyme 2 (ACE2)

receptor and the serine protease TMPRSS2 for cell entry. Herein, building upon our previous single-

cell study (Pique-Regi et al., 2019), another study, and new single-cell/nuclei RNA-sequencing data,

we investigated the expression of ACE2 and TMPRSS2 throughout pregnancy in the placenta as

well as in third-trimester chorioamniotic membranes. We report that co-transcription of ACE2 and

TMPRSS2 is negligible in the placenta, thus not a likely path of vertical transmission for SARS-CoV-

2. By contrast, receptors for Zika virus and cytomegalovirus, which cause congenital infections, are

highly expressed by placental cell types. These data show that the placenta minimally expresses

the canonical cell-entry mediators for SARS-CoV-2.

Introduction
The placenta serves as the lungs, gut, kidneys, and liver of the fetus (Burton and Jauniaux, 2015;

Maltepe and Fisher, 2015). This fetal organ also has major biological actions that modulate mater-

nal physiology (Burton and Jauniaux, 2015; Sasaki and Norwitz, 2011; Taglauer et al., 2014;

Fitzgerald et al., 2018) and, importantly, together with the extraplacental chorioamniotic mem-

branes, shield the fetus against microbes from hematogenous dissemination and from invading the

amniotic cavity (Ander et al., 2019; Kwon et al., 2014). Indeed, most pathogens that cause

Pique-Regi et al. eLife 2020;9:e58716. DOI: https://doi.org/10.7554/eLife.58716 1 of 15

RESEARCH ADVANCE

http://creativecommons.org/publicdoman/zero/1.0/
http://creativecommons.org/publicdoman/zero/1.0/
https://doi.org/10.7554/eLife.58716
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


hematogenous infections in the mother cannot reach the fetus, which is largely due to the potent

protective mechanisms provided by placental cells (i.e. trophoblast cells: syncytiotrophoblasts and

cytotrophoblasts) (Parry et al., 1997; Koi et al., 2002; Arora et al., 2017). Yet, some of these

pathogens such as Toxoplasma gondii, Rubella virus, herpesvirus (HSV), cytomegalovirus (CMV), and

Zika virus (ZIKV), among others, are capable of crossing the placenta and infecting the fetus, thus

causing congenital disease (Stegmann and Carey, 2002; Coyne and Lazear, 2016).

In December 2019, a local outbreak of pneumonia caused by a novel coronavirus—severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2)—was reported in Wuhan (Hubei, China)

(Dong et al., 2020a). After exposure to SARS-COV-2, susceptible individuals can develop coronavi-

rus disease 2019 (COVID-19) consisting of symptoms that may range from fever and cough to severe

respiratory illness; in some cases, COVID-19 is life-threatening (Centers for Disease Control and

Prevention, 2020a; Wadman, 2020). Since the onset of the outbreak, more than 10 million COVID-

19 cases have been confirmed, accounting for more than 500,000 deaths (COVID-19, 2020). This

pandemic has now spread throughout the entire world with recent epicenters in Europe (Italy and

Spain) and the United States. By April 2019, the states of New York and Michigan were the most

severely affected (COVID-19, 2020), given that the metropolitan areas of New York City and Detroit

possess large populations subject to health disparities that include limited access to health care,

chronic exposure to pollution, and pre-existing cardiovascular conditions (Centers for Disease Con-

trol and Prevention, 2020b).

Pregnant women and their fetuses represent a potential high-risk population in light of the

COVID-19 outbreak (Dashraath et al., 2020; Liu et al., 2020; Rasmussen et al., 2020;

Ashokka et al., 2020; Della Gatta et al., 2020; Weber LeBrun et al., 2020; Tekbali, 2020; Vintzi-

leos, 2020; Lokken, 2020) given that viral infections such as influenza (Neuzil et al., 1998;

Lindsay et al., 2006; Jamieson et al., 2006; Cervantes-Gonzalez and Launay, 2010;

Pandemic H1N1 Influenza in Pregnancy Working Group et al., 2010; Mosby et al., 2011;

Pazos et al., 2012; Raj et al., 2014), varicella (Triebwasser et al., 1967; Paryani and Arvin, 1986;

Esmonde et al., 1989; Haake et al., 1990; Swamy and Dotters-Katz, 2019), Ebola (Olgun, 2018;

Muehlenbachs et al., 2017), and measles (Christensen et al., 1954; Atmar et al., 1992) show

increased severity in this physiological state. Other coronaviruses, such as SARS-CoV-1 and MERS-

CoV, have severe effects in both the mother and the fetus, but vertical transmission has not been

proven (Wong et al., 2004; Ng et al., 2006; Alserehi et al., 2016; Jeong et al., 2017), albeit these

studies included very few cases. By contrast with the above-mentioned viral infections, only ~15% of

pregnant women test positive for SARS-CoV-2 and a small fraction of them are

symptomatic (Sutton et al., 2020), most of whom experience only a mild illness (Chen et al.,

2020a). Consequently, the clinical characteristics of pregnant women with COVID-19 appear similar

to those of non-pregnant adults (Yu et al., 2020). Yet, recent reports have shown that severe

COVID-19 can lead to maternal death (Hantoushzadeh et al., 2020; Blitz, 2020). However, thus far,

no conclusive evidence of vertical transmission has been generated (Weber LeBrun et al., 2020;

Chen et al., 2020b; Stower, 2020; Lamouroux et al., 2020; Yan et al., 2020; Siberry et al., 2020).

Consistently, infants born to mothers with COVID-19 test negative for SARS-CoV-2, do not develop

serious clinical symptoms (e.g., fever, cough, diarrhea, or abnormal radiologic or hematologic evi-

dence), and are promptly discharged from the hospital (Chen et al., 2020c). Nevertheless, new evi-

dence has emerged suggesting that the fetus can respond to SARS-CoV-2 infection.

Case reports have shown that a small fraction of neonates born to women with COVID-19 tested

positive for the virus at 1–4 days of life (Zeng et al., 2020a; Alzamora et al., 2020), yet these neo-

nates subsequently tested negative on day 6-7 (Zeng et al., 2020a). In addition, serological studies

revealed that a few neonates born to mothers with COVID-19 had increased concentrations of

SARS-CoV-2 immunoglobulin (Ig)M as well as IgG (Zeng et al., 2020b; Dong et al., 2020b). The ele-

vated concentrations of IgG are likely due to the passive transfer of this immunoglobulin from the

mother to the fetus across the placenta. However, the increased levels of IgM suggest that the fetus

was infected with SARS-CoV-2 given that this immunoglobulin cannot cross the placenta as a result

of its large molecular weight. Nonetheless, all neonates included in the above-mentioned studies
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tested negative for the virus and did not present any symptoms (Zeng et al., 2020b; Dong et al.,

2020b).

More recently, two case reports indicated that SARS-CoV-2 RNA has been detected in the amni-

otic fluid and placental tissues. In the first case report, the viral RNA was detected in amniotic fluid

from a woman who was severely affected and died of COVID-19 (Zamaniyan, 2020). The premature

neonate tested negative for SARS-CoV-2 after delivery but 24 hr later tested

positive (Zamaniyan, 2020). In the second case report, the viral RNA was detected in the placenta

and umbilical cord from a woman with severe pre-eclampsia, placental abruption, and other compli-

cations, yet none of the fetal tissues tested positive (Hosier, 2020). Therefore, whether SARS-CoV-2

can reach the fetus by crossing the placenta is still unclear.

Results and discussion
Cell entry and the spread of SARS-CoV-2 are widely thought to depend on the angiotensin-convert-

ing enzyme 2 (ACE2) receptor (Shang et al., 2020; Wang et al., 2020a) and the serine protease

TMPRSS2 (Hoffmann et al., 2020). In the study herein, we investigated whether the receptors

responsible for SARS-CoV-2 infection are expressed in the human placenta (including the decidual

tissues) throughout the three trimesters of pregnancy by using publicly available single-cell RNA-

sequencing (scRNA-seq) data (Vento-Tormo et al., 2018; Pique-Regi et al., 2019) together with

newly generated data (Supplementary file 1).

Strikingly, we found that very few cells co-express ACE2 and TMPRSS2 (Figure 1A and B). Using

a very permissive threshold of expression of one transcript per cell, only four cells with co-expression

Figure 1. Transcriptional map of the human placenta, including the decidua, in the three trimesters of pregnancy. (A) Uniform Manifold Approximation

Plot (UMAP), where dots represent single cells/nuclei and are colored by cell type (abbreviations used are: STB, Syncytiotrophoblast; EVT, Extravillous

trophoblast; CTB, cytotrophoblast; HSC, hematopoietic stem cell; npiCTB, non-proliferative interstitial cytotrophoblast; LED, lymphoid endothelial

decidual cell) (B) UMAP plot with cells/nuclei co-expressing one or more transcripts for ACE2 and TMPRSS2, genes that are necessary for SARS-CoV-2

viral infection and spreading, in red.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. UMAP highlighting cells expressing syncytiotrophoblast genes CGA + CSH1 + GH2 that are more efficiently captured when

isolating nuclei in snRNA-seq.
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were detected in any of the three trimesters, resulting in an estimated <1/10,000 cells. Our first-tri-

mester data are in agreement with a prior report showing minimal expression of ACE2 at the human

maternal-fetal interface (Zheng et al., 2020); however, the same dataset was recently used to report

the opposite (Li et al., 2020). Nonetheless, the co-expression of ACE2 and TMPRSS2 was not exam-

ined by either study, and it is important to consider log-transformation and data analysis issues for

low-expressed genes, focusing on the fraction of cells expressing the transcripts (Booeshaghi and

Pachter, 2020). We also evaluated the expression of SARS-CoV-2 receptors in the chorioamniotic

membranes (also known as the extraplacental membranes) in the third trimester; these tissues may

also serve as a point of entry for microbial invasion of the amniotic cavity and potentially the fetus

(Kim et al., 2015). Again, co-expression of ACE2 and TMPRSS2 was minimally detected in the cho-

rioamniotic membranes (Figure 1A and B).

A challenge in scRNA-seq studies is generating high-quality, single-cell suspensions containing

both rare and difficult-to-dissociate (e.g., multinucleated cells) cell types. This is likely the reason

why the reported scRNA-seq studies of the human placenta contain a low fraction of syncytiotropho-

blast cells [STB, multinucleated cells forming the outermost fetal component of the placenta in direct

contact with the maternal circulation (i.e., intervillous space)] (Vento-Tormo et al., 2018; Pique-

Regi et al., 2019; Tsang et al., 2017). Therefore, we considered whether the expression of ACE2

and TMPRSS2 was minimally observed in the placental cell types as a result of the reduced fraction

of STB cells (i.e., dissociation bias). To address this possibility, we prepared single-nucleus suspen-

sions of the placental tissues (including the decidua basalis) and performed single-nuclear RNAseq

(snRNA-seq), which reduces the dissociation bias against large cells (Wu et al., 2019). An important

advantage of snRNA-seq is its compatibility with biobank-frozen samples; therefore, we pooled 32

placental villi/decidua samples collected in the third trimester (Supplementary file 2). This repre-

sents the first snRNA-seq study of the placental tissues. As expected, a larger fraction of STB cells/

nuclei was observed using snRNA-seq compared to scRNA-seq (Figure 1A and Figure 1—figure

supplement 1). Consistent with the scRNAseq analyses, the snRNAseq data demonstrated that co-

expression of ACE2 and TMPRSS2 is unlikely in the placental tissues (Figure 1B). A limitation of

snRNA-seq is that it has a higher background compared to scRNAseq and could capture ACE2 and

TMPRSS2 transcripts from other cell types, but this should not affect the analyses reported herein

because co-expression is not observed.

Finally, we explored the expression of ACE2 and TMPRSS2 in third-trimester placental tissues by

mining two microarray datasets that we have previously reported (Kim et al., 2009; Toft et al.,

2008). These analyses of bulk gene expression data revealed that, while ACE2 was detected above

background in most of the samples, TMPRSS2 was largely undetected (Supplementary file 3). Col-

lectively, these results consistently indicate that the human placental tissues negligibly co-express

ACE2 and TMPRSS2. This reduced expression contrasts with the high expression of ACE2 and

TMPRSS2 in nasal goblet and ciliated cells within the human airways, lungs, and gastrointestinal

tract, which are targeted during COVID-19 (Muus, 2020; Wang, 2020b; HCA Lung Biological Net-

work et al., 2020). Therefore, our results suggest that vertical transmission of SARS-CoV-2 is unlikely

to occur unless facilitated by other concomitant pathological conditions resulting in a breach of the

maternal-fetal crosstalk.

There is a possibility, however, that SARS-CoV-2 could infect the human placenta by using alter-

nate entry routes while interacting with other proteins (Gordon et al., 2020). The expression of

additional SARS-CoV-2-related receptors or proteins in the human placenta is shown in Figure 2,

CoV-Alt; however, further research is required to test their participation in the pathogenesis of

COVID-19. For example, in vitro studies suggest that BSG (Basigin, also called CD147 or EMMPRIN,

transmembrane glycoprotein belonging to the immunoglobulin superfamily) provides an alternate

entry for SARS-CoV-2 when ACE2 and TMPRSS2 are not expressed (Blanco-Melo et al., 2020;

Wang, 2020c; Ulrich and Pillat, 2020). We found that the placenta and chorioamniotic membranes

expressed high levels of BSG throughout pregnancy (Figure 2, CoV-Alt), yet this transcript is also

widely expressed in all human tissues and cell types (Figure 2—figure supplement 1). Therefore, it

is unlikely that this protein alone is a sufficient requirement for SARS-CoV-2 viral entry, and other

proteins may be required to explain the cell type primarily affected by COVID-19. Moreover, cathep-

sin L (CSTL) and FURIN may also function as proteases priming the SARS-CoV-2 S protein

(Lukassen et al., 2020). We found that these proteases are highly expressed by the placental tissues

throughout gestation (Figure 2, CoV-Alt). Nevertheless, these proteases may not provide sufficient
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levels of priming by themselves (Shirato et al., 2017; Shirato et al., 2018; Iwata-Yoshikawa et al.,

2019) when tested with SARS-CoV-1, yet this has not been verified for SARS-CoV-2. Given that the

placental tissues are enriched in maternal and fetal macrophages (Pique-Regi et al., 2019), and that

a subset of these immune cells expressing sialoadhesin (SIGLEC1, also known as CD169) can contrib-

ute to viral spread during SARS-CoV-2 infection (Chen, 2020; Park, 2020), we also investigated the

expression of SIGLEC1 in this study. As expected, SIGLEC1 was expressed by macrophages in the

placenta and chorioamniotic membranes and, to a lesser extent, in T cells (Figure 2, CoV-Alt). How-

ever, even if the virus could infect the placental/decidual macrophages expressing SIGLEC1, this is

not sufficient for viral spreading. The expression of ADAM17 was also investigated in the placental

tissues as this metalloproteinase competes with TMPRSS2 in ACE2 processing (Heurich et al.,

2014). The placenta and chorioamniotic membranes highly expressed ADAM17 (Figure 2—figure

supplement 2); however, only cleavage by TMPRSS2 results in augmented SARS-S-driven cell entry

(Heurich et al., 2014). While these CoV-Alt molecules may be used for SARS-CoV-2 infection, they

are likely to be less efficient than ACE2 and TMPRSS2, which are already targeted for antiviral inter-

ventions (Hoffmann et al., 2020); yet, new candidate host:viral interacting proteins and possible

drugs are being investigated (Gordon et al., 2020).

Given that the main mediators for cell entry of SARS-CoV-2 were minimally expressed by the

human placenta, we also investigated whether the receptors for congenital viruses such as CMV

(Stegmann and Carey, 2002; Arechavaleta-Velasco et al., 2002; Aronoff et al., 2017;

Pereira et al., 2017; Al-Haddad et al., 2019; Faure Bardon et al., 2020) and ZIKV (Coyne and Laz-

ear, 2016; Adams Waldorf et al., 2016; Aldo et al., 2016; Cao et al., 2017; Aagaard et al., 2017;

Mysorekar, 2017; Valentine et al., 2018; Adams Waldorf et al., 2018; Dudley et al., 2018;

Walker et al., 2019; Nelson et al., 2020), which are known to infect and cross the placenta, were

Figure 2. Dot plot depicting the expression of different viral receptors/molecules used by SARS-CoV-2, CMV, and ZIKV. Each row represents a different

cell type, and columns are grouped first by virus type, receptor/molecule gene, and placental tissue/time-of sampling (1DP, 2DP and 3DP represent the

first, second, and third trimester, 3Nuc represents the third trimester nuclei, and 3CAM represents the third trimester chorioamniotic membranes). The

size of the dot represents the proportion of cells that express the receptor with more than zero transcripts, and the color represents the average gene

expression for the subset of cells expressing that gene in transcripts per million (TPM). Cell type abbreviations used are: STB, Syncytiotrophoblast; EVT,

Extravillous trophoblast; CTB, cytotrophoblast; HSC, hematopoietic stem cell; npiCTB, non-proliferative interstitial cytotrophoblast; LED, lymphoid

endothelial decidual cell.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Gene expression values for BSG across tissues collected by the GTEx project.

Figure supplement 2. Dot plot depicting the expression of different viral receptors/molecules used by virus that caused congenital infection.
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detectable using our pipeline. Known receptors for CMV include NRP2 (Martinez-Martin et al.,

2018), PDFGRA (Martinez-Martin et al., 2018), and CD46 (Stein et al., 2019). Notably, all of these

receptors were highly expressed in several placental cell types (Figure 2, CMV and Figure 2—figure

supplement 2). Next, we investigated the expression of the AXL receptor for ZIKV (Richard et al.,

2017; Persaud et al., 2018) as well as other related molecules such as CD209 (Carbaugh et al.,

2019) and TYRO3 (Oliveira and Peron, 2019). Consistent with vertical transmission, AXL, the pre-

ferred receptor for ZIKV, was highly expressed by the cells of the human placenta and chorioamni-

otic membranes throughout gestation (Figure 2, ZIKV). The expression of CD209 was mainly found

in the maternal and fetal macrophage subsets, as expected (Svensson et al., 2011;

Swieboda et al., 2020). Yet, the expression of TYRO3 was low (Figure 2—figure supplement 2),

consistent with the view that TAM receptors are not essential for ZIKV infection (Hastings et al.,

2017). The expression of other viral receptors involved in congenital disease was also documented

in the placental tissues (Figure 2—figure supplement 2).

Conclusion
In conclusion, the single-cell transcriptomic analysis presented herein provides evidence that SARS-

CoV-2 is unlikely to infect the placenta and fetus since its canonical receptor and protease, ACE2

and TMPRSS2, are only minimally expressed by the human placenta throughout pregnancy. In addi-

tion, we showed that the SARS-CoV-2 receptors are not expressed by the chorioamniotic mem-

branes in the third trimester. However, viral receptors utilized by CMV, ZIKV, and others are highly

expressed by the human placental tissues. While transcript levels do not always correlate with pro-

tein expression, our data indicate a low likelihood of placental infection and vertical transmission of

SARS-CoV-2. However, it is still possible that the expression of these proteins is much higher in indi-

viduals with pregnancy complications related to the renin-angiotensin-aldosterone system (RAAS),

which can alter the expression of ACE2 (Herse et al., 2007; Alexandre et al., 2020). The cellular

receptors and mechanisms that could be exploited by SARS-CoV-2 are still under investigation

(Gordon et al., 2020), yet single-cell atlases can help to identify cell types with a similar transcrip-

tional profile to those that are known to participate in COVID-19.

Materials and methods

Data availability
Placental and decidual scRNA-seq data from first-trimester samples were downloaded through

ArrayExpress (E-MTAB-6701). Data for third-trimester samples previously collected by our group are

available through NIH dbGAP (accession number phs001886.v2.p1), and newly generated second-

trimester scRNA-seq and third-trimester snRNA-seq data are being deposited into the same reposi-

tory (Supplementary file 1). All software and R packages used herein are detailed in the ‘scRNA-seq

and snRNA-seq data analysis.’ Scripts detailing the analyses are also available at https://github.com/

piquelab/sclabor (Pique-Regi, 2020; copy archived at https://github.com/elifesciences-publications/

sclabor).

Sample collection and processing, single-cell/nuclei preparation, library
preparation, and sequencing
Human subjects
Placental tissues were obtained immediately after a clinically indicated delivery from (i) a patient

diagnosed with placenta accreta at 18 weeks of gestation and (ii) 32 patients spanning different con-

ditions in the third trimester (Supplementary file 2). A sample of the basal plate of the placenta

including the decidua basalis and placental villi tissue was (i) dissociated as previously described

(Pique-Regi et al., 2019) for scRNA-seq or (ii) preserved in RNAlater and subsequently frozen for

snRNA-seq. The collection and use of human materials for research purposes were approved by the

Institutional Review Boards of the Wayne State University School of Medicine and NICHD. All partici-

pating women provided written informed consent prior to sample collection.
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Single-cell preparation
Cells from the placental villi and basal plate were isolated by enzymatic digestion using previously

described protocols with modifications (Pique-Regi et al., 2019; Tsang et al., 2017; Xu et al.,

2015). Briefly, placental tissues were homogenized using a gentleMACS Dissociator (Miltenyi Biotec,

San Diego, CA) either in an enzyme cocktail from the Umbilical Cord Dissociation Kit (Miltenyi Bio-

tec) or in collagenase A (Sigma Aldrich, St. Louis, MO). After digestion, homogenized tissues were

washed with ice-cold 1X phosphate-buffered saline (PBS) and filtered through a cell strainer (Fisher

Scientific, Durham, NC). Cell suspensions were then collected and centrifuged at 300 x g for 5 min.

at 4˚C. Red blood cells were lysed using a lysing buffer (Life Technologies, Grand Island, NY). Next,

the cells were washed with ice-cold 1X PBS and resuspended in 1X PBS for cell counting using an

automatic cell counter (Cellometer Auto 2000; Nexcelom Bioscience, Lawrence, MA). Lastly, dead

cells were removed from the cell suspensions using the Dead Cell Removal Kit (Miltenyi Biotec), and

cells were counted again to determine final viable cell numbers.

Single-cell library preparation using the 10x genomics platform
Viable cells were utilized for single-cell RNAseq library construction using the Chromium Controller

and Chromium Single Cell 3’ Version 3 Kit (10x Genomics, Pleasanton, CA), following the manufac-

turer’s instructions. Briefly, viable cell suspensions were loaded into the Chromium Controller to gen-

erate gel beads in emulsion (GEM), with each GEM containing a single cell as well as barcoded

oligonucleotides. Next, the GEMs were placed in the Veriti 96-well Thermal Cycler (Thermo Fisher

Scientific, Wilmington, DE) and reverse transcription was performed in each GEM (GEM-RT). After

the reaction, the complementary (c)DNA was cleaned by using Silane DynaBeads (Thermo Fisher Sci-

entific) and the SPRIselect Reagent Kit (Beckman Coulter, Indianapolis, IN). Next, the cDNA was

amplified using the Veriti 96-well Thermal Cycler and cleaned using the SPRIselect Reagent Kit.

Indexed sequencing libraries were then constructed using the Chromium Single Cell 3’ Version 3 Kit,

following the manufacturer’s instructions.

cDNA was fragmented, end-repaired, and A-tailed using the Chromium Single Cell 3’ Version 3

Kit, following the manufacturer’s instructions. Next, adaptor ligation was performed using the Chro-

mium Single Cell 3’ Version 3 Kit, followed by post-ligation clean-up using the SPRIselect Reagent

Kit to obtain the final library constructs, which were then amplified using PCR. After performing a

post-sample index double-sided size selection using the SPRIselect Reagent Kit, the quality and

quantity of the DNA were analyzed using the Agilent Bioanalyzer High Sensitivity Chip (Agilent Tech-

nologies, Wilmington, DE). The Kapa DNA Quantification Kit for Illumina platforms (Kapa Biosys-

tems, Wilmington, MA) was used to quantify the DNA libraries, following the manufacturer’s

instructions.

Single-nuclei sample preparation
We developed a new protocol to isolate nuclei from frozen placenta samples, based on DroNc-seq

(Habib et al., 2017) and an early version of the protocol developed by the Martelotto lab (https://

www.protocols.io/view/frankenstein-protocol-for-nuclei-isolation-from-f-3eqgjdw). For each placenta

sample, 1 mm frozen placenta biopsy punches were collected and immediately lysed with ice-cold

lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM MgCl2, 2% BSA, 0.2 U/ml ROCHE Protector

RNase Inhibitor, and 0.1% IGEPAL-630) for 5 min. During incubation the samples were gently mixed

by swirling the tube twice and collected by centrifugation at 500 x g for 5 min at 4˚C. The process

was repeated twice for a total of 3 cycles of lysis (5 min long each). Next, the pellets were washed

with ice-cold nuclei suspension buffer (1X PBS containing 2% BSA and 0.2 U/ml ROCHE Protector

RNase Inhibitor) and filtered through a 30 mm cell strainer (Fisher Scientific). Nuclei suspensions were

then collected and centrifuged at 500 x g for 5 min at 4˚C. Nuclei were counted using a Countess II

FL (Thermo Fisher Scientific, Durham, NC). All samples exhibited 100% cell death with DAPI staining,

indicative of complete cell lysis. Nuclei were then utilized for single-nuclei RNAseq library construc-

tion using the Chromium Controller and Chromium Single Cell 3’ version 2 kit (10x Genomics), fol-

lowing the manufacturer’s instructions.
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Sequencing
Libraries were sequenced on the Illumina NextSeq 500 in the Luca/Pique-Regi laboratory and in the

CMMG Genomics Services Center (GSC). The Illumina 75 Cycle Sequencing Kit was used with 58

cycles for R2, 26 for R1, and 8 for I1.

scRNA-seq and snRNA-seq data analyses
Raw fastq files were downloaded from previously established resources (as detailed in ‘Data Avail-

ability’), and the new sequencing data were processed using Cell Ranger version 3.0.0 from 10X

Genomics for de-multiplexing. The fastq files were then aligned using kallisto (Bray et al., 2016),

and bustools (Melsted, 2019) summarized the cell/gene transcript counts in a matrix for each sam-

ple, using the ‘lamanno’ workflow for scRNA-seq and the ‘nucleus’ workflow for snRNA-seq. Each

sample was then processed using DIEM (Alvarez, 2019) to eliminate debris and empty droplets for

both scRNA-seq and snRNA-seq. To avoid the loss of cells that may express viral receptors, we did

not exclude cell doublets from the analyses included in this report, which should have negligible

effects on the results and conclusions. All count data matrices were then normalized and combined

using the ‘NormalizeData,’ ‘FindVariableFeatures,’ and ‘ScaleData’ methods implemented in the

Seurat package in R (Seurat version 3.1, R version 3.6.1) (Hafemeister and Satija, 2019) and

(Stuart et al., 2019). Afterward, the Seurat ‘RunPCA’ function was applied to obtain the first 50 prin-

cipal components, and the different batches and locations were integrated and harmonized using

the Harmony package in R (Korsunsky et al., 2019). The top 30 harmony components were then

processed using the Seurat ‘runUMAP’ function to embed and visualize the cells in a two-dimen-

sional map via the Uniform Manifold Approximation and Projection for Dimension Reduction

(UMAP) algorithm (McInnes et al., 2020; Becht et al., 2019). To label the cells, the Seurat ‘Find-

TransferAnchors’ and ‘TransferData’ functions were used for each group of locations separately to

assign a cell-type identity based on our previously labeled data as reference panel (as performed in

Pique-Regi et al., 2019). Cell type abbreviations used are: STB, Syncytiotrophoblast; EVT, Extravil-

lous trophoblast; CTB, cytotrophoblast; HSC, hematopoietic stem cell; npiCTB, non proliferative

interstitial cytotrophoblast; LED, lymphoid endothelial decidual cell. Visualization of viral receptor

gene expression was performed using the ggplot2 (Wickham, 2011) package in R with gene expres-

sion values scaled to transcripts per million (TPM) and to the proportion of cells expressing the tran-

script within a given cell type (Booeshaghi and Pachter, 2020).

Bulk gene expression data analysis of ACE2 and TMPRSS2 in the
placental tissues
Gene expression data for the study by Kim et al., 2009 was available from the www.ebi.ac.uk/micro-

array-as/ae/ database (entry ID: E-TABM-577), while data for the study by Toft et al., 2008 is avail-

able in our data repertoire. The mas5calls function from the affy package in Bioconductor was used

to determine presence above background of each probeset corresponding to a given gene

(Gautier et al., 2004).
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Faure Bardon V, Peytavin G, Lê MP, Guilleminot T, Elefant E, Stirnemann J, Leruez-Ville M, Ville Y. 2020.
Placental transfer of letermovir & maribavir in the ex vivo human Cotyledon perfusion model new perspectives
for in utero treatment of congenital Cytomegalovirus infection. PLOS ONE 15:e0232140. DOI: https://doi.org/
10.1371/journal.pone.0232140, PMID: 32353010

Pique-Regi et al. eLife 2020;9:e58716. DOI: https://doi.org/10.7554/eLife.58716 11 of 15

Research advance Genetics and Genomics Human Biology and Medicine

https://doi.org/10.1093/clinids/14.1.217
http://www.ncbi.nlm.nih.gov/pubmed/1571434
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1016/j.cell.2020.04.026
http://www.ncbi.nlm.nih.gov/pubmed/32416070
https://doi.org/10.1016/j.ajog.2020.06.020
https://doi.org/10.1101/2020.05.19.100214
https://doi.org/10.1101/2020.05.19.100214
https://doi.org/10.1038/nbt.3519
http://www.ncbi.nlm.nih.gov/pubmed/27043002
https://doi.org/10.1016/j.ajog.2015.07.050
https://doi.org/10.1084/jem.20170957
https://doi.org/10.1084/jem.20170957
http://www.ncbi.nlm.nih.gov/pubmed/28694387
https://doi.org/10.1128/JVI.00113-19
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.cdc.gov/minorityhealth/CHDIReport.html
https://www.cdc.gov/minorityhealth/CHDIReport.html
https://doi.org/10.1586/eri.10.83
https://doi.org/10.1586/eri.10.83
http://www.ncbi.nlm.nih.gov/pubmed/20818941
https://doi.org/10.1101/2020.03.27.20045427v1
https://doi.org/10.1056/NEJMc2009226
http://www.ncbi.nlm.nih.gov/pubmed/32302077
https://doi.org/10.1016/S0140-6736(20)30360-3
https://doi.org/10.1016/S0140-6736(20)30360-3
http://www.ncbi.nlm.nih.gov/pubmed/32151335
https://doi.org/10.3389/fped.2020.00104
http://www.ncbi.nlm.nih.gov/pubmed/32266184
http://www.ncbi.nlm.nih.gov/pubmed/13182840
https://coronavirus.jhu.edu/map.html
https://doi.org/10.1038/nrmicro.2016.125
http://www.ncbi.nlm.nih.gov/pubmed/27573577
https://doi.org/10.1016/j.ajog.2020.03.021
http://www.ncbi.nlm.nih.gov/pubmed/32217113
https://doi.org/10.1016/j.ajog.2020.04.013
https://doi.org/10.1016/j.ajog.2020.04.013
http://www.ncbi.nlm.nih.gov/pubmed/32311350
https://doi.org/10.1016/S1473-3099(20)30120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
https://doi.org/10.1001/jama.2020.4621
https://doi.org/10.1038/s41591-018-0088-5
https://doi.org/10.1038/s41591-018-0088-5
http://www.ncbi.nlm.nih.gov/pubmed/29967348
https://doi.org/10.1136/thx.44.10.812
http://www.ncbi.nlm.nih.gov/pubmed/2688179
https://doi.org/10.1371/journal.pone.0232140
https://doi.org/10.1371/journal.pone.0232140
http://www.ncbi.nlm.nih.gov/pubmed/32353010
https://doi.org/10.7554/eLife.58716


Fitzgerald W, Gomez-Lopez N, Erez O, Romero R, Margolis L. 2018. Extracellular vesicles generated by
placental tissues ex vivo: a transport system for immune mediators and growth factors. American Journal of
Reproductive Immunology 80:e12860. DOI: https://doi.org/10.1111/aji.12860, PMID: 29726582

Gautier L, Cope L, Bolstad BM, Irizarry RA. 2004. Affy–analysis of affymetrix GeneChip data at the probe level.
Bioinformatics 20:307–315. DOI: https://doi.org/10.1093/bioinformatics/btg405, PMID: 14960456

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL,
Tummino TA, Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M,
Kim M, et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 30:
2286. DOI: https://doi.org/10.1038/s41586-020-2286-9

Haake DA, Zakowski PC, Haake DL, Bryson YJ. 1990. Early treatment with acyclovir for varicella pneumonia in
otherwise healthy adults: retrospective controlled study and review. Clinical Infectious Diseases 12:788–798.
DOI: https://doi.org/10.1093/clinids/12.5.788, PMID: 2237118

Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, Choudhury SR, Aguet F, Gelfand E, Ardlie K,
Weitz DA, Rozenblatt-Rosen O, Zhang F, Regev A. 2017. Massively parallel single-nucleus RNA-seq with
DroNc-seq. Nature Methods 14:955–958. DOI: https://doi.org/10.1038/nmeth.4407, PMID: 28846088

Hafemeister C, Satija R. 2019. Normalization and variance stabilization of single-cell RNA-seq data using
regularized negative binomial regression. Genome Biology 20:296. DOI: https://doi.org/10.1186/s13059-019-
1874-1, PMID: 31870423

Hantoushzadeh S, Shamshirsaz AA, Aleyasin A, Seferovic MD, Aski SK, Arian SE, Pooransari P, Ghotbizadeh F,
Aalipour S, Soleimani Z, Naemi M, Molaei B, Ahangari R, Salehi M, Oskoei AD, Pirozan P, Darkhaneh RF, Laki
MG, Farani AK, Atrak S, et al. 2020. Maternal death due to COVID-19. American Journal of Obstetrics and
Gynecology 223:109. DOI: https://doi.org/10.1016/j.ajog.2020.04.030, PMID: 32360108

Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, Gaitsch HF, Parnell LA, Cao B, Mysorekar IU, Rothlin CV,
Fikrig E, Diamond MS, Iwasaki A. 2017. TAM receptors are not required for zika virus infection in mice. Cell
Reports 19:558–568. DOI: https://doi.org/10.1016/j.celrep.2017.03.058, PMID: 28423319

HCA Lung Biological Network, Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-
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