Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers

  1. William Wan
  2. Mairi Clarke
  3. Michael J Norris
  4. Larissa Kolesnikova
  5. Alexander Koehler
  6. Zachary A Bornholdt
  7. Stephan Becker
  8. Erica Ollman-Saphire
  9. John AG Briggs  Is a corresponding author
  1. Vanderbilt University, United States
  2. EMBL, Germany
  3. La Jolla Institute of Immunology, United States
  4. Philipps-Universität Marburg, Germany
  5. Scripps Research Institute, United States
  6. La Jolla Institute for Immunology, United States
  7. MRC-LMB, United Kingdom

Abstract

Filoviruses such as Ebola and Marburg virus bud from the host membrane as enveloped virions. This process is achieved by the matrix protein VP40. When expressed alone, VP40 induces budding of filamentous virus-like particles, suggesting that localization to the plasma membrane, oligomerization into a matrix layer, and generation of membrane curvature are intrinsic properties of VP40. There has been no direct information on the structure of VP40 matrix layers within viruses or virus-like particles. We present structures of Ebola and Marburg VP40 matrix layers in intact virus-like particles, and within intact Marburg viruses. VP40 dimers assemble extended chains via C-terminal domain interactions. These chains stack to form 2D matrix lattices below the membrane surface. These lattices form a patchwork assembly across the membrane and suggesting that assembly may begin at multiple points. Our observations define the structure and arrangement of the matrix protein layer that mediates formation of filovirus particles.

Data availability

EM maps of VP40 from Ebola NP-VP24-VP35-VP40, VP40, VP40-GP VLPs and Marburg virions and VP40 VLPs were deposited in the EMDB with accession numbers EMD-11660, EMD-11661, EMD-11662, EMD-11663, EMD-11664, respectively. EM map of Ebola GP was deposited as EMD-11665. Crystal structures of eVP40 P62 and eVP40 P6422 were deposited to the PDB with accession numbers 7JZJ and 7JZT, respectively.

The following data sets were generated

Article and author information

Author details

  1. William Wan

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2497-3010
  2. Mairi Clarke

    Structural and Computational Biology, EMBL, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9658-4308
  3. Michael J Norris

    La Jolla Institute of Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Larissa Kolesnikova

    Institute of Virology; German Center for Infection Research (DZIF) Gießen-Marburg-Langen Site, Philipps-Universität Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander Koehler

    Institute of Virology; German Center for Infection Research (DZIF) Gießen-Marburg-Langen Site, Philipps-Universität Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Zachary A Bornholdt

    Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7557-9219
  7. Stephan Becker

    Institute of Virology; German Center for Infection Research (DZIF) Gießen-Marburg-Langen Site, Philipps-Universität Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica Ollman-Saphire

    Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. John AG Briggs

    Structural Studies, MRC-LMB, Cambridge, United Kingdom
    For correspondence
    jbriggs@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3990-6910

Funding

Medical Research Council (MC_UP_1201/16)

  • John AG Briggs

H2020 European Research Council (ERC-CoG-648432)

  • John AG Briggs

Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 1021)

  • Stephan Becker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wesley I Sundquist, University of Utah School of Medicine, United States

Version history

  1. Received: May 22, 2020
  2. Accepted: October 2, 2020
  3. Accepted Manuscript published: October 5, 2020 (version 1)
  4. Version of Record published: October 26, 2020 (version 2)
  5. Version of Record updated: November 9, 2020 (version 3)

Copyright

© 2020, Wan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,686
    views
  • 332
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Wan
  2. Mairi Clarke
  3. Michael J Norris
  4. Larissa Kolesnikova
  5. Alexander Koehler
  6. Zachary A Bornholdt
  7. Stephan Becker
  8. Erica Ollman-Saphire
  9. John AG Briggs
(2020)
Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers
eLife 9:e59225.
https://doi.org/10.7554/eLife.59225

Share this article

https://doi.org/10.7554/eLife.59225

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.