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Abstract The cerebral cortex and cerebellum both play important roles in sensorimotor

processing, however, precise connections between these major brain structures remain elusive.

Using anterograde mono-trans-synaptic tracing, we elucidate cerebrocerebellar pathways

originating from primary motor, sensory, and association cortex. We confirm a highly organized

topography of corticopontine projections in mice; however, we found no corticopontine projections

originating from primary auditory cortex and detail several potential extra-pontine

cerebrocerebellar pathways. The cerebellar hemispheres were the major target of resulting

disynaptic mossy fiber terminals, but we also found at least sparse cerebrocerebellar projections to

every lobule of the cerebellum. Notably, projections originating from association cortex resulted in

less laterality than primary sensory/motor cortices. Within molecularly defined cerebellar modules

we found spatial overlap of mossy fiber terminals, originating from functionally distinct cortical

areas, within crus I, paraflocculus, and vermal regions IV/V and VI - highlighting these regions as

potential hubs for multimodal cortical influence.

Introduction
The environment provides constantly updating sensory signals that must be acted upon for an ani-

mal to perform basic behaviors necessary for survival, including navigating through the environment,

feeding/foraging, and other goal-directed behaviors. These perception and action loops require var-

ious sensory modalities (i.e. somatosensation, audition, and vision) to be integrated and translated

into directed motor output. Both the cerebral cortex (Stein and Stanford, 2008) and the cerebellum

(Snider and Stowell, 1944; Rondi-Reig et al., 2014; Baumann et al., 2015) are major brain regions

involved in this sensorimotor integration and translation. Connections between these two brain

regions form one of the largest projection pathways in the brain and selective expansion of this cor-

tico-cerebellar system occurs across evolution (Gutiérrez-Ibáñez et al., 2018; Smaers and Vanier,

2019). This reflects the importance of cerebrocerebellar communication, however, the precise func-

tions of these pathways are not fully understood (Apps and Watson, 2013). A vital initial step in

understanding the role of cerebrocerebellar communication is to have a comprehensive map of the

pathways linking these two structures as well as the precise organization of the termination of these

pathways within the cerebellum.

Due to the indirect nature of cerebrocerebellar connections, it has been difficult to study their

organization in precise detail. While a large body of research has mapped out the corticopontine

projections (Brodal and Bjaalie, 1997; Glickstein, 1997; Leergaard and Bjaalie, 2007;

Proville et al., 2014) or the pontocerebellar projections (Pijpers and Ruigrok, 2006; Pakan et al.,

2010; Proville et al., 2014; Biswas et al., 2019), few studies have utilized neurotropic viruses
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(Kelly and Strick, 2003; Suzuki et al., 2012). Therefore, the precise routes for information flow

from the cortex to the cerebellum, including detailed terminal organization in the highly modular

cerebellar cortex, have remained largely inferred. The integration of multimodal inputs to the cere-

bellum is a fundamental operation that would allow for the precise coordination of sensory-driven

movements within this brain region. Anatomically, the potential for a single granule cell to receive

multimodal input via both descending motor cortex and ascending proprioceptive pathways has

been shown in mice (Huang et al., 2013). However, the potential for co-innervation originating from

various cortical areas spanning multiple modalities is unknown, even on the regional level in the cere-

bellum, and has consequences for the role of cerebro-cerebellar-cerebro feedback loops in learning

and predictive motor control (e.g. Chabrol et al., 2019).

Using a mono-trans-synaptic anterograde viral tracer (Zingg et al., 2017; Zingg et al., 2020), we

investigated the precise cerebrocerebellar pathways from key sensory, motor, and association

regions of the cortex via the pontine and other intermediate precerebellar nuclei to all regions of

the cerebellar cortex (Figure 1A–C); ultimately providing a map of the potential pathways linking

various functionally specific cortical regions with the cerebellum. Following injections into the pri-

mary motor (M1), somatosensory (S1), visual (V1), auditory (A1), posterior parietal association cortex

(PPC), and the dorsal field of auditory cortex (AuD), we found a highly organized topography of

labeled pontine cells, with the notable exception that injections into A1 produced only terminal

labeling in the pons; indicating the lack of a A1-ponto-cerebellar pathway in mice. We quantified the

number of resulting mossy fiber terminals and described their relationship to the internal organiza-

tion of the cerebellum. The majority of labeled mossy fiber terminals from the primary sensory and

motor cortical regions were in the contralateral cerebellar hemisphere, whereas from association cor-

tices this laterality was less evident. Cortical influences were not restricted to the cerebellar hemi-

spheres, as terminals spanned all regions of the cerebellar cortex, with biases depending on the

cortical modality. Cerebellar subdivisions with the highest regional co-innervation of multimodal

inputs were crus I, the paraflocculus (PFl), vermal lobule VI and lobules IV/V, highlighting the poten-

tial for modular multimodal processing of information originating from the cerebral cortex.

Results
To examine the topography of cerebrocerebellar pathways from primary sensory and motor cortical

regions as well as sensory association areas, we utilized an AAV1.cre construct that has been shown

to act as a trans-synaptic anterograde tracer that crosses a single functional synapse (mono-trans-

synaptic; Zingg et al., 2017; Zingg et al., 2020). We injected AAV1.cre into various cortical regions

in tdTomato reporter mice and quantified the resulting labeled precerebellar pathways and mossy

fiber terminals in the cerebellum (Figure 1). Target cortical areas included M1 (forelimb/hindlimb

regions), S1 (forelimb/hindlimb regions), PPC, V1, A1, and AuD (Figure 1A,D; three mice per target

region; see Supplementary file 1A).

Anterograde tracing of indirect cerebrocerebellar pathways
Following cortical injections, mono-trans-synaptically labeled cells were found in the ipsilateral basal

pontine nuclei (referred to as pontine nuclei throughout) from all cortical target regions, with the

exception of A1 (Figure 1E). In contrast, after injections in the more dorsal secondary auditory

region, AuD, a corticopontine pathway was observed (Figure 1E). The lack of corticopontine projec-

tions from A1, was confirmed by injecting CAV.cre into the pontine nuclei; this viral vector is prefer-

entially taken up by axon terminals, resulting in retrograde labeling. Here we found retrogradely

labeled cells in AuD and more ventral auditory cortex (AuV), but no labeled cells in A1 (Figure 1—

figure supplement 1). Although anterogradely labeled cell bodies were not observed in the pontine

nuclei following AAV1.cre injections in A1, labeled fibers were found in the dorsomedial portion of

the ipsilateral pons (Figure 1E; Supplementary file 1B). These fibers could be either traversing

through the pons, potentially towards lower brainstem structures (e.g., cochlear and vestibular nuclei

see Figure 2A; see also Budinger et al., 2000), or disynaptic terminals resulting from labeled indi-

rect pathways from A1 to the pontine nuclei, likely via the inferior colliculus (Schuller et al., 1991b;

Caicedo and Herbert, 1993). Indeed, anterogradely labeled neurons were consistently observed in

the inferior colliculus after A1 injections (Figure 2B) and following injection of AAV1.cre in the infe-

rior colliculus, anterogradely labeled cells were found in the pontine nuclei as well as mossy fiber
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Figure 1. Anterograde tracing of indirect cerebrocerebellar pathways using a mono-trans-synaptic adeno-associated virus (AAV). (A) Schematic

outlining cortical target areas for mono-trans-synaptic anterograde tracer injections: primary motor (M1), primary somatosensory (S1), posterior parietal

association cortex (PPC), primary visual (V1), primary auditory (A1), and dorsal auditory (AuD) cortex. (B) Principle of mono-trans-synaptic anterograde

tracing (e.g cortico-pontine-cerebellar pathway) using a specific adeno-associated virus (AAV1.cre). (C) Schematic of gross anatomical divisions of the

unfolded mouse cerebellum (according to Marani and Voogd, 1979). (D) Images of coronal sections showing representative injection sites into M1, S1,

PPC, V1, A1, and AuD (from left to right). Arrowheads indicate regional borders. Distance from bregma is indicated based on the mouse stereotaxic

atlas (Franklin and Paxinos, 2007). (E) Images of coronal sections illustrating the mono-trans-synaptic labeling in the pontine nuclei (i.e. corticopontine

fibers, postsynaptic pontine cells, pontine fibers) following injections into M1, S1, PPC, V1, A1, and AuD. Note that the medial-lateral topography of

pontine labeling correlates with the rostral-caudal localization of these cortical regions. Injections into A1 resulted in labeled fibers within the pons, but

no labeled cells. (F) Images of coronal section showing representative mossy fiber labeling following an injection into M1 at different magnifications.

Scale bars 1 mm (D, E, F left), 20 mm (insets in E), 200 mm (F middle), 50 mm (F right). Retrosplenial Cortex (RSD); secondary visual cortex (V2).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Retrogradely labelled cells following injection in pontine nuclei.

Figure supplement 2. Resulting anterograde labeling in the pontine nuclei and mossy fiber terminals following injection of mono-trans-synaptic adeno-

associated virus (AAV) into the inferior colliculus.

Figure 1 continued on next page
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terminals in the cerebellum, demonstrating the potential for a trisynaptic A1-collicular-cerebellar

pathway via the pontine nuclei (Figure 1—figure supplement 2).

In agreement with previous studies (Leergaard and Bjaalie, 2007; for review see,

Kratochwil et al., 2017), resulting pontine labeling after cortical injections in mice was topographi-

cally organized with more rostral cortical regions projecting more medially in the pons and caudal

cortical areas projecting towards the lateral extent of the pontine nuclei (Figure 1E, see also

Figure 3B). While most pontine labeling was strictly ipsilateral, M1 was the only cortical target

region that resulted in bilateral pontine labeling (average of 118 ± 36 neurons ipsilateral to 8 ± 3

neurons contralateral; Figure 1E). Previous anterograde tracer studies have observed corticopontine

fibers largely in the ipsilateral pontine nuclei with relatively sparse labeling in the contralateral pons

(Mihailoff et al., 1985; Leergaard and Bjaalie, 2007). However, it was unclear if these sparse con-

tralateral projections were fibers of passage or axon terminals; our results suggest the later for M1

projections and the former for all other cortical targets regions described here. Interestingly, the

existence of functional synapses for contralateral corticopontine projections was also reported in pri-

mates, however, also exclusively after M1 injections (Morecraft et al., 2018).

We observed anterogradely labeled cells in various other precerebellar nuclei (Figure 2A;

Supplementary file 1B; see also Ruigrok et al., 2015). In fact, after S1 injections we found more

labeled cells in extra-pontine precerebellar nuclei than in pontine nuclei (70 ± 8% of total labeling)

and after M1 injections, just under half (40 ± 3%). This labeling spanned several precerebellar nuclei,

including the red nucleus and reticulotegmental nucleus, as well as more caudal brainstem regions

including the spinal trigeminal nucleus, lateral reticular nucleus, the matrix region x and the vestibu-

lar nuclei (Figure 2, Supplementary file 1B). While the reticulotegmental nucleus is often grouped

together with the basal pontine nuclei, these regions in the pons appear to play different functional

roles (Cicirata et al., 2005), hence, in this study we classify the reticulotegmental nucleus as a sepa-

rate extra-pontine region. Additionally, we observed labeled fibers in both the medial and inferior

cerebellar peduncles (see Figure 2A), indicating disynaptic tracts projecting to the cerebellum from

pontine regions and more caudal extra-pontine precerebellar nuclei, respectively. Since there was

no labeling observed in the pontine nuclei after A1 injections, the resulting mossy fiber terminals

must reach the cerebellum through other precerebellar nuclei, of which we found labeling in the ves-

tibular as well as the cochlear nuclei (see Figure 2A).

We did not observe labeled cells from any target cortical region in the spinal or lateral vestibular

nuclei, the external cuneate nucleus, or the inferior olive. We did, however, observe fibers and termi-

nal labeling in the inferior olive following injections in S1 (Figure 2C) and to a lesser extent after

injections in M1. Interestingly, also only after S1 and M1 injections, anterogradely labeled cells were

observed in the matrix region x, which has been suggested as a candidate preolivary relay nucleus

(Ackerley et al., 2006). There is some controversy regarding the existence of direct cerebro-olivary

connections in rodents, particularly originating from M1 (Swenson et al., 1989; Baker et al., 2001;

Ackerley et al., 2006); for review see Watson and Apps, 2019); our results support disynaptic input

from the cerebral cortex to inferior olivary neurons. Sparse fibers were also observed in the lateral

cerebellar nucleus following S1 and M1 injections, likely from pontocerebellar collaterals

(Cicirata et al., 2005; Biswas et al., 2019).

Regional organization of cerebrocerebellar mossy fiber terminals
Cerebrocerebellar mossy fiber terminal labeling in the granule cell layer of the cerebellum was sys-

tematically present, regardless of the cortical origin (e.g. Figure 1F, Supplementary file 1B). We

did not find AAV1.cre-induced tdTomato expressing granule cells or Purkinje cells in any of the

cases, indicating that the AAV construct did not transfer to higher-order downstream structures

beyond mono-synaptic connections (see also Zingg et al., 2017; Zingg et al., 2020). We quantified

the number of resulting mossy fiber terminals throughout the cerebellum and found that this was

highly variable across cortical regions, with S1 and M1 resulting in the largest number of labeled

Figure 1 continued

Figure supplement 3. Injection site quantification method and relationship between the injection site volume and the resulting mossy fiber labeling in

the cerebellar cortex.
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Figure 2. Extra-pontine labeling in key precerebellar nuclei following mono-trans-synaptic adeno-associated virus (AAV) injections in target cerebral

cortical regions. (A) Representative labeling in precerebellar nuclei listed in Supplementary file 1B, after injections of AAV1.cre into primary motor

(M1), primary somatosensory (S1), primary auditory (A1), and dorsal auditory (AuD) cortex. Images show labeled cells in interpolar part of the spinal

trigeminal nucleus (Sp5I), lateral reticular nucleus (LRt), matrix region x (Mx), superior vestibular nucleus (SuVe), red nucleus (RPC, RMC), pontine

reticulotegmental nucleus (RtTg), dorsal cochlear nucleus (DC) and ventral cochlear nucleus, posterior part (VCP), which provide alternative extra-

pontine mossy fiber pathways for indirect cortical input to the cerebellum. Descending labeled fiber tracts can also be observed in the longitudinal

fasciculus of the pons (lfp) and the pyramidal tracts (py). Further, fibers travelling to the cerebellar cortex in the middle and inferior cerebellar peduncles

(mcp and icp, respectively) after S1 injections. (B) Labeled cells in the inferior colliculus (central [CIC], external cortex [ECIC] and dorsal cortex [DCIC]

inferior colliculus) following A1 injections. (C) Labeled fibers in the ipsilateral inferior olive (IO) following S1 injections. For all, distance from bregma is

indicated based on the mouse stereotaxic atlas (Franklin and Paxinos, 2007). Scale Bars 500 mm (A), 1 mm (B, C), 100 mm all insets. 4th ventricle (4V),

vestibular nerve (8vn), nucleus of Darkschewitsch (Dk), lateral periaqueductal gray (LPAG), medial lemniscus (ml), medullary reticular nucleus, ventral

(MdV), raphe obscurus nucleus (Rob).

Henschke and Pakan. eLife 2020;9:e59148. DOI: https://doi.org/10.7554/eLife.59148 5 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.59148


Figure 3. Organization of indirect cerebrocerebellar mossy fiber terminals in the cerebellum from target cerebral cortical regions. (A) Schematic of

cortical target areas as outlined on the cortical surface (according to Franklin and Paxinos, 2007; Kirkcaldie, 2012) including core (black) and halo

(grey) regions of mono-trans-synaptic anterograde tracer injections: primary motor (M1), primary somatosensory (S1), posterior parietal association

cortex (PPC), primary visual (V1), primary auditory (A1), and dorsal auditory (AuD) cortex. Scale bar is 1 mm. (B) Schematic illustrating the topographical

location of pontine labeling following injections. Colored lines indicate regions where labeled pontine neurons were found and dots (following A1

Figure 3 continued on next page
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terminals (~10,000) and AuD the least (~580; see Supplementary file 1B). Although the absolute

number of mossy fiber terminals was variable, the resulting regional pattern of labeling was highly

consistent within, and specific to, the cortical region injected (Figure 3). To examine the underlying

organization of cerebrocerebellar projections, we quantified the proportion of mossy fiber terminals

within each side (Figure 3C), division (Figure 3C), and lobule (Figure 3D) of the cerebellum.

Cerebrocerebellar projections were largely, but not exclusively, to the contralateral cerebellum

(average across all animals: contralateral 70 ± 3%, ipsilateral 30 ± 3%). This was especially prominent

after S1 injections, which resulted in 85 ± 3% of mossy fiber terminals in the contralateral cerebellum.

However, this laterality varied across functionally distinct cerebrocerebellar input, such that the ratio

of the number of mossy fiber terminals on each side was closer to equivalent for association/second-

ary cortical regions compared to that of primary cortical areas (ratio of ipsilateral:

contralateral = 0.73 ± 0.13 versus 0.35 ± 0.06, respectively; p=0.008; two-sample t-test). Although

M1 injections resulted in bilateral pontine labeling (Figure 3B, see also Figure 1E), the resulting

mossy fiber terminals were still largely located in the contralateral cerebellum (74 ± 2%; Figure 3D,

see also Figure 1F).

With respect to gross cerebellar divisions (Figure 3C), input from M1 and S1 was biased towards

the cerebellar hemispheres (83 ± 3% and 55 ± 5%, respectively), with much smaller contributions to

the vestibulocerebellum (8 ± 3% and 13 ± 3% respectively). The proportion of cortical input to the

vermis was quite similar across cortical regions (~30%), with the exception of V1, which had very few

vermal projections (14 ± 1%) and A1, which showed a comparatively strong bias towards vermal pro-

jections (47 ± 7%). Interestingly, projections from AuD deviated from A1 with a high proportion to

the cerebellar hemispheres and without the vermal bias. Projections from V1 were biased towards

the vestibulocerebellum (53 ± 5%) and PPC also showed a larger proportion of inputs to the vestibu-

locerebellum in comparison to other cortical areas. In fact, PPC was the only area that showed

largely equal proportions of projections across the cerebellar subdivisions with no clear majority

(hemispheres: 40 ± 3%, vermis: 30 ± 7%, vestibulocerebellum: 30 ± 3%).

We then quantified the proportion of mossy fiber terminals in each cerebellar lobule across both

the ipsilateral and contralateral cerebellum (Figure 3D). After injections into M1, most resulting

mossy fiber terminals were in contralateral crus II ansiform lobule (crus II), followed by the simple

lobule (Sim), paramedian lobule (PM), and the crus I ansiform lobule (crus I). Although the absolute

number of terminals from M1 was higher in the contralateral cerebellum, the relative proportion of

labeling across the lobules was strikingly similar for both sides, resulting in a highly symmetrical pat-

tern of labeling (Figure 3D, see also e.g. Figure 1F). Injections into S1 resulted in mossy fiber termi-

nals largely in contralateral crus I, PM, and the copula pyramis (Cop). Indeed, S1 was the only

cerebral cortical region with substantial input to the Cop (14 ± 5% contralateral projections; no other

regions were >1.7%). Additionally, there was a relatively high proportion of terminals in contralateral

vermal lobule IV/V after S1 injections. In contrast to M1 projections, S1 showed relatively few termi-

nals in the Sim and crus II. Although the terminal pattern of S1 labeling was also largely symmetrical,

the Cop was a clear exception, with only a small relative proportion of ipsilateral labeling (0.7 ±

0.3%) compared to the contralateral side.

Injections in the association area, PPC, resulted in less laterality of terminal labeling within the cer-

ebellum, as previously mentioned, however, there were substantial differences in the pattern of

labeling between the ipsilateral and contralateral sides (Figure 3D). On the contralateral side, the

relatively equal balance of mossy fiber projections to the cerebellar divisions is reflected in the high

proportion of terminals to crus I (19 ± 6%; i.e. hemispheres), lobules IV-VI (10 ± 1%, i.e. vermis), and

paraflocculus (PFl; 19 ± 6%, i.e. vestibulocerebellum). In contrast, the ipsilateral side showed less

prevalent crus I labeling (4 ± 0.5%) but a relatively large proportion of projections to vermal lobule

VI (13 ± 7%) and crus II (5 ± 2%). Therefore, cerebrocerebellar input from the PPC results in the low-

est laterality, but also the least symmetrical, terminal organization.

Figure 3 continued

injections) indicate regions where terminals were observed. (C) Percentage of mossy fiber labeling in the ipsilateral and contralateral cerebellum (left)

and in its gross divisions (right): vermis, hemispheres and vestibulocerebellum (VbC). (D) Percentage of labeled mossy fiber terminals observed in the

anatomical lobules (simplex lobule [Sim], crus I/II ansiform lobule [crus I/II], paramedian lobule [PM], copula pyramis [Cop], paraflocculus [PFI], flocculus

[FL], vermal cerebellar lobules [I-X]) of the ipsilateral (left) and contralateral (right) cerebellum (% of the total cerebellar input).
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With regard to the other sensory areas, after injections into V1, most labeled mossy fiber termi-

nals were found in the contralateral PFl (44 ± 5%); while ipsilaterally the PFl also had a relatively high

proportion of projections compared to other lobules (7 ± 2%), this remained less than a third of that

to the contralateral PFl (Figure 3D). Crus I was the only region in the hemispheres with substantial

terminal labeling from V1 (16 ± 6%, contralateral). Labeling in the vermis was sparse but highly sym-

metric, with lobule VI having the most prominent labeling (5 ± 2%), similar to M1 and PPC. Following

A1 injections, a large proportion of the resulting mossy fiber terminals were found in the vermis (spe-

cifically lobules III [9 ± 5%], IV/V [12 ± 2%], and VI [8 ± 2%]), and in the cerebellar hemispheres there

was a fairly equal distribution of terminals in crus I (8 ± 1%) and crus II (7 ± 1%). In general, A1 was

the only cortical region with a similar proportion of projections specifically to the cerebellar hemi-

spheres bilaterally (ipsilateral: 18 ± 2%; contralateral: 24 ± 2%). Finally, after injections into AuD, the

most prominent mossy fiber labeling was in crus I (15 ± 3%) and crus II (8 ± 1%) followed by vermal

lobules IV/V (7 ± 0.4%) and VI (7 ± 1%). In contrast to projections from A1, very few terminals were

observed in lobule III (0.9 ± 0.1%). Although the absolute number of terminals from AuD was slightly

higher in the contralateral cerebellum, the relative proportion of labeling across the lobules was

strikingly similar bilaterally, resulting in a highly symmetrical pattern of labeling (Figure 3D).

Lobule co-innervation of cerebrocerebellar inputs from distinct cortical
areas
To determine the spatial overlap of cerebrocerebellar input from various cortical regions we exam-

ined the distribution of the total number of mossy fiber terminals within each lobule for each side of

the cerebellum. All cerebellar lobules, on both ipsilateral and contralateral sides, received some cer-

ebrocerebellar projections, however, the proportion of terminals in each lobule varied widely (rang-

ing from 0.1–19.3% of the total ipsilateral terminal labeling and 0.1–16.9% of the total contralateral

labeling; Figure 4A,B). The cerebellar hemispheres (Sim, crus I, crus II, PM, and Cop) received the

majority of the total cerebrocerebellar mossy fiber input (68.2% of ipsilateral terminals, 67.1% of

contralateral terminals), followed by vermal lobules IV/V and VI together (18.1% of ipsilateral termi-

nals, 17.7% of contralateral terminals). Interestingly, we found a notable scarcity of mossy fiber ter-

minals in posterior vermis, especially vermal lobule VII (1.2% of ipsilateral terminals, 0.4%

contralateral terminals), which is contrary to studies of pontocerebellar projections alone

(Serapide et al., 1994). Considering its relatively smaller volume, the PFl also received a large pro-

portion of inputs (7.9% of ipsilateral terminals, 11.6% contralateral terminals; Figure 4A,B).

All cerebellar lobules also received mossy fiber inputs from two or more cortical regions; how-

ever, the proportion of cerebrocerebellar projections to a single lobule from each functionally dis-

tinct cortical region again varied substantially (Figure 4A,B). To examine the dominance of these

projections from each target cortical region, we calculated the density of terminal labeling for each

cerebellar subdivision according to the number of mossy fibers and the volume based on 16.4T MRT

data (Ullmann et al., 2012; Figure 4C; Supplementary file 1C). In the cerebellar hemispheres, we

found the highest density of terminals from motor input (M1), especially ipsilaterally, including Sim,

crus I, crus II, and PM, but excluding the Cop (Supplementary file 1C). Bilaterally, the Cop had the

highest density from somatosensory input; to the extent that 96% of the mossy fiber terminals found

in the contralateral Cop originated in S1 (Figure 4B).

Lobules in the vermis had the highest density from S1 input (Figure 4C), except for ipsilateral lob-

ule VI, which had a relatively large number of mossy fibers from M1 injections, and the most poste-

rior vermal region, vermal lobules IX and X, which are part of the vestibulocerebellum (Figure 4A,B;

see also Figure 3D). In general, the vestibulocerebellum had diverse cerebrocerebellar input. Bilater-

ally, the PFL and Fl had the highest density of terminals from S1 injections, although both also had

substantial input from most other cortical regions (Figure 4A–C). Lobule IX and X also had sparse

input from most cortical regions, however, IX had a proportionally large number of terminals from

auditory regions (especially A1 but also AuD), while M1 was largely represented in lobule X

(Figure 4A,B). The representation of inputs from A1 and AuD in vermal vestibulocerebellar regions

is interesting considering the large number of labeled cells observed in the vestibular nuclei relative

to other precerebellar nuclei from auditory cortical regions (see Supplementary file 1B). It is impor-

tant to note, however, that most regions of the vestibulocerebellum (with the exception of the PFl)

had a small density of mossy fiber terminals (Figure 4C, Supplementary file 1C); hence, while still

representative, caution must be taken in interpreting the pattern of labeling within these regions.
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Figure 4. Regional convergence of cerebrocerebellar terminals originating across functionally distinct regions of cerebral cortex. (A–B) Proportion of

labeled mossy fiber terminals in the ipsilateral (A) and contralateral (B) cerebellum following AAV injections into primary motor (M1), primary

somatosensory (S1), posterior parietal association cortex (PPC), primary visual (V1), primary auditory (A1), or dorsal auditory (AuD) cortex. Values were

normalized to the total number of labeled mossy fibers found within each lobule (simplex lobule [Sim], crus I/II ansiform lobule [crus I/II], paramedian

lobule [PM], copula pyramis [Cop], paraflocculus [PFI], flocculus [FL], vermal lobules [I-X]) across all animals (right x-axis). (C) Density of mossy fiber (MF)

terminals in the ipsilateral (left) and contralateral (right) cerebellum. Each dot represents the average density (number of MFs/mm3) after each cortical

injection M1, S1, PPC, V1, A1 and AuD. See also Supplementary file 1C. (D) Schematic of the unfolded mouse cerebellum summarizing the

topography of mossy fiber inputs. Multimodal lobules receive at least 4% of the total mossy fiber input for that side (see A-B) and are highly (solid

color) or moderately (striped color) multimodal based on input from at least two different functional cortical regions in addition to the dominant one

(>15% and<15%, respectively).
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We then classified the topography of mossy fiber inputs to the various cerebellar lobules accord-

ing to the degree of regional overlap, as this would represent a prerequisite for potential multimodal

processing between corticocerebellar inputs (Figure 4D). Since all cerebellar lobules received input

from two or more cortical regions but some lobules had a low density of total mossy fiber terminals,

we included subdivisions that received a minimum proportion of the total mossy fiber input for each

side (>4%; see Figure 4A,B) and classified lobules as: ‘highly co-innervated’ if >15% of mossy fiber

labeling was from at least two different functional cortical regions in addition to the dominant one,

and ‘moderately co-innervated’ if this value was <15% (Figure 4D). Using these criteria, bilateral

crus I, PFl, vermal lobule VI, and IV/V had the greatest potential for multimodal co-innervation; fol-

lowed by bilateral Sim, crus II, PM, and contralateral Cop.

Spatial organization of mossy fiber terminals in molecularly defined
cerebellar modules
Cerebellar lobules contain highly organized parasagittally oriented modules based on anatomical,

physiological and molecular subdivisions (for review see Apps and Hawkes, 2009). Therefore, to

determine more precisely the potential for spatial overlap of multimodal information, we examined

the distribution of mossy fiber terminals across the mediolateral and rostrocaudal extent of the iden-

tified multimodal lobules. To do this, we used the parasagittal expression pattern of aldolase C (or

zebrin Brochu et al., 1990; Ahn et al., 1994) as a molecular marker, which is highly conserved

across individuals. This allowed us to align the pattern of labeling observed in cerebellar regions

across animals and, hence, quantify the spatial relationship between mossy fiber terminals originat-

ing from functionally distinct cortical areas (Figure 5, Figure 6, see also Figure 5—figure supple-

ment 1, including validation of alignment across animals Figure 5—figure supplement 1J).

After alignment, for identified lobules with substantial co-innervation in the cerebellar hemi-

spheres, terminals from both sensory and motor cortical areas were spatially overlapping (Figure 5)

- with the exception of crus II, where M1 injections resulted in terminal labeling largely in dorsal

regions and S1 in ventral regions (Figure 5A). Consequently, crus II had diverse functional cerebro-

cerebellar input but labeling was more spatially segregated within the lobule, with the distance

between M1 terminals to themselves being significantly shorter than the distance between M1 termi-

nals and those originating from other cortical injection sites (Figure 5B; M1-M1: 258 ± 22 mm, M1-

Other: 305 ± 10 mm, p=0.007, two-sample t-test), this was also true for S1 (S1-S1: 190 ± 13 mm, S1-

Other: 316 ± 15 mm, p<0.001, two-sample t-test). Hence, when identifying the nearest neighbors of

M1 terminal locations in crus II, over 80% of these were also of M1 origin (Figure 5C); therefore,

crus II has lower potential for multimodal spatial overlap at the modular level. In contrast, crus I

showed highly spatially overlapping patterns, that is, the distance between both M1 and S1 terminal

locations to that of other cortical origins was not significantly different to the distance between

themselves (Figure 5B, M1–M1: 222 ± 8 mm, M1-Other: 220 ± 7 mm, p=0.953; S1-S1: 246 ± 10 mm,

S1-Other: 233 ± 7 mm, p<0.001, two-sample t-test), and a higher proportion of their nearest neigh-

bors came from extrinsic cortical origins (Figure 5C). Throughout the hemispheres, terminals from

primary sensory regions V1 and A1 as well as association cortices (PPC and AuD) were generally

located more on the apex of the folia, where they were intermingled with M1 terminals, whereas S1

terminals tended to be more at the base of the folia, also intermingled with M1 terminals.

This same apical/basal pattern was also observed in the PFl (Figure 6A); hence, the ventral PFl

(part of the vestibulocerebellum) was highly co-innervated with terminal labeling from sensory and

association cortices and the dorsal PFl largely contained S1 and M1 terminals. In contrast, in vermal

lobules IV/V and VI terminals from all cortical regions were overlapping in more medial zones and S1

and M1 terminals were additionally in more paravermal zones, with little labeling from other modali-

ties (Figure 6). Therefore, S1 and M1 terminals were quite widely distributed parasagittally, whereas

terminals from other primary sensory and association areas tended to be in medial-vermal and lat-

eral-hemispheric regions. In general, the pairwise distance between terminal locations was not signif-

icantly different between M1 and other cortical origins, however, S1 terminals were more tightly

clustered to each other in both the PFl and lobule VI (Figure 6B).

Generally throughout the cerebellum, S1 injections resulted in the patchiest distribution with clus-

ters of mossy fiber terminals in certain lobules aligning to the AldoC expression pattern; this was

especially the case in Cop and to a lesser extent in the PM, where mossy fiber clusters aligned with

AldoC+ stripes (Figure 5—figure supplement 1D). Interestingly, this pattern of projections is in
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Figure 5. Spatial distribution of mossy fiber terminals within divisions of the cerebellar hemispheres with multimodal regional convergence. (A)

Schematic reconstruction of the parasagittal distribution of labeled mossy fiber terminals in regions of the contralateral cerebellar hemispheres, after

injections of mono-trans-synaptic AAV into target cortical regions: primary motor (M1), primary somatosensory (S1), posterior parietal association cortex

(PPC), primary visual (V1), primary auditory (A1), or dorsal auditory (AuD) cortex. Data taken from 120 mm thick representative sections (three coronal

Figure 5 continued on next page
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agreement with results from electrophysiological recordings in the PM in rats, demonstrating alter-

nating patches of somatosensory responses to hindlimb/forelimb stimulation (Shambes et al.,

1978). However, distributed mossy fiber labeling was also present in both AldoC+ and AldoC-

regions in the Cop and PM (Figure 5—figure supplement 1D), so that no specific bias was seen on

average (Figure 5—figure supplement 1G–I). Conversely, in crus I clustered S1 mossy fiber termi-

nals were more biased towards AldoC- regions (Figure 5—figure supplement 1B,G), although not

strictly so.

To test for spatial randomness of terminal locations, we calculating the Ripley’s K-function for

each lobule and compared these distributions with simulated distributions of complete spatial ran-

domness (CSR; see Materials and methods); for S1, all lobules except crus II (p=0.260) and lobule IV

(p=0.642) showed significant deviation from CSR (p�0.028; t = 60 mm, 100 simulated CSR distribu-

tions; 3D Ripley’s K-function; Hansson et al., 2013). Mossy fiber terminals from M1 injections gener-

ally had a more distributed, less clustered, pattern throughout the lobules and did not appear to

consistently follow particular AldoC expression boundaries (Figure 5, Figure 6, Figure 5—figure

supplement 1E,F); however, with the exception of lobule VI (p=0.391), M1 terminal locations still

showed significant deviation from CSR (p�0.015; t = 60 mm, 100 simulated CSR distributions; 3D

Ripley’s K-function; Hansson et al., 2013). Injections in the other cortical regions also resulted in dis-

tributed and/or sparse terminal labeling which could not be assigned to a particular AldoC expres-

sion pattern and only deviated from CSR in crus I, sim, PM and Cop, and the PFl (p�0.001; t = 60

mm, 100 simulated CSR distributions; 3D Ripley’s K-function; Hansson et al., 2013). Therefore,

mono-trans-synaptic cerebrocerebellar mossy fiber terminals did not adhere to a specific pattern of

zonal organization with respect to AldoC expression boundaries, however, many patterns of expres-

sion significantly deviated from spatial randomness. Since these terminals potentially relay in a num-

ber of different precerebellar nuclei (see Supplementary file 1B and Figure 2) our results do not

preclude the existence of a finer-scale relationship with respect to individual cerebrocerebellar path-

ways and/or in a lobule specific manner.

Intermediate cerebrocerebellar brainstem pathways
Based on the results of the mono-trans-synaptic tracer, there are a number of precerebellar nuclei,

both pontine and extra-pontine, that have the potential to act as intermediate nuclei for cerebrocer-

ebellar projections (summarized in Figure 7A; see also Supplementary file 1B). To gain insight into

the likelihood that these various precerebellar nuclei act as intermediate sources of mossy fiber input

to the lobules identified as having high co-innervation, we performed additional tracing experiments

with injections of the retrograde tracer Cholera-toxin-B (CTB) into key vermal regions (lobules IV/V,

IV) as well as cerebellar hemispheres (Sim and crus I; Figure 7—figure supplement 1). Additionally,

we performed dual injections of CTB into lobule IV/V or crus I and the trans-mono-synaptic AAV1.

cre into either M1 or S1, respectively (Figure 7B). Our results show that the majority of retrogradely

labeled cells were located in the pons (across all cases: pontine = 6429 cells [73% of total]; extra-

pontine = 2378 cells [27% of total]; Figure 7—figure supplement 1). With our dual injections, we

also observed some double labeled cells in the pontine nuclei (e.g. Figure 7B), demonstrating direct

Figure 5 continued

sections) for rostral (top) to caudal (bottom) regions of the indicated lobules; distance from bregma is indicated based on the mouse stereotaxic atlas

(Franklin and Paxinos, 2007). Data were aligned across animals using the parasagittal pattern of Purkinje cell molecular marker aldolase C (grey

represents high expression, AldoC+; white represents low expression, AldoC-; see also Figure 5—figure supplement 1). For high density projections,

M1 and S1, each dot represents 5–10 mossy fiber terminals, for all other lower density projections each dot represents 1–5 mossy fiber terminals.

Simplex lobule (Sim), crus I/II ansiform lobule (crus I/II), paramedian lobule (PM), and copula pyramis (Cop). (B) Average pairwise distance between all

terminals originating from the same cortical injection site (e.g. M1–M1) or from different cortical injection sites (e.g. M1-Other, where ‘Other’ is

represented by all injected sites except M1 and S1). Statistical significance represents terminals being closer to like-terminals than to terminals from

other cortical regions (**p<0.01, ***p<0.001, for exact p-values see Supplementary file 1E). (C) Proportion of the five nearest neighbors of each

terminal location following each cortical injection site (i.e. seed origin: M1, S1 and Other; indicated on x-axis) that originate from M1, S1 or other

cortical regions (i.e. neighbor origin: indicated on legend).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Parasagittal distribution of mossy fiber terminals and aldolase c (AldoC) expression.

Henschke and Pakan. eLife 2020;9:e59148. DOI: https://doi.org/10.7554/eLife.59148 12 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.59148


Figure 6. Spatial distribution of mossy fiber terminals within divisions of the vestibulocerebellum and vermis with multimodal regional convergence. (A)

Schematic reconstruction of the parasagittal distribution of labeled mossy fiber terminals in contralateral cerebellar lobules spanning the

vestibulocerebellum (VbC) and the vermis, after injections of mono-trans-synaptic AAV into target cortical regions: primary motor (M1), primary

somatosensory (S1), posterior parietal association cortex (PPC), primary visual (V1), primary auditory (A1), or dorsal auditory (AuD) cortex. Data taken

Figure 6 continued on next page
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confirmation that these pontine cells receive cerebrocerebellar disynaptic input. We note that the

probability of double labeling was likely low due to the spatially restricted injection sites.

We also observed that many extra-pontine precerebellar nuclei identified as receiving cortical

projections (Figure 2; Supplementary file 1B) contained retrograde labeling (e.g. lateral reticular

nucleus, reticulotegmental nucleus, vestibular nuclei, interpolar part of the spinal trigeminal nucleus,

and matrix region x; Figure 7B; Figure 7—figure supplement 1; Supplementary file 1D). Although

double labeled cells were not directly observed in extra-pontine precerebellar nuclei, the labeling

was spatially overlapping (Figure 7B), and quantification of the identity of the five nearest neighbors

to cells originating from anterograde cortical injections, reveled that 13–45% of these were retro-

gradely labeled cells from the cerebellar cortex (Figure 7C; see also Figure 7—figure supplement

2).

From retrograde injections into the cerebellar cortex, we found that, while the majority of retro-

grade labeling was observed in the pontine nuclei, lobules IV/V and VI showed relatively higher pro-

portions of extra-pontine retrograde labeling (IV/V, 44%; VI, 39%) in comparison to the cerebellar

hemispheres (sim, 17%; crus 1, 21%; Figure 7—figure supplement 1). Lastly, although we did not

observe significant cerebrocerebellar projections to lobule VII (e.g. see Figure 3), we confirmed that

this lobule does receive pontocerebellar projections, but these were also proportionally few in com-

parison to other injected cerebellar regions (52% pontine vs 48% extra-pontine retrograde labeling,

Figure 7—figure supplement 3), and originated largely from lateral regions of the pons, an area

that topographically has been shown to receive corticopontine projections from the RSC

(Suzuki et al., 2012; see also Figure 1—figure supplement 1).

Although, the proportion of observed mossy fiber terminals that relay through extra-pontine

pathways cannot be precisely specified, we found a stronger positive correlation with the total num-

ber of mossy fiber terminals when all precerebellar cells are accounted for (R = 0.837, p<0.001,

n = 18, Pearson correlation; Figure 7D) compared to when only pontine labeled cells are included

(R = 0.632, p=0.012, n = 18, Pearson correlation). Additionally, we found lower variability in the total

number of mossy fibers per labeled cell when all precerebellar cells are included (all cells: 50 ± 12

mossy fibers per cell; pontine cells only: 120 ± 63 mossy fibers per cell). Whether this ratio of ~50

mossy fiber terminals per precerebellar neuron can be generalized across individual cortico-precere-

bellar pathways remains to be determined, however, using single neuron tracing techniques, previ-

ous studies have reported a comparable 67 ± 7 (mice: Biswas et al., 2019) and 46 ± 9 (rats:

Na et al., 2019) mossy fiber terminals in the cerebellum per pontine projecting neuron.

Discussion
In this study we elucidated the cerebrocerebellar projections from primary motor, sensory, and sec-

ondary/association cortical areas to various regions of the mouse cerebellum. By using a mono-

trans-synaptic anterogradely transported AAV (Zingg et al., 2017; Zingg et al., 2020), we found a

highly organized topography of labeled corticopontine cells and also observed a number of poten-

tial extra-pontine cerebrocerebellar pathways. Notably, injections into A1 produced only terminal

labeling in the pons, whereas injections into more dorsal secondary auditory cortex showed evidence

of an auditory cortico-ponto-cerebellar pathway. We quantified the proportion and detailed the

Figure 6 continued

from 120 mm thick representative sections (three coronal sections) for rostral (top) to caudal (bottom) regions of the indicated lobules; distance from

bregma is indicated based on the mouse stereotaxic atlas (Franklin and Paxinos, 2007). Data were aligned across animals using the parasagittal

pattern of Purkinje cell molecular marker aldolase C (grey represents high expression, AldoC+; white represents low expression, AldoC-; see also

Figure 5—figure supplement 1). For high density projections, M1 and S1, each dot represents 5–10 mossy fiber terminals, for all other lower density

projections each dot represents 1–5 mossy fiber terminals. Dotted lines represent midline and dashed line represents division between paraflocculus

(PFl) and copula pyramis (Cop). Vermal cerebellar lobules: lobule IV/V and lobule IV). (B) Average pairwise distance between all terminals originating

from the same cortical injection site (e.g. M1–M1) or from different cortical injection sites (e.g. M1-Other, where ‘Other’ is represented by all injected

sites except M1 and S1). Statistical significance represents terminals being closer to like-terminals than to terminals from other cortical regions (*p<0.05,

for exact p-values see Supplementary file 1E). (C) Proportion of the five nearest neighbors of each terminal location following each cortical injection

site (i.e. seed origin: M1, S1 and Other; indicated on x-axis) that originate from M1, S1 or other cortical regions (i.e. neighbor origin: indicated on

legend).
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Figure 7. Summary of intermediate brainstem nuclei potentially supporting disynaptic cerebrocerebellar pathways. (A) Schematic summary of pathways

to precerebellar nuclei from target regions of cerebral cortex: primary motor (M1), primary somatosensory (S1), posterior parietal association cortex

(PPC), primary visual (V1), primary auditory (A1), or dorsal auditory (AuD) cortex. (B) Representative labeling in pontine (top) and precerebellar nuclei

(middle, bottom) after combined injections of AAV1.cre (red) into cortical regions and CTB (green) into cerebellar regions (M1 + lobule lV/V; S1 + Crus

I). Note the double labeled cells within the pontine nuclei (Pn; total 7 double labelled/52 anterogradely labeled cells from M1), and spatially

overlapping cells within the reticulotegmental nucleus (RtTg) and lateral reticular nucleus (LRt). Distance from bregma is indicated based on the mouse

stereotaxic atlas (Franklin and Paxinos, 2007). Scale bars 500 mm and 50 mm for insets. (C) Proportion of the five nearest neighboring cells for the

cortical injection sites in (B) that are anterogradely labeled cells originating from the same cortical injection site (e.g. M1) or retrogradely labeled cells

originating from injections in the cerebellar cortex (e.g. lobule IV/V; indicated by legend) within the indicated precerebellar nuclei. (D) Correlation of

anterogradely labeled precerebellar cells with the total number of mossy fiber terminals per animal for either pontine only cells (left; R = 0.632, p=0.012,

n = 18, Pearson’s correlation) or pontine plus extra-pontine precerebellar cells (right; R = 0.837, p<0.001, n = 18, Pearson’s correlation). Cochlear nuclei

Figure 7 continued on next page
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precise organization of cerebrocerebellar terminals from each injected cerebral cortical region. The

majority of labeled mossy fiber terminals from primary sensory and motor cortical regions were in

the contralateral cerebellum, whereas projections from the secondary/association areas PPC and

AuD resulted in less laterality in the cerebellum. Cerebellar subdivisions with the highest spatial over-

lap of multimodal cerebrocerebellar inputs within molecularly defined modules were bilateral crus I,

PFl, vermal lobules VI, and lobule IV/V indicating that these regions may act as hubs for the integra-

tion of multimodal information originating from the cerebral cortex.

Pontine and extra-pontine cerebrocerebellar pathways
Although the use of anterograde trans-synaptic tracers has not been extensive, our results in mice

generally confirmed previous findings regarding the topographic organization of corticopontine

pathways examined using anterogradely labeled terminals or retrograde pontine injections for map-

ping across other species; with more rostral cortical regions projecting more medially and caudal

cortical areas projecting towards the lateral extent of the basal pontine nuclei (rats, Odeh et al.,

2005; Leergaard and Bjaalie, 2007; cat, Bjaalie et al., 1997; monkey, Glickstein et al., 1985;

Schmahmann and Pandya, 1997). Our results are also in agreement with the topographical organi-

zation of corticopontine anterograde terminal labeling in mice following S1 and M1 (Proville et al.,

2014) as well as V1 (Inoue et al., 1991) injections. However, some differences may exist across spe-

cies. For instance, although the current study did not compare various somatotopic regions within

S1, following injections centered around the hindlimb/forelimb regions in mice, we did not find a

substantial caudal bias in the pontine nuclei, as has previously been reported in rats from injections

into similar cortical regions (Leergaard et al., 2003; Odeh et al., 2005); whether this reflects a spe-

cies difference requires finer detailed somatotopic mapping in mouse S1 using these techniques.

Additionally, we found that the primary auditory cortex was unique in that it was the only cortical

target region we observed with no direct corticopontine pathway. Following A1 injections, we found

labeled mossy fibers bilaterally in the cerebellum (largely lobules III-V of vermis, PFI, crus I and II) but

there were no intermediate cells trans-synaptically labeled in the pontine nuclei; indicating that this

disynaptic mossy fiber input must reach the cerebellum through other precerebellar nuclei. In con-

trast, more dorsal auditory cortex (i.e. AuD) did have projections directly to the pontine nuclei. This

is also consistent with our observations that mossy fiber terminals were more biased to vermal

regions after A1 injections and included more projections to the cerebellar hemispheres (especially

crus I) after AuD injections. There are substantial conflicting results in many species describing either

the presence of an A1-pontine pathway (cats: Perales et al., 2006; rabbits: Knowlton et al., 1993;

gerbils: Budinger et al., 2000 and rats: Wiesendanger and Wiesendanger, 1982; Legg et al.,

1989), while others found either no major A1-pontine projection or projections only from secondary/

association auditory cortex (cats: Brodal, 1972; monkeys: Glickstein et al., 1985; rats: Azizi et al.,

1985; bats: Schuller et al., 1991a), and studies in mice have not been extensive. However, through

both anterograde and retrograde tracing, here we found no major A1-pontine pathway in mice.

After A1 injections, we did observe labeled fibers in the dorsolateral pontine nuclei, with appar-

ent synaptic boutons - indicating a disynaptic functional connection with pontine cells. There are a

few possibilities as to the origin of these fibers. First, they may be terminals labeled from trans-syn-

aptically labeled cells in secondary auditory cortex; however, the pattern of pontine cell labeling we

observed following AuD injections was topographically distinct from the location of these labeled

fibers. Secondly, disynaptic A1-cerebellar pathways may travel via other extrapontine nuclei and only

trisynaptically through the pons. For instance, here we confirmed direct projections from the IC to

Figure 7 continued

(CN), longitudinal fasciculus of the pons (lfp), matrix region x (Mx), medial lemniscus (ml), interpolar part of the spinal trigeminal nucleus (Sp5I), red

nucleus (Ru), and vestibular nuclei (VN).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Retrograde tracing of cerebellar pathways from cerebral cortical receiving precerebellar target nuclei.

Figure supplement 2. Pairwise distance between anterogradely and retrogradely labeled cells within pontine (Pn) and extra-pontine precerebellar

nuclei.

Figure supplement 3. Retrograde tracing of cerebellar pathways to lobule VII from cerebral cortical receiving precerebellar target nuclei.
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dorsolateral regions of the pons (Caicedo and Herbert, 1993). Interestingly, anterograde labeling in

the IC from auditory cortex was largely in the DCIC subregion, in which corticocollicular projections

have been suggested to play a modulatory role on auditory processing (Barnstedt et al., 2015)

compared to the sharper frequency tuning in CIC (Stiebler and Ehret, 1985; Yu et al., 2005). Fur-

ther, A1 in mouse has been shown to be tonotopically organized, whereas the dorsal belt of auditory

cortex is not (Stiebler et al., 1997; Guo et al., 2012), and auditory corticopontine projections in

cats are also not tonotopically organized (Perales et al., 2006; whether this functional principle is a

determinant for auditory corticopontine projections requires further consideration. Finally, another

potential relay nucleus for these A1-pontine fibers is the cochlear nuclear complex, which is known

to project directly to the pontine nuclei (Kandler and Herbert, 1991) as well as the cerebellum as

mossy fibers (Huang et al., 1982; Fu et al., 2011). Thus, this precerebellar nucleus may serve as a

disynaptic and potentially trisynaptic (via the pontine nuclei) auditory cerebrocerebellar intermedi-

ate, which may be functionally relevant in terms of temporal processing of auditory information.

Future studies are needed to further delineate these polysynaptic cerebrocerebellar auditory path-

ways, including their functional significance in cerebellar processing.

Beyond corticopontine projections, we found a large - and in some cases equal - proportion of

anterogradely labeled extra-pontine precerebellar cells in various brainstem nuclei, especially from

S1, M1 and auditory regions. While the nature of the mono-trans-synaptic tracing does not permit

the proportion of observed mossy fiber terminals that relay through pontine versus extra-pontine

pathways to be precisely segregated, our observations from retrograde tracer injections into key

cerebellar lobules, as well as evidence of observed fibers tracts travelling through the inferior cere-

bellar peduncle, suggest a number of precerebellar nuclei identified as receiving direct cortical input

also have projections to cerebellar lobules with spatial overlap of multimodal cerebrocerebellar

input. Therefore, it is likely that both pontine and extra-pontine nuclei act as sources of the observed

mossy fiber input through disynaptic cerebrocerebellar pathways (see also Watson and Apps,

2019), and these precerebellar nuclei may play an important functional role to relay/integrate multi-

modal information from the cerebral cortex to the cerebellum (Ruigrok, 2004; Fu et al., 2011;

Sillitoe et al., 2019). Since mossy fiber terminals were observed in the cerebellum but no pontine

labeled cells were found after A1 injections, one can conclude that, at least for this disynaptic path-

way, extra-pontine intermediate nuclei play a large role. The nature of relay versus integration of cor-

tical signals along each of these precerebellar pathways will make for interesting future studies.

Organization of cerebrocerebellar input to the cerebellum
Previous studies on pontocerebellar projections have found that the majority of mossy fibers termi-

nate in the contralateral cerebellum (e.g. Serapide et al., 2002). Here we found that mono-trans-

synaptically labeled mossy fibers terminals from the cerebral cortex (through both pontine and

extra-pontine pathways) project to a varying degree to the ipsilateral and contralateral cerebellum.

Presumably these projections can cross either at the level of the pontine nuclei or the cerebellar

peduncles, or both, as was recently found to be the case for some reconstructions of individual pon-

tocerebellar neurons (Biswas et al., 2019; Na et al., 2019). We found that cerebrocerebellar path-

ways from sensory association and secondary cortices show less laterality than those from both

primary sensory and motor cortices. Interestingly, using retrograde rabies tracing, Suzuki et al.,

2012 also found relatively large bilateral cerebrocerebellar pathways from orbitofrontal and retro-

splenial cortical regions to the posterior cerebellar cortex. This pattern of laterality suggests that

information coming from ‘higher-order’ prefrontal and cortical association areas may have a more

global effect on cerebellar processing than more targeted ‘unisensory’ or primary motor inputs;

whether this reflects a broader functional implication for the influence of the cerebral cortex in learn-

ing and predictive processing in the cerebellum is yet to be determined.

The cerebellar hemispheres as well as lobules VI and VII are traditionally described as cerebrocer-

ebellar receiving areas (Serapide et al., 1994; Kandel et al., 2000); although see Coffman et al.,

2011). We confirm the cerebellar hemispheres as the major target for cerebrocerebellar input in

mice and detail the pattern of projections from primary motor and sensory areas, but also emphasize

the diversity of disynaptic connections between the cerebral cortex and cerebellar cortex. Using this

anterograde tracing technique, we found at least sparse cerebrocerebellar projections to every lob-

ule of the cerebellum from motor and sensory cortices. Additionally, we found a relatively large num-

ber of labeled mossy fibers in lobules IV/V but few in more posterior vermal regions, including
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lobule VII. Lobule IV/V is functionally considered part of the spinocerebellum and implicated in

motor function, but not traditionally described as receiving extensive pontocerebellar or cortical

input. However, recent studies have emphasized how this region is modulated by behavioral state

and locomotive behaviors (Jelitai et al., 2016; Muzzu et al., 2018). Specifically, Muzzu et al., 2018

suggested that predictive motor responses observed in mouse lobules IV/V may carry a motor effer-

ence copy coming from higher cortical areas. This is in agreement with our results, which confirmed

disynaptic cerebrocerebellar as well as direct pontocerebellar input to lobule IV/V in mice. Con-

versely, our results of very few observed cerebrocerebellar terminals in lobule VII are seemingly in

contradiction to previous findings of large pontocerebellar pathways to this region, which have been

assumed to carry cerebrocerebellar information (Päällysaho et al., 1991; Thielert and Thier, 1993;

Biswas et al., 2019). However, our results in mice are in agreement with the suggestion in other

species that pontocerebellar inputs to lobule VII may relay cortical information of higher order than

the primary motor and sensory areas, such as the retrosplenial cortex (rats, Suzuki et al., 2012) and

prefrontal regions (rats, Watson et al., 2009; Suzuki et al., 2012); monkey, Kelly and Strick, 2003),

or subcortical brain regions such as the superior colliculus and the accessory optic system (rats,

Mihailoff et al., 1989; birds, Pakan and Wylie, 2006; monkeys, Kralj-Hans et al., 2007; for review

see Voogd and Barmack, 2006).

Functional implications
Our results show that cerebrocerebellar information originating from different functional cortical

regions shows significant spatial overlap within molecularly defined modules in crus I, PFL, and ver-

mal lobules IV/V and VI. Therefore, all gross divisions of the cerebellar cortex (hemispheres, vestibu-

locerebellum and vermis) have the potential for cortical multimodal influence, that is, the influence

of the cerebral cortex is not strictly limited to the cerebellar hemispheres. These spatial overlaps

constitute the fundamental anatomical basis for multimodal integration processes of cortical informa-

tion at a modular and potentially cellular level (see also Proville et al., 2014). Functionally speaking,

in vivo electrophysiological and imaging studies have shown that in rat (Ishikawa et al., 2015),

mouse (Chabrol et al., 2015; Giovannucci et al., 2017; Markwalter et al., 2019) and mormyrid fish

(Sawtell, 2010) single granule cells can respond to multiple modalities. For instance,

Ishikawa et al., 2015 found responses to sensory stimuli in half of the granular cells recorded in crus

I/II and many showed responses to at least two different sensory modalities. Further,

Markwalter et al., 2019 also found that just over half of granular cells in vermal lobules VI respond

to sensorimotor stimuli, with the majority exhibiting responses to multiple sources of distinct-modal-

ity stimulation. Although in functional studies examining granule cell integrative responses to date,

the specific origin of mossy fiber inputs was either undetermined or originated from bottom up

brainstem centers (e.g. Chabrol et al., 2015), it has also been shown that in decerebrated cats

(Jörntell and Ekerot, 2006; Bengtsson and Jörntell, 2009) granule cells respond to only one

modality. Therefore, the potential for multimodal convergence of cerebrocerebellar inputs in the

granule cell layer that we have observed in this study may be an important determinant of granule

cell function.

Alternatively, since the cerebellum receives both ascending and descending sensory and motor

input, which has been shown to be anatomically integrated at the level of individual granule cells

(Huang et al., 2013), it is also possible that the majority of basic sensory information is carried by

ascending pathways and these descending cerebrocerebellar pathways are carrying action-related

information from various cortical regions; including from primary sensory areas, in which a growing

body of studies have demonstrated the influence of motor behaviors, such as locomotion, on sen-

sory responses (Niell and Stryker, 2010; Schneider et al., 2014; Pakan et al., 2016; Pakan et al.,

2018; Ayaz et al., 2019; Poulet and Crochet, 2019). In this way, the cerebellum may use these cor-

tical signals in closed feedback loops to regulate and adjust ongoing predictive responses, as sug-

gested by a feed forward model for motor control (Kelly and Strick, 2003; Shadmehr et al., 2010;

Gao et al., 2018; Chabrol et al., 2019). Future studies examining the precise nature of the informa-

tion carried by the cerebrocerebellar pathways identified here will further elucidate the functional

influence of the cerebral cortex on cerebellar processing.

Assessing the full functional contribution of cerebrocerebellar input, and subsequent cortico-cere-

bellar loops, will require both advanced anatomical delineation of polysynaptic circuits combined

with simultaneous observation and circuit manipulation in behaving animals. Mouse models, with
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access to advanced genetic tools and the establishment of increasingly complex behavioral para-

digms, provide many advantages in this regard. The results of the current study demonstrate con-

served principles of organization between mice and other mammalian species, as well as provide

foundational insight into the diversity, and potential for spatial multimodal convergence, within cere-

brocerebellar pathways in mice. These findings will guide future research to delineate the precise

nature of sensorimotor integration at multiple circuit levels.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
Mus musculus

Strain: Ai9; Rosa26-CAG-
LSL-tdTomato Cre reporter mice line
Background:C57BL/6J

The Jackson
Laboratory

RRID:IMSR_JAX:007909 male and female

Recombinant
DNA reagent

AAV1.hSyn.Cre.WPRE.hGH, Addgene, RRID:Addgene_105553 titer 3.0 � 10 13 GC/ml

Recombinant
DNA reagent

CAV.cre PVM IGMM Montpellier, titer 5.5 � 10 12 GC/ml

Peptide,
recombinant protein

Cholera-toxin-B 488 ThermoFisher Scientific Cat no. C34775

Antibody anti-Aldolase C (H-11)
(mouse monoclonal)

Santa Cruz Biotechnoloy
Host species: mouse

RRID:AB_10659113 1:100

Antibody anti-RFP
(polyclonal)

Rockland
Host species: rabbit

RRID:AB_2209751 1:2000

Antibody Anti-Mouse IgG (H+L)
Secondary, Alexa Fluor
488 Conjugated (polyclonal)

ThermoFisher Scientific
Host species: donkey

RRID:AB_141607 1:200

Antibody Cy3-AffiniPure Goat
Anti-Rabbit IgG (H+L)
(polyclonal)

Jackson Immuno-
Research
Host species: goat

RRID:AB_2338006 1:200

Software,
algorithm

MATLAB 2013/2017a Mathworks RRID:SCR_001622

Software,
algorithm

ImageJ (Fiji) NIH – public domain http://fiji.sc;
RRID:SCR_002285

Experiments were performed with 42 mice (9–12 weeks; both males and females) of the Rosa26-

CAG-LSL-tdTomato Cre reporter mice line (Ai9; RRID:IMSR_JAX:007909). Note that this tdTomato

reporter line is known to have increased levels of auto-fluorescence (Hahn et al., 2019), particularly

in Purkinje cells (e.g. Figure 1F), however, this was easily distinguishable from cre-induced tdTomato

expression under the microscope and in merged images. Animals were housed in standard labora-

tory cages (22˚C, 12 hr light-dark cycle) with food and water available ad libitum. All experiments

were performed according to the NIH Guide for the Care and Use of Laboratory animals (2011) and

the Directive of the European Communities Parliament and Council on the protection of animals

used for scientific purposes (2010/63/EU) and were approved by the animal care committee of Sach-

sen-Anhalt, Germany (42502-2-1479 DZNE).

Neuroanatomical injections
For mono-trans-synaptic tracing of the cerebrocerebellar pathways we used an adeno-associated

virus (AAV1.cre; AAV1.hSyn.Cre.WPRE.hGH, Addgene, USA, RRID:Addgene_105553) that expresses

cre protein, which then drives tdTomato expression in the Ai9 reporter mouse line. The AAV1.cre is

transported anterogradely to mono-synaptically connected neurons (Zhao et al., 2017; Zingg et al.,

2017; Zingg et al., 2020) and subsequently also drives cre expression in anterograde target neurons

(e.g. pontine cells); tdTomato reporter expression then fills these target neurons including axon ter-

minals (e.g. mossy fiber terminals; Figure 1; see also Zingg et al., 2017). This AAV1.cre construct

has been shown to spread exclusively to synaptically connected neurons with trans-synaptic spread
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nearly abolished by tetanus toxin light chain (i.e. inhibition of presynaptic vesicle fusion; Zingg et al.,

2020). Limitations in transport may exist through neuromodulatory projections (e.g. noradrenergic,

cholinergic, serotonergic), however, efficient transport has been demonstrated for glutamatergic

and GABAergic synapses to both excitatory and inhibitory neurons as well as long-distance projec-

tions (Zingg et al., 2020). Retrograde transport has also been shown with this AAV1.cre construct -

although with lower efficiency (Tervo et al., 2016; Zingg et al., 2017). Therefore, using this tech-

nique, reciprocally connected regions may include cells that are both anterogradely and, to a lesser

extent, retrogradely labeled; a clear advantage of using this technique to examine cerebrocerebellar

projections in this study is that these pathways are largely descending and unidirectional (for review

see Léna and Popa, 2015), which removes this as a confounding factor.

A total of 42 mice were used in this study. For mono-trans-synaptic tracer experiments, AAV1.cre

injections (18 mice) were made into target cortical regions spanning multiple modalities, including

primary sensory areas, primary motor regions and association cortex (3 mice per target): M1 (fore-

limb/hindlimb), S1 (forelimb/hindlimb), PPC (lateral and medial parietal association cortex), V1 (mon-

ocular), A1, and AuD. Further circuit investigations were performed as follows. An injection of CAV.

cre (PVM IGMM Montpellier, France) was made into the pons (1 mouse) and an injection of AAV1.

cre into the IC (2 mice). In a series of combined anterograde plus retrograde experiments (total

7 mice), injections of AAV1.cre into a target cortical region as well as injections of conjugated Chol-

era-toxin-B 488 (CTB; Thermo Fisher, USA) into individual cerebellar lobules were made (e.g. M1 +

IV/V; S1 + crus I). Lastly, 14 mice were used for retrograde experiments alone, where conjugated

CTB 488 (Thermo Fisher, USA) was injected into individual cerebellar lobules (IV/V, VI, VII, Sim and

crus I) in order to examine the brainstem origin of mossy fiber projections to these key cerebellar

regions.

All injections were performed as previously described (Henschke et al., 2015; Henschke et al.,

2018). Briefly, animals were anesthetized with isoflurane (4%; Baxter, Germany), the cranial skin was

incised, the skull exposed by a displacement of the skin and muscles, and a small hole was drilled

into the skull. Cerebral cortical injections were always performed on the left side (in order to mini-

mize potential variation due to lateralization effects), precluding the identification of lateralized pro-

jections. We used the following stereotaxic coordinates derived from the mouse brain atlas in

reference to bregma (Franklin and Paxinos, 2007) and targeted cortical layer 5: M1: 1.7 mm rostral

and 2 mm lateral; S1: �0.2 mm caudal and 2.2 mm lateral; PPC �2 mm caudal and 2 mm lateral; V1:

�2.92 mm caudal and 2.5 mm lateral; A1: �2.8 mm caudal and 4.5 mm lateral; AuD: �2.3 mm cau-

dal and 4 mm lateral. The following coordinates were used for the left IC: �5.02 mm caudal and 1

mm lateral, 1 mm deep. For all above injections, 60 nl of the AAV1.cre (titer 3.0 � 1013 GC/ml) in

6 � 10 nl steps. The left side pontine nuclei were also injected: 6 mm caudal, 1 mm lateral and with

an angle of 21˚, 5.4 mm deep; with 100 nl of the CAV.cre (titer 5.5 � 1012 GC/ml) in 10 � 10 nl steps.

Since the majority of projections travel contralaterally from the cerebral cortex to the cerebellar cor-

tex, we performed retrograde tracer injection on the right side cerebellar cortex targeting the gran-

ule cell layer: lobule IV/V: �5.9 mm caudal, 1 mm lateral and 0.7 mm deep; lobule VI: �6.6 mm

caudal, 1 mm lateral and 0.5 mm deep; lobule VII: �7.6 mm caudal, 1 mm lateral and 1 mm deep;

crus I: �6.8 mm caudal, 2.5 mm lateral and 1 mm deep; sim: �6.1 mm caudal; 2 mm lateral and 1.5

mm deep, with 200 nl of CTB in 10 � 20 nl steps.

All injections were made over 10 min into these areas via a nanoliter delivery system (World Preci-

sion Instruments, Germany) and fine glass micropipettes (tip diameter 20 mm). The speed of injection

is important as trans-synaptic transport of the AAV1.cre construct is highly dependent on the titer

within individual neurons (Zingg et al., 2017; Zingg et al., 2020); hence, small/slow volume injec-

tions where viral particles are not quickly dispersed through tissue were done to concentrate viral

particles and optimize trans-synaptic activity. After injections, craniotomies were sealed with bone

wax (Ethicon, Johnson and Johnson, Germany) and the skin was closed with tissue adhesive (Histo-

acryl; B/Braun, Germany). Subsequently, the animals were returned to their home cages for 2 weeks

to allow for the expression of the viral constructs (both AAV1.cre and CAV.cre), and 5 days for

experiments involving CTB injections alone. Note, for trans-synaptic labeling with the AAV1.cre con-

struct, time periods longer than 2 weeks do not label additional orders of connections, that is label-

ing remains mono-trans-synaptic even over extended periods of time (Zingg et al., 2017).
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Histological processing
Animals were deeply anesthetized with ketamine (20 mg/100 g body weight, ip) and xylazine (1 mg/

100 g body weight, ip) and perfused transcardially with 20 ml of 0.1 M phosphate-buffered saline

(PBS, pH 7.4) followed by 200 ml of 4% paraformaldehyde. The brains were removed, post-fixed

overnight in 4% paraformaldehyde at 4˚C, and then cryoprotected in 30% sucrose in PBS for 48 hr.

Brains were cut on a cryostat (CryoStar NX70, Thermo Scientific, USA) into 40 mm (cerebellum, brain-

stem) and 50 mm (cortex and underlying structures) thick coronal sections. Sections containing the

cerebral cortex were directly mounted on gelatin-coated glass slides, sections containing the cere-

bellum were collected in PBS (free-floating) and blocked in normal donkey serum (10% and 0.4% tri-

ton in PBS) for 1 hr. Sections were then incubated in primary antibodies overnight at 4˚C to visualize

aldolase C expression (anti-AldoC; mouse, 1:100, Santa Cruz Biotechnology Cat# sc-271593, RRID:

AB_10659113, USA) and red fluorescent protein (anti-RFP, rabbit, 1:2000, Rockland Cat# 600-401-

379, RRID:AB_2209751, USA) for enhancement of the tdTomato signal. After rinsing in PBS, sections

were incubated with the respective secondary antibodies (anti-mouse Alexa 488, 1:200, Thermo

Fisher Scientific Cat# A-21202, RRID:AB_141607, USA; anti-rabbit Cy3, 1:200, Jackson ImmunoRe-

search Labs Cat# 111-165-144, RRID:AB_2338006, United Kingdom) for 2 hr. Finally, sections were

rinsed again in PBS, mounted on gelatin-coated slides, and coverslipped with MOWIOL (Fluka,

Germany).

Quantification and data analysis
Sections of 40 mm thickness were examined using a confocal microscope (Zeiss LSM 700, Germany)

equipped with a 2.5x objective (NA 0.085, Zeiss, Germany). For each section throughout the extent

of the cerebellum two high-resolution images (2048 � 2048 Pixel) were acquired, one for each hemi-

sphere. The two tiles were merged using inbuilt functions for feature based panoramic image stitch-

ing in MatLab (Mathworks, MA, USA; resulting in a ~ 4000�4000 pixel image of the entire

cerebellum); brightness and contrast were adjusted as necessary using Adobe Photoshop software

(v. 13.0.6 for Windows).

Only experimental cases where AAV1.cre injections were verified to be located within the aimed

target areas M1 (forelimb/hindlimb regions), S1 (forelimb/hindlimb regions), PPC, V1, A1, and AuD

were included in the analysis. The injection sites had a roughly cylindrical shape. All sections that

covered the central core but not surrounding halo of each injection site were included in the analysis

(see also Figure 1—figure supplement 3). We then calculated injection site volume as follows:

V ¼ p � a � b � h, where h corresponds to the maximum value across sections for the height of the

injection site [dorso-ventral direction], a corresponds to the maximum value across sections for the

radius of the injection site parallel to the cortical layers [medio-lateral direction], and b corresponds

to the rostrocaudal extent of the core injection site. The Line Measure Tool of the Zen software

(Zeiss, Germany) was used to measure h and a, and b was calculated by counting the numbers of

sections covering the core injection site multiplied by their thickness (40 mm).

The number of labeled mossy fiber terminals was evaluated by point marking mossy fiber rosettes

in the reconstructed images, in all sections of each experimental animal using the Cell Counter

plugin in ImageJ (Fiji, v. 1.43 r, NIH, Bethesda, MD, USA, RRID:SCR_002285). Counted mossy fiber

terminals were assigned to either AldoC+/-cerebellar stripes using the ROI manager plugin of

ImageJ. Unless otherwise stated, all data are reported as mean or, where applicable,

mean ± standard error of the mean (s.e.m). The density D of labeling for the ipsilateral as well as the

contralateral side within each cerebellar lobule was calculated by taking the total number of mossy

fiber terminals NMF for each side within each lobule and dividing by half the total volume V of each

lobule (Vi), in order to represent each hemisphere separately (D = NMF/(Vi*½)). Total volume meas-

urements V for each lobule were based on 16.4T MRT data (Ullmann et al., 2012; VI = 0.14 mm3,

VII = 1.16 mm3, VIII = 1.79 mm3, VIV/V=5.61mm3, VVI = 2.5 mm3, VVII = 0.67 mm3, VVIII = 1.52 mm3,

VIX = 2.81 mm3, VX = 1.26 mm3, VSim = 4.67 mm3, VCrusI = 4.17 mm3, VCrusII = 4.18 mm3, VPM = 3.59

mm3, VCop = 2 mm3, VPFI = 3.35 mm3, VFI = 0.79 mm3).

For internal validation of AldoC+/-alignment across animals, we calculated Pearson’s correlation

for the frequency of mossy fiber terminals in AldoC+ and AldoC- regions of each lobule across ani-

mals. The pattern of labeling across lobules for animals with the same cortical injection sites (e.g. M1
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- animal 1, 2, and 3) should be significantly correlated with each other if the AldoC alignment is con-

sistent across animals.

For nearest neighbor analyses for both mossy fiber terminal locations as well as the location of

anterogradely (from cortex) and retrogradely (from cerebellum) labeled cells, the five nearest events

to each individual event (i.e. terminal location or labeled cell) was identified in turn and indexed

according to their origin (i.e. cortical or cerebellar injection site) in order to quantify the proportion

of nearest neighbors from the appropriate categories. Pairwise Euclidean distances between the

identified nearest neighbours were calculated for each event and then averaged across events. Fur-

ther, pairwise Euclidean distanced were calculated for all individual events in relation to all other

events according to their origin (i.e. cortical or cerebellar injection site) and within a 500 mm radius.

Point-process analyses to test for spatial randomness of terminal locations were performed using

a three-dimensional Ripley’s K-function (K(t); Marani and Voogd, 1979; RipleyGUI: Hansson et al.,

2013), which can be simply stated as:

K tð Þ ¼
E Number of pointswithinadistance t of anarbitratypoint½ �

The totalpoint intensity

in which a constant total point intensity is estimated using l¼ n= Vj j, where n is the observed number

of points in a region V (Jafari-Mamaghani et al., 2010). Edge correction was employed (Jafari-

Mamaghani et al., 2010) and a maximum distance of t = 60 mm was used. To quantify the deviation

of a distribution from complete spatial randomness (CSR), a comparison set of 100 CSR distributions

was created with the same properties (size and intensity) as the test distribution, the corresponding

estimates of the K-functions are then processed to return a probability density function for each t.

P-values were then acquired by locating K(t) on the corresponding probability density function and

calculating the area under the curve (Hansson et al., 2013).
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Hahn C, Becker K, Saghafi S, Pende M, Avdibašić A, Foroughipour M, Heinz DE, Wotjak CT, Dodt HU. 2019.
High-resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO). Journal of
Biophotonics 12:e201800368. DOI: https://doi.org/10.1002/jbio.201800368, PMID: 30932329

Hansson K, Jafari-Mamaghani M, Krieger P. 2013. RipleyGUI: software for analyzing spatial patterns in 3D cell
distributions. Frontiers in Neuroinformatics 7:5. DOI: https://doi.org/10.3389/fninf.2013.00005, PMID: 2365
8544

Henschke JU, Noesselt T, Scheich H, Budinger E. 2015. Possible anatomical pathways for short-latency
multisensory integration processes in primary sensory cortices. Brain Structure and Function 220:955–977.
DOI: https://doi.org/10.1007/s00429-013-0694-4, PMID: 24384580

Henschke JU, Ohl FW, Budinger E. 2018. Crossmodal connections of primary sensory cortices largely vanish
during normal aging. Frontiers in Aging Neuroscience 10:1–14. DOI: https://doi.org/10.3389/fnagi.2018.00052,
PMID: 29551970

Huang CM, Liu G, Huang R. 1982. Projections from the cochlear nucleus to the cerebellum. Brain Research 244:
1–8. DOI: https://doi.org/10.1016/0006-8993(82)90897-6, PMID: 7116161

Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW. 2013. Convergence of pontine
and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2:e00400. DOI: https://doi.org/10.
7554/eLife.00400, PMID: 23467508

Henschke and Pakan. eLife 2020;9:e59148. DOI: https://doi.org/10.7554/eLife.59148 24 of 27

Research article Neuroscience

https://doi.org/10.1097/00001756-199705060-00019
http://www.ncbi.nlm.nih.gov/pubmed/9189908
https://doi.org/10.1002/cne.902910405
http://www.ncbi.nlm.nih.gov/pubmed/2329190
https://doi.org/10.1016/0006-8993(72)90439-8
http://www.ncbi.nlm.nih.gov/pubmed/4113020
https://doi.org/10.1016/s0079-6123(08)63367-1
http://www.ncbi.nlm.nih.gov/pubmed/9193147
https://doi.org/10.1046/j.1460-9568.2000.00143.x
http://www.ncbi.nlm.nih.gov/pubmed/10947822
https://doi.org/10.1002/cne.903280305
https://doi.org/10.1002/cne.903280305
http://www.ncbi.nlm.nih.gov/pubmed/7680052
https://doi.org/10.1038/nn.3974
https://doi.org/10.1038/nn.3974
http://www.ncbi.nlm.nih.gov/pubmed/25821914
https://doi.org/10.1016/j.neuron.2019.05.022
http://www.ncbi.nlm.nih.gov/pubmed/31201123
https://doi.org/10.1016/S0079-6123(04)48021-2
http://www.ncbi.nlm.nih.gov/pubmed/15661196
https://doi.org/10.1073/pnas.1107904108
http://www.ncbi.nlm.nih.gov/pubmed/21911381
https://doi.org/10.1007/s12311-011-0266-1
http://www.ncbi.nlm.nih.gov/pubmed/21479970
https://doi.org/10.1038/s41586-018-0633-x
http://www.ncbi.nlm.nih.gov/pubmed/30333626
https://doi.org/10.1038/nn.4531
http://www.ncbi.nlm.nih.gov/pubmed/28319608
http://www.ncbi.nlm.nih.gov/pubmed/28319608
https://doi.org/10.1002/cne.902350306
http://www.ncbi.nlm.nih.gov/pubmed/3998215
https://doi.org/10.1016/s0079-6123(08)63368-3
http://www.ncbi.nlm.nih.gov/pubmed/9193148
https://doi.org/10.1523/JNEUROSCI.0065-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22764225
https://doi.org/10.1038/s41598-018-28301-4
http://www.ncbi.nlm.nih.gov/pubmed/29967361
http://www.ncbi.nlm.nih.gov/pubmed/29967361
https://doi.org/10.1002/jbio.201800368
http://www.ncbi.nlm.nih.gov/pubmed/30932329
https://doi.org/10.3389/fninf.2013.00005
http://www.ncbi.nlm.nih.gov/pubmed/23658544
http://www.ncbi.nlm.nih.gov/pubmed/23658544
https://doi.org/10.1007/s00429-013-0694-4
http://www.ncbi.nlm.nih.gov/pubmed/24384580
https://doi.org/10.3389/fnagi.2018.00052
http://www.ncbi.nlm.nih.gov/pubmed/29551970
https://doi.org/10.1016/0006-8993(82)90897-6
http://www.ncbi.nlm.nih.gov/pubmed/7116161
https://doi.org/10.7554/eLife.00400
https://doi.org/10.7554/eLife.00400
http://www.ncbi.nlm.nih.gov/pubmed/23467508
https://doi.org/10.7554/eLife.59148


Inoue K, Terashima T, Inoue Y. 1991. Postnatal development of the pontine projections from the visual cortex of
the mouse. Okajimas Folia Anatomica Japonica 67:479–492. DOI: https://doi.org/10.2535/ofaj1936.67.6_479,
PMID: 2062483
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