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Abstract In response to physiological demand, the pituitary gland generates new hormone-

secreting cells from committed progenitor cells throughout life. It remains unclear to what extent

pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and

renewal. Moreover, neither the signals that drive proliferation nor their sources have been

elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is

essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key

source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate

that proliferation of neighbouring committed progenitor cells declines, demonstrating that

progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results

indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as

paracrine signalling centres to coordinate the proliferation of neighbouring cells.

Introduction
How stem cells interact with their surrounding tissue has been a topic of investigation since the con-

cept of the stem cell niche was first proposed (Schofield, 1978). Secreted from supporting cells, fac-

tors such as WNTs, FGFs, SHH, EGF, and cytokines regulate the activity of stem cells (Nabhan et al.,

2018; Palma et al., 2005; Tan and Barker, 2014). Furthermore, communication is known to take

place in a bidirectional manner (Doupé et al., 2018; Tata and Rajagopal, 2016).

The anterior pituitary (AP) is a major primary endocrine organ that controls key physiological func-

tions including growth, metabolism, reproduction, and the stress response and exhibits tremendous

capability to remodel its constituent hormone populations throughout life, in response to
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physiological demand. It contains a population of Sox2 expressing stem cells that self-renew and

give rise to lineage-committed progenitors and functional endocrine cells (Andoniadou et al., 2013;

Rizzoti et al., 2013). During embryonic development, SOX2+ undifferentiated precursor cells of

Rathke’s pouch, the pituitary anlage (Arnold et al., 2011; Castinetti et al., 2011; Fauquier et al.,

2008; Pevny and Rao, 2003), generate all committed endocrine progenitor lineages, defined by the

absence of SOX2 and expression of either POU1F1 (PIT1), TBX19 (TPIT), or NR5A1 (SF1)

(Bilodeau et al., 2009; Davis et al., 2011). These committed progenitors are proliferative and give

rise to the hormone-secreting cells. Demand for hormone secretion rises after birth, resulting in dra-

matic organ growth and expansion of all populations by the second postnatal week (Carbajo-

Pérez and Watanabe, 1990; Taniguchi et al., 2002). SOX2+ pituitary stem cells (PSCs) are most

active during this period, but the bulk of proliferation and organ expansion during postnatal stages

derives from SOX2� committed progenitors. The activity of SOX2+ PSCs gradually decreases and

during adulthood is minimally activated even following physiological challenge (Andoniadou et al.,

2013; Gaston-Massuet et al., 2011; Gremeaux et al., 2012; Zhu et al., 2015). By adulthood, pro-

genitors carry out most of the homeostatic functions, yet SOX2+ PSCs persist throughout life in both

mice and humans (Gonzalez-Meljem et al., 2017; Xekouki et al., 2019). The signals driving prolifer-

ation of committed progenitor cells are not known, and neither is it known if SOX2+ PSCs can influ-

ence this process beyond their minor contribution of new cells.

The self-renewal and proliferation of numerous stem cell populations rely on WNT signals

(Basham et al., 2019; Lim et al., 2013; Takase and Nusse, 2016; Wang et al., 2015; Yan et al.,

2017). WNTs are necessary for the initial expansion of Rathke’s pouch as well as for PIT1 lineage

specification (Osmundsen et al., 2017; Potok et al., 2008). In the postnatal pituitary, the expression

of WNT pathway components is upregulated during periods of expansion and remodelling. Gene

expression comparisons between neonatal and adult pituitaries or in GH-cell ablation experiments

(Gremeaux et al., 2012; Willems et al., 2016) show that the WNT pathway is upregulated during

growth and regeneration.

Our previous work revealed that during disease, the paradigm of supporting cells signalling to

the stem cells may be reversed; mutant stem cells expressing a degradation-resistant b-catenin in

the pituitary promote cell non-autonomous development of tumours through their paracrine actions

(Andoniadou et al., 2013; Gonzalez-Meljem et al., 2017). Similarly, degradation-resistant b-catenin

expression in hair follicle stem cells led to cell non-autonomous WNT activation in neighbouring cells

promoting new growth (Deschene et al., 2014). In the context of normal homeostasis, stem cells

have been shown to influence daughter cell fate in the mammalian airway epithelium and the Dro-

sophila gut via ‘forward regulation’ models, where the fate of a daughter cell is directed by a stem

cell via juxtacrine Notch signalling (Ohlstein and Spradling, 2007; Pardo-Saganta et al., 2015). It

remains unknown if paracrine stem cell action can also promote local proliferation in normal tissues.

Here, we used genetic approaches to determine if paracrine stem cell action takes place in the

AP and to discern the function of WNTs in pituitary growth. Our results demonstrate that postnatal

pituitary expansion, largely driven by committed progenitor cells, depends on WNT activation.

Importantly, we show that SOX2+ PSCs are the key regulators of this process, acting through secre-

tion of WNT ligands acting in a paracrine manner on neighbouring progenitors. Identification of this

forward-regulatory model elucidates a previously unidentified function for stem cells during tissue

expansion.

Results

WNT-responsive cells in the pituitary include progenitors driving major
postnatal expansion
To clarify which cells respond to WNT signals in the postnatal AP, we first characterised the AP cell

types activating the WNT pathway at P14, a peak time for organ expansion and a time point when a

subpopulation of SOX2+ stem cells are proliferative. The Axin2-CreERT2 mouse line

(van Amerongen et al., 2012) has been shown to efficiently label cells with activated WNT signalling

in the liver, lung, breast, skin, testes, and endometrium among other tissues (Lim et al., 2013;

Moiseenko et al., 2017; Syed et al., 2020; van Amerongen et al., 2012; Wang et al., 2015).

Axin2 positive cells were labelled by GFP following tamoxifen induction in Axin2CreERT2/+;
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ROSA26mTmG/+ mice and pituitaries were analysed 2 days post-induction. We carried out double

immunofluorescence staining using antibodies against uncommitted (SOX2), lineage committed

(PIT1, TPIT, SF1), and hormone-expressing endocrine cells (GH, PRL, TSH, ACTH, or FSH/LH)

together with antibodies against GFP labelling the WNT-activated cells. We detected WNT-respon-

sive cells among all the different cell types of the AP including SOX2+ PSCs, the three committed

populations and all hormone-secreting cells (Figure 1A, Figure 1—figure supplement 1A).

To confirm if the three committed lineages as well as uncommitted SOX2+ PSCs all expand in

response to WNT, we further lineage traced Axin2-expressing cells for 14 days after tamoxifen

administration at P14. Double labelling revealed an increase in all four populations between 2 and

14 days (Figure 1A,B). This increase reached significance for the PIT1 (13.7% at 2 days to 30.3% at

14 days, p=0.000004) and TPIT (3.78% to 11.03%, p=0.008) populations, but not SF1 (0.5% to 4%, n.

s.). As this time course ends at P28 at the commencement of puberty, we repeated the analysis for

SF1 cells to P42, which spans puberty and the expansion of gonadotrophs (Figure 1—figure supple-

ment 1B). This reveals a significant expansion in WNT-responsive SF1+ cells as a proportion of the

total SF1+ population (p=0.0048, n = 3). Lineage tracing of the PIT1-derivates (GH+ somatotrophs,

PRL+ lactotrophs, and TSH+ thyrotrophs) reveals that there is a preferential expansion of somato-

trophs and thyrotrophs (Figure 1—figure supplement 1C). Only a minority of SOX2+ PSCs were

WNT-responsive at 2 days (0.57%) and this population expanded to 2% at 14 days (n.s.), suggesting

that these are self-renewing. GFP+ cells were traced for a period of 8 weeks post-induction, which

revealed that WNT-responsive descendants continued to expand at the same rate as the rest of the

pituitary (n = 4–8 mice per time point at P16, P21, P28, P42, and P70) (Figure 1C,D). The time

period between 2 and 7 days saw the greatest increase in GFP+ cells, during which the labelled pop-

ulation nearly tripled in size (Figure 1D). The persistence of labelled cells was evident in longer-term

traces using the ROSA26lacZ/+ reporter (Axin2CreERT2/+;ROSA26lacZ/+), up to a year following induc-

tion at P14 (Figure 1E, n = 4). Clonal analysis using the Confetti reporter demonstrated that individ-

ual Axin2-expressing cells (Axin2CreERT2/+;ROSA26Confetti/+) gave a greater contribution after 4 weeks

compared to lineage tracing from Sox2-expressing cells (Sox2CreERT2/+;ROSA26Confetti/+), in support

of predominant expansion from WNT-responsive lineage-committed progenitors (Figure 1—figure

supplement 1D).

To establish if signalling mediated by b-catenin is necessary for organ expansion we carried out

deletion of Ctnnb1 in the Axin2+ population from P14 during normal growth (Axin2CreERT2/+;

Ctnnb1lox(ex2-6)/lox(ex2-6) hereby Axin2CreERT2/+;Ctnnb1LOF/LOF). Due to morbidity, likely due to Axin2

expression in other organs, we were limited to analysis up to 5 days post-induction. Deletion of

Ctnnb1 resulted in a significant reduction in the number of dividing cells, marked by pH-H3 (40%

reduction, Figure 1—figure supplement 2A, p=0.0313, n = 3), confirming that activation of the

WNT pathway is necessary for expansion of the pituitary populations. This deletion did not result in

significant differences in overall numbers among the three lineages, as determined by the numbers

of PIT1+, SF1+, or ACTH+ cells among the targeted population (Figure 1—figure supplement 2B,

n = 4 controls, two mutants). The number of SOX2+ stem cells and cells undergoing cell death also

remained unaffected during the 5-day period (Figure 1—figure supplement 2C and D). Taken

together, these results confirm that postnatal AP expansion depends on WNT-responsive progeni-

tors across all lineages, in addition to SOX2+ PSCs (Figure 1F).

WNT/b-catenin signalling is required for long-term AP expansion from
SOX2+ PSCs
We further explored the role of WNT pathway activation in postnatal SOX2+ stem cells. To perma-

nently mark WNT-responsive cells and their descendants whilst simultaneously marking SOX2+ PSCs,

we combined the tamoxifen-inducible Axin2CreERT2/+;ROSA26tdTomato/+ with the Sox2Egfp/+ strain,

where cells expressing SOX2 are labelled by enhanced green fluorescent protein (EGFP) (Axin2-
CreERT2/+;Sox2Egfp/+;ROSA26tdTomato/+). Following tamoxifen administration from P21, tdTomato- and

EGFP-labelled cells were analysed by flow sorting after 72 hr, by which point all induced cells

robustly express tdTomato (Figure 2A, Figure 2—figure supplement 1). Double-labelled cells com-

prised 23.4% of the SOX2+ population (n = 5 individual pituitaries) (Figure 2A, arrowheads), with

the majority of tdTomato+ cells found outside of the SOX2+ compartment. It was previously shown

that only around 2.5–5% of SOX2+ PSCs has clonogenic potential through in vitro assays

(Andoniadou et al., 2012; Andoniadou et al., 2013; Pérez Millán et al., 2016). To determine if
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Figure 1. Axin2 expressing cells contribute to pituitary growth and expansion of all lineages. (A) Immunofluorescence staining against GFP (green) with

markers of pituitary stem cells (PSCs) or lineage commitment (magenta) in Axin2CreERT2/+; ROSA26mTmG/+ pituitaries harvested from mice induced at

P14 and lineage traced for 2 days (top panel) and 14 days (bottom panel). Scale bar: 10 mm. (B) Quantification of lineage expansion between 2 and 14

days following induction at P14. Graph shows that the proportion of lineage committed cells (either PIT1+, TPIT+, or SF1+) and PSCs (SOX2+), that is,

that are transcription factor (TF)+ cells that are GFP+ increases between 2 days (black bars) and 14 days (grey bars) post-induction. PIT1 p=0.000004,

TPIT p=0.008 multiple t-tests. n = 4 animals per time point. (C) Immunofluorescence staining against GFP (green) in pituitaries harvested from

Axin2CreERT2/+;ROSA26mTmG/+ mice induced at P14 and lineage traced for 2 days, 2 weeks, and 8 weeks. Bottom panel shows magnified fields of view

of regions of interest indicated by white boxes in panels above. Scale bars: 50 mm. (D) Top panel showing the quantification of the proportion of all

cells in Axin2CreERT2/+;ROSA26mTmG/+ pituitaries that are GFP+ at 2, 7, 14, 28, and 56 days post-induction as analysed by flow cytometry. Days 2–

7 p<0.0001 unpaired t-test. Data points show individual measurements from biological replicates, n = 4–8 pituitaries per time point. (Bottom) Graph of

the absolute number of GFP+ cells (green) and as a proportion of total cells (blue) at the time points indicated. (E) X-gal staining in Axin2CreERT2/+;

Figure 1 continued on next page
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WNT-responsive SOX2+ cells are stem cells capable of forming colonies, we isolated double-positive

tdTomato+;EGFP+ cells (i.e. Axin2+;Sox2+) as well as the single-expressing populations and plated

these in equal numbers in stem cell-promoting media at clonal densities (Figure 2B). Double-posi-

tive tdTomato+;EGFP+ cells showed a significant increase in the efficiency of colony formation com-

pared to single-labelled EGFP+ cells (average 9% compared to 5%, n = 5 pituitaries, p=0.0226,

Mann–Whitney U-test [two-tailed]), demonstrating WNT-responsive SOX2+ PSCs have a greater clo-

nogenic potential under these in vitro conditions, confirming in vivo data in Figure 1B. As expected

from previous work, none of the single-labelled tdTomato+ cells (i.e. SOX2 negative) was able to

form colonies (Andoniadou et al., 2012).

To confirm that PSCs with active WNT signalling through b-catenin have a greater propensity to

form colonies in vitro, we analysed postnatal pituitaries from TCF/Lef:H2B-EGFP mice, reporting the

activation of response to WNT signals. This response is detected through expression of an EGFP-

tagged variant of histone H2B, which is incorporated into chromatin and diluted in descendants with

cell division (Ferrer-Vaquer et al., 2010). Therefore, cells responding to, or having recently

responded to, WNT as well as their immediate descendants will be EGFP+. At P21, EGFP+ cells

were abundant in all three lobes and particularly in the marginal zone harbouring SOX2+ stem cells

(Figure 2—figure supplement 2A). Through double mRNA in situ hybridisation against Egfp and

Sox2 in TCF/Lef:H2B-EGFP pituitaries, we confirmed that Sox2-expressing cells activate H2B-EGFP

expression at this time point (Figure 2—figure supplement 2B). Isolation by fluorescence-activated

cell sorting (FACS) and in vitro culture of the postnatal EGFP+ compartment revealed an enrichment

of cells with clonogenic potential in the EGFPHigh fraction compared to EGFPLow or negative cells

(Figure 2—figure supplement 2C, n = 5 pituitaries). Together these results reveal that a proportion

of postnatal SOX2+ stem cells respond to WNTs through downstream b-catenin/TCF/LEF signalling

and that these cells have greater clonogenic capacity in vitro.

To further address the role of the canonical WNT response in the activity of SOX2+ PSCs in vivo,

we expressed a loss-of-function allele of b-catenin specifically in Sox2-expressing cells (Sox2CreERT2/+;

Ctnnb1lox(ex2-6)/lox(ex2-6) hereby Sox2CreERT2/+;Ctnnb1LOF/LOF) from P14. Twenty-two weeks following

induction, at P168, there was a substantial drop in the number of cycling cells in the pituitary of

Sox2CreERT2/+;Ctnnb1LOF/LOF mutants compared to Sox2+/+;Ctnnb1LOF/LOF controls (Figure 2C, n = 2

pituitaries per genotype). This was accompanied by AP hypoplasia following the loss of Ctnnb1 in

SOX2+ PSCs (Figure 2D). Therefore, in this small sample size, the proliferative capacity of Ctnnb1-

deficient SOX2+ PSCs and of their descendants was impaired long term, leading to reduced growth.

In vivo genetic tracing of targeted cells over the 22-week period (Sox2CreERT2/+;Ctnnb1LOF/+;

ROSA26mTmG/+ compared to Sox2CreERT2/+;Ctnnb1LOF/LOF;ROSA26mTmG/+ pituitaries) revealed that

targeted (Ctnnb1-deficient) SOX2+ PSCs were capable of giving rise to the three committed line-

ages PIT1, TPIT, and SF1 (Figure 2—figure supplement 2D), indicating that the loss of Ctnnb1 does

not prevent differentiation of SOX2+ PSCs into the three lineages. Downregulation of b-catenin was

confirmed by immunofluorescence in SOX2+ (mGFP+) derivatives (Figure 2—figure supplement

2E). Although limited by a small sample size, we conclude that WNT/b-catenin signalling is likely

required cell-autonomously in SOX2+ stem cells and their descendants (Figure 2E).

SOX2+ stem cells express WNT ligands
Having established that WNT activation is responsible for promoting proliferation in the AP, we next

focused on identifying the source of WNT ligands. Axin2 expressing cells from Axin2CreERT2/+;

ROSA26mTmG/+ mice were labelled at P14 by tamoxifen induction. Cells expressing Axin2 at the

time of induction are labelled by GFP expression in the membrane. Double immunofluorescence

staining for GFP together with SOX2 revealed that Axin2 expressing cells (mGFP+) are frequently

Figure 1 continued

ROSA26LacZ/+ pituitaries harvested from mice induced at P14 and lineage traced for 8 weeks (left) and 1 year (right). Scale bars: 500 mm. (F) Model

summarising the major contribution of WNT-responsive progenitors of all lineages to pituitary growth, in addition to that of SOX2+ PSCs.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Axin2 expressing cells contribute to pituitary growth and expansion of all lineages.

Figure supplement 2. Axin2 expressing cells contribute to pituitary growth and expansion of all lineages.
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Figure 2. Activation of WNT signalling in SOX2+ pituitary stem cells (PSCs) and their descendants is necessary for long-term growth. (A) Schematic of

the experimental timeline used in panels A and B. Endogenous expression of tdTomato (magenta, Axin2 targeted cells) and EGFP (green, Sox2

expressing cells) in Axin2CreERT2/+;Sox2Egfp/+;ROSA26tdTomato/+ pituitaries harvested at P24 sectioned in the frontal plane. Nuclei are counterstained with

Hoechst in the merged panel. Scale bar: 50 mm. (B) A representative culture plate showing colonies derived from Tomato+, EGFP+, or Tomato+;EGFP+

cells that were isolated from Axin2CreERT2/+;Sox2Egfp/+;ROSA26tdTomato/+ pituitaries by fluorescence-activated cell sorting (FACS) plated in stem cell

promoting media at clonogenic densities and stained with crystal violet (left panel). The proportion of colony-forming cells in each subpopulation was

quantified by counting the number of colonies per well (right panel). Each data point indicates individual wells, n = 5 separate pituitaries. p=0.0226,

Mann–Whitney U-test (two-tailed). Scale bar: 10 mm. (C) Immunofluorescence staining against SOX2 (green) and Ki-67 (magenta) in Sox2+/+Ctnnb1LOF/

LOF (control) and Sox2CreERT2/+Ctnnb1LOF/LOF (mutant) pituitaries from mice induced at P14 and analysed 22 weeks after induction (at P168) (bottom

Figure 2 continued on next page
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located in close proximity to SOX2+ PSCs (Figure 3A). Two-dimensional quantification of the two

cell types revealed that over 50% of mGFP+ cells were in direct contact with SOX2+ nuclei (n = 3

pituitaries, >500 SOX2+ cells per gland, Figure 3A). The analysis did not take into account the cellu-

lar processes of SOX2+ cells. These results led us to speculate that SOX2+ PSCs may be a source of

key WNT ligands promoting proliferation of lineage-committed cells.

In order to determine if SOX2+ PSCs express WNT ligands, we carried out gene expression profil-

ing of SOX2+ and SOX2� populations at P14, through bulk RNA-sequencing. Pure populations of

Sox2-expressing cells excluding lineage-committed populations were isolated from Sox2Egfp/+ male

and female pituitaries at P14 based on EGFP expression as previously shown (Andoniadou et al.,

2012; Figure 3B, Figure 3—figure supplement 1A). Analysis of global gene expression signatures

using ‘gene set enrichment analysis’ (GSEA) (Subramanian et al., 2005) identified a significant

enrichment of molecular signatures related to epithelial-to-mesenchymal transition, adherens, and

tight junctions in the EGFP+ fraction, characteristic of the SOX2+ population (Figure 3—figure sup-

plement 1B). The SOX2+ fraction also displayed enrichment for genes associated with several signal-

ling pathways known to be active in these cells, including epidermal growth factor receptor (EGFR)

(Iwai-Liao et al., 2000), Hippo (Lodge et al., 2016; Lodge et al., 2019; Xekouki et al., 2019),

MAPK (Haston et al., 2017), FGF (Higuchi et al., 2017), Ephrin (Yoshida et al., 2015;

Yoshida et al., 2017), and p53 (Gonzalez-Meljem et al., 2017; Figure 3—figure supplement 1C,

Supplementary file 1). Additionally, PI3K, TGFb, and BMP pathway genes were significantly

enriched in the SOX2+ population (Figure 3—figure supplement 1C, Supplementary file 1). Query

of the WNT-associated genes did not suggest a global enrichment in WNT targets (e.g. enrichment

of Myc and Jun, but not of Axin2 or Lef1) (Figure 3—figure supplement 1D, Supplementary file 1).

Instead, SOX2+ PSCs expressed a unique transcriptomic fingerprint of key pathway genes including

Lgr4, Znrf3, Rnf43 capable of regulating WNT signal intensity in SOX2+ PSCs, as well as enriched

expression of the receptors Fzd1, Fzd3, Fzd4, Fzd6, and Fzd7 (Figure 3—figure supplement 1D).

The predominant R-spondin gene expressed in the pituitary was Rspo4, specifically by the EGFP-

negative fraction (Figure 3—figure supplement 1D). The gene profiling revealed that Wls expres-

sion encoding Gpr177/WLS, a necessary mediator of WNT ligand secretion (Carpenter et al., 2010;

Takeo et al., 2013; Wang et al., 2015), is enriched in SOX2+ PSCs (Figure 3C). Analysis of Wnt

gene expression confirmed enriched expression of Wnt2, Wnt5a, and Wnt9a in SOX2+ PSCs, and

the expression of multiple additional Wnt genes by both fractions at lower levels (SOX2+ fraction:

Wnt5b, Wnt6, Wnt16; SOX2� fraction: Wnt2, Wnt2b, Wnt3, Wnt4, Wnt5a, Wnt5b, Wnt9a, Wnt10a,

Wnt16) (Figure 3D). These results reveal that SOX2+ PSCs express the essential components to reg-

ulate activation of the WNT pathway and express Wnt genes as well as the necessary molecular

machinery to secrete WNT ligands.

Paracrine signalling from SOX2+ stem cells promotes WNT activation
We sought to conclusively determine if WNT secretion specifically from SOX2+ PSCs drives prolifera-

tion of surrounding cells in the postnatal pituitary gland. We proceeded to delete Wls only in the

Sox2-expressing population (Sox2CreERT2/+;Wlsfl/fl) from P14 by a series of tamoxifen injections. Due

to morbidity, we limited analyses to 1 week following induction. Pituitaries appeared mildly hypo-

plastic at P21 along the medio-lateral axis (Figure 4—figure supplement 1, n = 4 controls and n = 5

mutants). To determine if this is a result of reduced proliferation, we carried out immunofluorescence

using antibodies against Ki-67 and SOX2. This revealed significantly fewer cycling cells in the SOX2�

population of Sox2CreERT2/+;Wlsfl/fl mutant pituitaries compared to Sox2+/+;Wlsfl/fl controls (10.326%

Ki-67 in control [n = 4] compared to 3.129% in mutant [n = 5], p=0.0008, unpaired t-test)

Figure 2 continued

panel). Scale bar: 50 mm. (D) Dorsal view of whole mount pituitaries of Sox2+/+;Ctnnb1LOF/LOF (control) and Sox2CreERT2/+;Ctnnb1LOF/LOF (mutant), 22

weeks after induction (i.e. P168). Scale bars: 1 mm. (E) Model summarising the effect of Ctnnb1 deletion in SOX2+ PSCs. PL, posterior lobe; IL,

intermediate lobe; AL, anterior lobe.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Activation of WNT signalling in SOX2+ pituitary stem cells (PSCs) and their descendants is necessary for long-term growth.

Figure supplement 2. Activation of WNT signalling in SOX2+ pituitary stem cells (PSCs) and their descendants is necessary for long-term growth.
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(Figure 4A). Additionally, we observed a reduction of cycling cells within the SOX2+ population

(5.582% Ki-67 in control compared to 2.225% in induced Sox2CreERT2/+;Wlsfl/fl mutant pituitaries,

p=0.0121, unpaired t-test) (Figure 4A), resulting in a smaller SOX2+ cell pool in mutants (23.425%

SOX2+/total AP cells in Sox2+/+;Wlsfl/fl controls compared to 19.166% SOX2+/total AP cells in

induced Sox2CreERT2/+;Wlsfl/fl mutant pituitaries, p=0.0238, Student’s t-test, n = 5 mutants, four

Figure 3. SOX2+ pituitary stem cells (PSCs) are as a source of WNT ligands in the pituitary. (A) Immunofluorescence staining against GFP (green) and

SOX2 (magenta) in Axin2CreERT2/+; ROSA26mTmG/+ pituitaries 48 hr post-induction. Graph representing a quantification of the proximity of individual

GFP+ cells to the nearest SOX2+ cell as quantified by the number of nuclei separating them. Plotted data represents the proportion of GFP+ cells that

fall into each category of the total GFP+ cells, taken from n = 3 separate pituitaries. Scale bars: 50 mm. (B) Experimental paradigm for RNA Seq analysis

of Sox2 positive and negative cells. (C) Graphs representing the FPKM values of Wls and Porcupine in Sox2 positive and negative cells (black and grey

bars, respectively). mRNA in situ hybridisation for Sox2 and for Wls on wild-type sagittal pituitaries at P14, demonstrating strong Wls expression in the

marginal zone epithelium. Scale bars: 250 mm. (D) Bar chart showing the FPKM values of Wnt genes in the Sox2+ and Sox2� fractions. Double mRNA in

situ hybridisation against Wnt2, Wnt5a, and Wnt9a (blue) together with Sox2 (red) validating expression in the Sox2+ population. Boxed regions

through the marginal zone epithelium are magnified. Scale bars: 100 mm and 50 mm in boxed inserts.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. SOX2+ pituitary stem cells (PSCs) are as a source of WNT ligands in the pituitary.
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Figure 4. Paracrine secretion of WNTs from SOX2+ pituitary stem cells (PSCs) is necessary for expansion of committed cells. (A) Immunofluorescence

staining against SOX2 (green) and Ki-67 (magenta) in Sox2+/+;Wlsfl/fl (control) and Sox2CreERT2/+;Wlsfl/fl (mutant) pituitaries induced from P14 and

analysed after 1 week. Nuclei were counterstained with Hoechst. (i and ii) represent magnified fields of view of regions indicated by white boxes in top

panels. Scale bars: 50 mm. Graph of quantification of cycling cells marked by Ki-67 among cells negative for SOX2. Values represent mean ± SEM,

p=0.0008, unpaired t-test. Graph of quantification of cycling cells marked by Ki-67 among SOX2-positive cells. Values represent mean ± SEM, p=0.0121,

unpaired t-test. Each data point shows the mean of one biological replicate, n = 4 pituitaries from controls and five pituitaries from mutants. (B) Double

mRNA in situ hybridisation using specific probes against Lef1 (blue) and Sox2 (red) in control and mutant pituitaries following tamoxifen induction from

P14 and tracing for 7 days. Scale bars: 250 mm and 50 mm in boxed regions. (C) Model summarising paracrine WNT secretion from SOX2+ PSCs to

lineage-committed progenitors and the effects of abolishing WNT secretion from SOX2+ PSCs through the deletion of Wls.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Paracrine secretion of WNTs from SOX2+ pituitary stem cells (PSCs) is necessary for expansion of committed cells.
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controls). To determine if reduced levels of WNT activation accompanied this phenotype, we carried

out double mRNA in situ hybridisation using specific probes against Lef1 and Sox2. There was an

overall reduction in Lef1 expression in mutants compared to controls (n = 4 per genotype), in which

we frequently observed robust expression of Lef1 transcripts in close proximity to cells expressing

Sox2 (arrows, Figure 4B). Together, our data support a paracrine role for SOX2+ PSCs in driving the

expansion of committed progeny through the secretion of WNT ligands (Figure 4C).

Discussion
Emerging disparities between the archetypal stem cell model, exhibited by the haematopoietic sys-

tem, and somatic stem cells of many organs have led to the concept that stem cell function can be

executed by multiple cells not fitting a typical stem cell paradigm (Clevers and Watt, 2018). In

organs with persistent populations possessing typical functional stem cell properties yet contributing

minimally to turnover and repair, the necessity for such classical stem cells is questioned. Here we

show that WNT signalling is required for postnatal pituitary growth by both SOX2+ PSCs

and SOX2� committed progenitors. We identify an additional discreet function for SOX2+ PSCs,

where these signal in a feedforward manner by secreting WNT ligands as cues to stimulate prolifera-

tion and promote tissue growth.

Consistent with previous reports, our data support that SOX2+ PSCs contribute, but do not carry

out the majority of tissue expansion during the postnatal period (Zhu et al., 2015); instead, new cells

primarily derive from more committed progenitors, which we show to be WNT-responsive. We dem-

onstrate that this population of lineage-restricted WNT-responsive cells rapidly expands and contrib-

utes long-lasting clones from postnatal stages. It remains to be shown if cells among the SOX2�

lineage-committed populations may also fall under the classical definition of a stem cell. Preventing

secretion of WNT ligands from SOX2+ PSCs reveals that far from being dispensable, paracrine

actions of the SOX2+ population that are inactive in their majority are necessary for anterior lobe

expansion from lineage-committed populations. In the adrenal gland, R-spondins are necessary for

cortical expansion and zonation, where deletion of Rspo3, expressed by the capsule that contains

adrenocortical stem cells, results in reduced proliferation of the underlying steroidogenic cells

(Vidal et al., 2016). Corroborating a model where committed pituitary progenitors depend on the

paracrine actions of SOX2+ PSCs, Zhu and colleagues observed that in pituitaries with reduced num-

bers of PSCs, proliferation among PIT1+ cells was significantly impaired (Zhu et al., 2015). It would

be intriguing to see if there is a reduction in WNT signalling in this model, or following genetic abla-

tion of adult SOX2+ PSCs (Roose et al., 2017).

We show that a subpopulation of SOX2+ PSCs in the postnatal gland are also WNT-responsive

and have greater in vitro colony-forming potential under defined conditions. This colony-forming

potential is normally a property of a minority of SOX2+ PSCs at any given age and reflects their in

vivo proliferative capacity (Andoniadou et al., 2012; Rizzoti et al., 2013). A role for the WNT path-

way in promoting SOX2+ cell activity is supported by studies showing that pathogenic overexpres-

sion of b-catenin promotes their colony-forming ability (Sarkar et al., 2016) and their in vivo

expansion (Andoniadou et al., 2012). Additionally, elevated WNT pathway activation has been

described for pituitary side-population cells, enriched for SOX2+ stem cells from young, compared

to old pituitaries (Gremeaux et al., 2012). This is in line with our findings that the WNT pathway has

an important function in promoting the activation of SOX2+ PSCs. It remains to be shown if this

response relies on autocrine WNT-signalling as for other stem cells (Lim et al., 2013); however, our

results reveal reduced proliferation among SOX2+ PSCs and reduced SOX2+ cell numbers when

WNT secretion from these cells is abolished, supportive of either autocrine signalling or paracrine

signalling between different subsets of the SOX2+ population.

The mechanism preventing the majority of SOX2+ PSCs from responding to WNT signals remains

elusive but points to heterogeneity among the population. Such regulation could occur at the level

of receptor signalling; we have shown by bulk transcriptomic profiling that SOX2+ PSCs express the

receptors required to respond to the WNT pathway, but also express high levels of the frizzled inhib-

itor Znrf3, and the R-spondin receptor Lgr4. One conceivable scenario is that high levels of Znrf3

inhibit frizzled receptors in the absence of R-spondin under normal physiological conditions, supress-

ing a WNT response. In support of this, R-spondins have been shown to promote pituitary organoid

formation (Cox et al., 2019). Whether the R-spondin/LGR/ZNRF3 module is active under
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physiological conditions needs to be determined. Furthermore, well-described factors expressed in

PSCs are known to have inhibitory effects on b-catenin-mediated transcription, such as YAP/TAZ

(Azzolin et al., 2014; Gregorieff et al., 2015) and SOX2 itself (Alatzoglou et al., 2011;

Kelberman et al., 2008).

In summary, we demonstrate an alternative mechanism for stem cell contribution to homeostasis,

whereby these can act as paracrine signalling hubs to promote local proliferation. Applicable to

other organs, this missing link between SOX2+ PSCs and committed cell populations of the AP is

key for basic physiological functions and renders stem cells integral to organ expansion.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(Mus musculus)

Axin2CreERT2/+ Roel Nusse,
Stanford
University
The Jackson
Laboratory

JAX:018867,
RRID:IMSR_JAX:018867

Genetic reagent
(Mus musculus)

Sox2CreERT2/+ (Andoniadou
et al., 2013)
PMID:24094324
DOI: 10.1016/j.stem.
2013.07.004

MGI:5512893

Genetic reagent
(Mus musculus)

ROSA
26mTmG/mTmG

The Jackson
Laboratory

JAX:007676, RRID:IMSR_JAX:007676

Genetic reagent
(Mus musculus)

ROSA
26Confetti/Confetti

The Jackson
Laboratory

JAX:017492, RRID:IMSR_JAX:017492

Genetic reagent
(Mus musculus)

ROSA
26tdTomato/tdTomato

The Jackson
Laboratory

JAX:007909, RRID:IMSR_JAX:007909

Genetic reagent
(Mus musculus)

Ctnnb1fl(ex2-6)/ fl(ex2-6)

(CtnnbLOF/LOF)
The Jackson
Laboratory

JAX:004152, RRID:IMSR_JAX:004152

Genetic reagent
(Mus musculus)

Wlsfl/fl The Jackson
Laboratory

JAX:012888,
RRID:IMSR_JAX:012888

Genetic reagent
(Mus musculus)

Sox2eGFP/+ Ellis et al., 2004
PMID:15711057
DOI: 10.1159/000082134

MGI:3589809

Genetic reagent
(Mus musculus)

TCF/Lef:H2B-GFP The Jackson
Laboratory

JAX:013752,
RRID:IMSR_JAX:013752

Cell line
(Mus musculus)

Primary anterior
pituitary cells

This paper N/A Freshly isolated
from Mus musculus.

Antibody Anti-GFP (Chicken
Polyclonal)

Abcam ab13970,
RRID:AB_300798

IF(1:400)

Antibody Anti-SOX2
(Goat Polyclonal)

Immune
Systems Ltd

GT15098,
RRID:AB_2195800

IF(1:200)

Antibody Anti-SOX2
(Rabbit
Monoclonal)

Abcam ab92494,
RRID:AB_10585428

IF(1:100)

Antibody Anti-SOX9
(Rabbit Monoclonal)

Abcam ab185230,
RRID:AB_2715497

IF(1:500)

Antibody Anti-POU1F1
(PIT1) (Rabbit
Monoclonal)

Gifted by Dr S.
J. Rhodes
(IUPUI, USA)

422_Rhodes, RRID:AB_2722652 IF(1:500)

Antibody Anti-SF1 (NR5A1,
clone N1665)
(Mouse Monoclonal)

Thermo Fisher
Scientific

434200,
RRID:AB_2532209

IF(1:300)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-TBX19
(TPIT), (Rabbit
Polyclonal)

Gifted by Dr J. Drouin
(Montreal Clinical
Research Institute,
Canada)

Ac1250 #71,
RRID:AB_2728662

IF(1:200)

Antibody Anti-Ki67
(Rabbit Monoclonal)

Abcam ab15580,
RRID:AB_443209

IF(1:100)

Antibody Anti-pH-H3
(Rabbit Polyclonal)

Abcam ab5176,
RRID:AB_304763

IF(1:500)

Antibody Anti-GH (Rabbit
Polyclonal)

National Hormone
and Peptide
Program (NHPP)

AFP-5641801 IF(1:1000)

Antibody Anti-TSH
(Rabbit
Polyclonal)

National Hormone
and Peptide
Program (NHPP)

AFP-1274789 IF(1:1000)

Antibody Anti-PRL
(Rabbit
Polyclonal)

National Hormone
and Peptide
Program (NHPP)

AFP-4251091 IF(1:1000)

Antibody Anti-ACTH
(Mouse
Monoclonal)

Fitzgerald 10C-CR1096M1,
RRID:AB_1282437

IF(1:400)

Antibody Anti-LH
(Rabbit Polyclonal)

National Hormone
and Peptide
Program (NHPP)

AFP-697071P IF(1:300)

Antibody Anti-FSH
(Rabbit Polyclonal)

National Hormone
and Peptide
Program (NHPP)

AFP-HFS6 IF(1:300)

Antibody Anti-ZO-1
(Rat Monoclonal)

Santa Cruz SC33725,
RRID:AB_628459

IF(1:300)

Antibody Anti-E-CADHERIN
(Rabbit Monoclonal)

Cell Signaling 3195S,
RRID:AB_2291471

IF(1:300)

Antibody Anti-Rabbit 488
(Goat Polyclonal)

Life Technologies A11008,
RRID:AB_143165

IF(1:400)

Antibody Anti-Rabbit 555
(Goat Polyclonal)

Life Technologies A21426,
RRID:AB_1500929

IF(1:400)

Antibody Anti-Rabbit 633
(Goat Polyclonal)

Life Technologies A21050,
RRID:AB_141431

IF(1:400)

Antibody Anti-Goat 488
(Donkey Polyclonal)

Abcam ab150133,
RRID:AB_2832252

IF(1:400)

Antibody Anti-Chicken
488 (Goat
Polyclonal)

Life Technologies A11039,
RRID:AB_142924

IF(1:400)

Antibody Anti-Chicken
647 (Goat
Polyclonal)

Life Technologies A21449,
RRID:AB_1500594

IF(1:400)

Antibody Anti-Rat 555
(Goat Polyclonal)

Life Technologies A21434,
RRID:AB_141733

IF(1:400)

Antibody Anti-Mouse
555 (Goat
Polyclonal)

Life Technologies A21426,
RRID:AB_1500929

IF(1:400)

Antibody Anti-Rabbit
Biotinylated
(Donkey Polyclonal)

Abcam ab6801,
RRID:AB_954900

IF(1:400)

Antibody Anti-Rabbit
Biotinylated
(Goat Polyclonal)

Abcam ab207995 IF(1:400)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-Mouse
Biotinylated
(Goat Biotinylated)

Abcam ab6788,
RRID:AB_954885

IF(1:400)

Sequence-
based reagent

RNAscope probe
M. musculus Axin2

Advanced
Cell Diagnostics

400331

Sequence-
based reagent

RNAscope probe
M. musculus Lef1

Advanced
Cell Diagnostics

441861

Sequence-
based reagent

RNAscope probe
M. musculus Wls

Advanced
Cell Diagnostics

405011

Sequence-
based reagent

RNAscope probe
M. musculus Rspo1

Advanced
Cell Diagnostics

401991

Sequence-
based reagent

RNAscope probe
M. musculus Rspo2

Advanced
Cell Diagnostics

402001

Sequence-
based reagent

RNAscope probe
M. musculus Rspo3

Advanced
Cell Diagnostics

402011

Sequence-
based reagent

RNAscope probe
M. musculus Rspo4

Advanced
Cell Diagnostics

402021

Sequence-
based reagent

RNAscope probe
M. musculus Lgr4

Advanced
Cell Diagnostics

318321

Sequence-
based reagent

RNAscope probe
M. musculus Wnt9a

Advanced
Cell Diagnostics

405081

Sequence-
based reagent

RNAscope probe
M. musculus Wnt2

Advanced
Cell Diagnostics

313601

Sequence-
based reagent

RNAscope probe
M. musculus Wnt5a

Advanced
Cell Diagnostics

316791

Sequence-
based reagent

RNAscope
probe eGFP

Advanced
Cell Diagnostics

400281

Sequence-
based reagent

RNAscope probe
M. musculus Jun

Advanced
Cell Diagnostics

453561

Sequence-
based reagent

RNAscope probe
M. musculus Axin2
(Channel 2)

Advanced
Cell Diagnostics

400331-C2

Sequence-
based reagent

RNAscope probe
M. musculus Sox2
(Channel 2)

Advanced
Cell Diagnostics

401041-C2

Sequence-
based reagent

RNAscope probe
eGFP (Channel 2)

Advanced
Cell Diagnostics

400281-C2

Sequence-
based reagent

RNAscope probe
M. musculus Sox2

Advanced
Cell Diagnostics

401041

Sequence-
based reagent

RNAscope probe
M. musculus Pou1f1

Advanced
Cell Diagnostics

486441

Sequence-
based reagent

RNAscope probe
Duplex Positive
Control Ppib-C1,
Polr2a-C2

Advanced
Cell Diagnostics

321641

Sequence-
based reagent

RNAscope probe
Duplex Negative
Control DapB
(both channels)

Advanced
Cell Diagnostics

320751

Sequence-
based reagent

RNAscope probe
Singleplex Positive
Control Ppib

Advanced Cell
Diagnostics

313911

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based reagent

RNAscope probe:
Singleplex Negative
Control DapB

Advanced Cell
Diagnostics

310043

Peptide,
recombinant
protein

Streptavidin 488 Life Technologies S11223 IF(1:400)

Peptide,
recombinant
protein

Streptavidin 555 Life Technologies S32355 IF(1:400)

Peptide,
recombinant
protein

Streptavidin 633 Life Technologies S21375 IF(1:400)

Commercial
assay or kit

RNAScope 2.5
HD Assay-RED

Advanced Cell
Diagnostics

322350

Commercial
assay or kit

RNAScope 2.5
HD Duplex Assay

Advanced Cell
Diagnostics

322430

Commercial
assay or kit

LIVE/DEAD Fixable
Near IR-Dead
Cell Stain Kit

Life Technologies L34975

Commercial
assay or kit

FIX and PERM
Cell
Permeabilization
Kit

Life Technologies GAS003

Chemical
compound,
drug

Tamoxifen Sigma T5648

Chemical
compound,
drug

Corn Oil Sigma C8267

Chemical
compound,
drug

Collagenase
Type 2

Worthington 4178 C

Chemical compound, drug 10� Trypsin Sigma 59418C

Chemical
compound,
drug

Deoxyribonuclease I Worthington LS002172

Chemical
compound,
drug

Fungizone Gibco 15290

Chemical
compound,
drug

Hank’s Balanced
Salt Solution
(HBSS)

Gibco 14170

Chemical
compound,
drug

Foetal Bovine
Serum

Sigma F2442

Chemical
compound,
drug

HEPES Thermo Fisher 15630

Chemical
compound,
drug

bFGF R&D Systems 233-FB-025

Chemical
compound,
drug

Cholera Toxin Sigma C8052

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

DMEM-F12 Thermo Fisher 31330

Chemical
compound,
drug

Penicillin/
Streptomycin

Gibco 15070-063

Chemical
compound,
drug

Neutral
Buffered
Formalin

Sigma HT501128

Chemical
compound,
drug

Hoechst 33342 Thermo Fisher H3570 1:1000

Chemical
compound,
drug

Declere Sigma D3565

Chemical
compound,
drug

Neo-Clear Sigma 65351-M

Software,
algorithm

FlowJo FlowJo, LLC https://www.
flowjo.com/
RRID:SCR_008520

Software,
algorithm

Prism 7 GraphPad
Software

https://www.
graphpad.com/

Software,
algorithm

Image Lab Bio-Rad
Laboratories

http://www.
bio-rad.com/

Software,
algorithm

NDP View Hamamatsu
Photonics

https://www.
hamamatsu.com/

Software,
algorithm

HISAT v2.0.3 Kim et al., 2015 https://github.
com/infphilo/hisat2
RRID:SCR_015530

Software,
algorithm

DESeq2 v2.11.38 Love et al., 2014 https://github.
com/Bioconductor-
mirror/DESeq2
RRID:SCR_015687

Software,
algorithm

featureCounts
v1.4.6p5

Liao et al., 2014 http://subread.
sourceforge.net/
RRID:SCR_012919

Software,
algorithm

The Galaxy
Platform

Afgan et al., 2016;
Blankenberg et al., 2010;
Goecks et al., 2010

https://usegalaxu.org
RRID:SCR_006281

Software,
algorithm

Gene Set
Enrichment
Analysis (GSEA)

Subramanian
et al., 2005

software.broadinstitute.
org/gsea/index.jsp
RRID:SCR_003199

Software,
algorithm

Cufflinks Trapnell et al., 2012 https://github.
com/cole-trapnell-
lab/cufflinks
RRID:SCR_014597

Other Deposited
Data, RNA-Seq

BioProject (NCBI) PRJNA421806

Mice
All procedures were performed under compliance of the Animals (Scientific Procedures) Act 1986,

Home Office License (P5F0A1579). KCL Biological Services Unit staff undertook daily animal hus-

bandry. Genotyping was performed on ear biopsies taken between P11 and P15 by standard PCR

using the indicated primers. These experiments were not conducted at random and the experiment-

ers were not blind while conducting the animal handling and assessment of tissue. Images are
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representative of the respective genotypes. For all studies, both male and female animals were used

and results combined.

The Sox2CreERT2/+ and Sox2Egfp/+ strains were kept on a CD-1 background. Axin2CreERT2/+ animals

were kept on a mixed background of C57BL/6 backcrossed onto CD-1 for five generations and were

viable and fertile, with offspring obtained at the expected Mendelian ratios. ROSA26mTmG/mTmG,

ROSA26Confetti/Confetti, ROSA26tdTomato/tdTomato, Wlsfl/fl, Ctnnb1fl(ex2-6)/ fl(ex2-6), and TCF/LEF:H2B-

EGFP mice were kept on a mixed background of 129/Sv backcrossed onto CD-1 for at least three

generations. For lineage tracing studies, male Axin2CreERT2/+ or Sox2CreERT2/+ mice were bred with

homozygous ROSA26mTmG/mTmG or ROSA26Confetti/Confetti dams to produce the appropriate allele

combinations on the reporter background. Pups were induced at P14 or P15 with a single dose of

tamoxifen (resuspended to 20 mg/ml in Corn Oil with 10% ethanol) by intraperitoneal injection, at a

concentration of 0.15 mg/g of body weight. Pituitaries were harvested at the indicated time points

post-induction and processed for further analysis as described below. Mice were harvested from dif-

ferent litters for each time point at random. For litters in which there was a surplus of experimental

mice, multiple samples were harvested for each required time point.

For Wntless deletion studies, Sox2CreERT2/+;Wlsfl/+;ROSA26mTmG/mTmG males were bred with Wlsfl/

fl;ROSA26mTmG/mTmG dams, to produce Sox2CreERT2/+;Wlsfl/+;ROSA26mTmG/mTmG, Sox2CreERT2/+;Wlsfl/

fl;ROSA26mTmG/mTmG, and Wlsfl/fl;ROSA26mTmG/mTmG offspring. Pups of the indicated genotypes

received intraperitoneal injections of 0.15 mg of tamoxifen per gram body weight on four consecu-

tive days, beginning at P14, and harvested 3 days after the final injection.

For the b-catenin loss-of-function experiments, either Sox2CreERT2/+;Ctnnb1fl(ex2-6)/+;ROSA26mTmG/

mTmG or Axin2CreERT2/+;Ctnnb1fl(ex2-6)/+;ROSA26mTmG/mTmG males were crossed with Ctnnb1fl(ex2-6)/fl

(ex2-6);ROSA26mTmG/mTmG dams. Axin2CreERT2/+;Ctnnb1fl(ex2-6)/fl(ex2-6);ROSA26mTmG/mTmG and Axin2-
CreERT2/+;Ctnnb1fl(ex2-6)/+;ROSA26mTmG/mTmG pups were induced with a single dose of tamoxifen, at

a concentration of 0.15 mg/g of body weight and kept alive for 7 days before harvesting. Sox2-
CreERT2/+;Ctnnb1fl(ex2-6)/+;ROSA26mTmG/mTmG and Sox2CreERT2/+;Ctnnb1fl(ex2-6)/fl(ex2-6);ROSA26mTmG/

mTmG pups received two intraperitoneal injections of tamoxifen, at a concentration of 0.15 mg/g of

body weight, on two consecutive days and were kept alive for the indicated length of time before

harvesting.

TCF/LEF:H2B-EGFP mice were culled and the pituitaries harvested at the indicated ages for the

respective experiments. For FACS experiments, mice were harvested at 21 days of age. Axin2-
CreERT2/+;Sox2eGFP/+ males were crossed with ROSA26tdTomat/tdTomato dams to produce Axin2-
CreERT2/+;Sox2eGFP/+;ROSA26tdTomato/+ that were induced with single doses of tamoxifen at 21 and

22 days of age and harvested 3 days after the first injection for FACS experiments.

Flow cytometry analysis of lineage traced pituitaries
For the quantification of cells by flow cytometry, anterior lobes of Axin2CreERT2/+;ROSA26mTmG/+

mice dissected at the indicated time points. The posterior and intermediate lobes were dissected

from the anterior lobes under a dissection microscope. Untreated ROSA26mTmG/+ and wild-type

pituitaries from age-matched litters were used as tdTomato only and negative controls, respectively.

Dissected pituitaries were incubated in Enzyme Mix (0.5% w/v collagenase type 2 [Lorne Laborato-

ries], 0.1� Trypsin [Gibco], 50 mg/ml DNase I [Worthington], and 2.5 mg/ml Fungizone [Gibco] in

Hank’s Balanced Salt Solution [HBSS] [Gibco]) in a cell culture incubator for up to 3 hr; 850 ml of

HBSS was added to each Eppendorf in order to quench the reaction. Pituitaries were dissociated by

agitation, pipetting up and down 100� at first with a 1 ml pipette, followed by 100� with a 200 ml

pipette. Cells were transferred to a 15 ml Falcon tube and resuspended in 9 ml of HBSS and spun

down at 200 g for 5 min. The supernatant was aspirated, leaving behind the cell pellet that was

resuspended in PBS and spun down at 1000 rpm for 5 min before being resuspended in a Live/Dead

cell stain (Life Technologies, L34975) prepared to manufacturer’s instructions, for 30 min in the dark.

Cells were washed in PBS as above. The pellet was resuspended in FIX and PERM Cell Permeabiliza-

tion Kit (Life Technologies, GAS003) prepared as per manufacturer’s instructions for 10 min at room

temperature. Cells were washed as above, and the pellet was resuspended in 500 ml of FACS buffer

(1% foetal calf serum [Sigma], 25 mM HEPES in PBS) and filtered through 70 mm filters (BD Falcon),

into 5 ml round bottom polypropylene tubes (BD Falcon). One minute prior to analysis, 1 ml of

Hoechst was added to the suspended cells and incubated. Samples were analysed on a BD Fortessa

and gated according to negative and single fluorophore controls. Single cells were gated according
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to SSC-A and SSC-W. Dead cells were excluded according to DAPI (2 ng/ml, incubated for 2 min

prior to sorting). GFP+, tdTomato+, and GFP+;tdTomato+ cells were gated according to negative

controls in the PE-A and FITC-A channels.

FACS for sequencing or colony forming assays
For FACS, the anterior lobes from Sox2eGFP/+, TCF/LEF:H2B-GFP, or Axin2CreERT2/+;Sox2eGFP/+;

ROSA26tdTomato/+ and their respective controls were dissected and dissociated as above. After dis-

sociation cells were spun down at 200 g in HBSS and the pellet was resuspended in 500 ml FACS

buffer. Using an Aria III FACs machine (BD systems), samples were gated according to negative con-

trols, and where applicable single fluorophore controls. Experimental samples were sorted according

to their fluorescence, as indicated, into tubes containing either RNAlater (Qiagen) for RNA isolation

or 1 ml of Pit Complete Media for culture (Pit Complete: 20 ng/ml) bFGF and 50 ng/ml of cholera

toxin in ‘Pit Basic’ media (DMEM-F12 with 5% foetal calf serum, 100 U/ml penicillin, and 100 mg/ml

streptomycin). Cells were plated in 12-well plates at clonal density, approximately 500 cells/well.

Colonies were incubated for a total of 7 days before being fixed in 10% neutral buffered formalin

(NBF) (Sigma) for 10 min at room temperature, washed for 5 min, three times, with PBS and stained

with crystal violet in order for the number of colonies to be quantified.

RNA-sequencing
Total RNA was isolated from each sample and following poly-A selection, cDNA libraries were gen-

erated using TruSeq (Clontech, 634925). Barcoded libraries were then pooled at equal molar con-

centrations and sequenced on an Illumina Hiseq 4000 instrument in a 75 base pair, paired-end

sequencing mode, at the Wellcome Trust Centre for Human Genetics (Oxford, United Kingdom).

Raw sequencing reads were quality checked for nucleotide calling accuracy and trimmed accordingly

to remove potential sequencing primer contaminants. Following QC, forward and reverse reads

were mapped to GRCm38/mm10 using Hisat2 (Kim et al., 2015). Using a mouse transcriptome spe-

cific GTF as a guide, FeatureCounts (Liao et al., 2014) was used to generate gene count tables for

every sample. These were utilised within the framework of the Deseq2 (Love et al., 2014) and FPKM

values (generated by FPKM count Wang et al., 2012) were processed using the Cufflinks

(Trapnell et al., 2012) pipelines that identified statistically significant gene expression differences

between the sample groups. Following identification of differentially expressed genes (at an

FDR < 0.05) we focused on identifying differentially expressed pathways using a significance thresh-

old of FDR < 0.05 unless otherwise specified. The gene lists used for GSEA were as found on the

BROAD institute GSEA MSigDBv.7 ‘molecular signatures database’. The deposited data set (BioPro-

ject, accession PRJNA421806) can be accessed through the following link: https://www.ncbi.nlm.nih.

gov/bioproject/PRJNA421806.

Immunofluorescence and microscopy
Freshly harvested pituitaries were washed in PBS for 10 min before being fixed in 10% NBF for 18 hr

at room temperature. In short, embryos and whole pituitaries were washed in PBS three times,

before being dehydrated through a series of 1 hr washes in 25%, 50%, 70%, 80%, 90%, 95%, and

100% ethanol. Tissues were washed in Neo-Clear (Sigma) at room temperature for 10 min, then in

fresh preheated Neo-Clear at 60˚C for 10 min. Subsequently, tissues were incubated in a mixture of

50% Neo-Clear:50% paraffin wax at 60˚C for 15 min followed by three changes of pure wax for a

minimum of 1 hr washes at 60˚C, before being orientated to be sectioned in the frontal plane.

Embedded samples were sectioned at 5 mm and mounted on to Super Frost+ slides.

For immunofluorescence, sections were deparaffinised in Neo-Clear by three washes of 10 min,

washed in 100% ethanol for three times 5 min, and rehydrated in a series of 5-min ethanol washes

up to distilled water (95%, 90%, 80%, 70%, 50%, 25%, H2O). Heat induced epitope retrieval was per-

formed with 1� DeClear Buffer (citrate pH 6) in a Decloaking chamber NXGEN (Menarini Diagnos-

tics) for 3 min at 110˚C. Slides were left to cool to room temperature before proceeding to block for

1 hr at room temperature in blocking buffer (0.2% BSA, 0.15% glycine, 0.1% TritonX in PBS) with

10% serum (sheep or donkey, depending on secondary antibodies). Primary antibodies were diluted

in blocking buffer with 1% of the appropriate serum and incubated overnight at 4˚C. Slides were

washed three times for 10 min with PBST. Slides were incubated with secondary antibodies diluted
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1:400 in blocking buffer with 1% serum for 1 hr at room temperature. Slides were washed three

times with PBST as above. Where biotinylated secondary antibodies were used, slides were incu-

bated with streptavidin diluted 1:400 in blocking buffer with 1% serum for 1 hr at room temperature.

Finally, slides were washed with PBST and mounted using Vectashield Antifade Mounting Medium

(Vector Laboratories, H-1000).

The following antibodies, along with their dilutions and detection technique, were used: GFP

(1:400, Alexa Fluor-488 or �647 secondary), SOX2 raised in goat (1:200, Alexa Fluor-488 secondary),

SOX2 raised in rabbit (1:100, biotinylated secondary), SOX9 (1:500, biotinylated secondary), PIT1

(1:500, biotinylated secondary), SF1 (1:300, biotinylated secondary), TPIT (1:200, biotinylated sec-

ondary), Ki-67 (1:100, biotinylated secondary), pH-H3 (1:500, biotinylated secondary), GH (1:1000,

biotinylated secondary), TSH (1:1000, biotinylated secondary), PRL (1:1000, biotinylated secondary),

ACTH (1:400, Alexa Fluor-555 secondary), LH/FSH (1:300, biotinylated secondary), ZO-1 (1:300,

Alexa Fuor-488), and E-Cadherin (1:300, Alexa Fluor-488). Nuclei were visualised with Hoechst

(1:1000). Images were taken on a TCS SPS Confocal (Leica Microsystem) with a 20� objective for

analysis.

mRNA in situ hybridisation
All mRNA in situ hybridisations were performed using the RNAscope singleplex or duplex chromo-

genic kits (Advanced Cell Diagnostics) on formalin fixed paraffin embedded sections processed as

described in the above section. The protocol followed the manufacturer’s instructions with slight

modifications. ImmEdge Hydrophobic Barrier PAP Pen (Vector Laboratories, H-4000) was used to

draw a barrier around section while air-drying following the first ethanol washes. Pretreatment fol-

lowed the standard length of time for pituitaries (12 min), while embryos were boiled for 10 min. For

singleplex, the protocol proceeded to follow the instructions exactly. For duplex, Amplification nine

was extended to 1 hr and the dilution of the Green Detection reagent was increased to 1:30. For

both protocols, sections were counterstained with Mayer’s Haematoxylin (Vector Laboratories,

H-3404), left to dry at 60˚C for 30 min before mounting with VectaMount Permanent Mounting

Medium (Vector Laboratories, H-5000). Slides were scanned using a Nanozoomer-XR Digital Slide

Scanner (Hamamatsu) and processed using Nanozoomer Digital Pathology View (Hamamatsu).

Quantification of cells
Cell numbers were quantified in ImageJ using the cell counter plugin (Schindelin et al., 2012). At a

minimum, three sections per pituitary were quantified, spaced no less than 100 mM apart in the

tissue.

Statistics
All statistical analyses were performed in GraphPad Prism. Data points in graphs represent the mean

values of recordings from a single biological replicate unless otherwise stated.
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Carbajo-Pérez E, Watanabe YG. 1990. Cellular proliferation in the anterior pituitary of the rat during the
postnatal period. Cell and Tissue Research 261:333–338. DOI: https://doi.org/10.1007/BF00318674,
PMID: 2401005

Carpenter AC, Rao S, Wells JM, Campbell K, Lang RA. 2010. Generation of mice with a conditional null allele for
wntless. Genesis 48:554–558. DOI: https://doi.org/10.1002/dvg.20651, PMID: 20614471

Castinetti F, Davis SW, Brue T, Camper SA. 2011. Pituitary stem cell update and potential implications for
treating hypopituitarism. Endocrine Reviews 32:453–471. DOI: https://doi.org/10.1210/er.2010-0011,
PMID: 21493869

Clevers H, Watt FM. 2018. Defining adult stem cells by function, not by phenotype. Annual Review of
Biochemistry 87:1015–1027. DOI: https://doi.org/10.1146/annurev-biochem-062917-012341

Cox B, Laporte E, Vennekens A, Kobayashi H, Nys C, Van Zundert I, Uji-i H, Vercauteren Drubbel A, Beck B,
Roose H, Boretto M, Vankelecom H. 2019. Organoids from pituitary as a novel research model toward pituitary
stem cell exploration. Journal of Endocrinology 240:287–308. DOI: https://doi.org/10.1530/JOE-18-0462

Davis SW, Mortensen AH, Camper SA. 2011. Birthdating studies reshape models for pituitary gland cell
specification. Developmental Biology 352:215–227. DOI: https://doi.org/10.1016/j.ydbio.2011.01.010,
PMID: 21262217

Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, Saotome I, Greco V. 2014. b-Catenin
activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science 343:1353–1356.
DOI: https://doi.org/10.1126/science.1248373, PMID: 24653033
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