Dual midbrain and forebrain origins of thalamic inhibitory interneurons

  1. Polona Jager
  2. Gerald Moore
  3. Padraic Calpin
  4. Xhuljana Durmishi
  5. Irene Salgarella
  6. Lucy Menage
  7. Yoshiaki Kita
  8. Yan Wang
  9. Dong Won Kim
  10. Seth Blackshaw
  11. Simon R Schultz
  12. Stephen Brickley
  13. Tomomi Shimogori
  14. Alessio Delogu  Is a corresponding author
  1. King's College London, United Kingdom
  2. Imperial College London, United Kingdom
  3. University College London, United Kingdom
  4. RIKEN, Japan
  5. Johns Hopkins University School of Medicine, United States
  6. Johns Hopkins University, United States
  7. Centor for Brain Science, Japan

Abstract

The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programs: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocrtical nuclei depending on their origin: the abundant, midbrain-generated class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Polona Jager

    Basic and Clinical Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Gerald Moore

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Padraic Calpin

    Department of Physics and Astronomy, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Xhuljana Durmishi

    Basic and Clinical Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Irene Salgarella

    Basic and Clinical Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Lucy Menage

    Basic and Clinical Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoshiaki Kita

    Center for Brain Science (CBS), RIKEN, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Yan Wang

    Center for Brain Science (CBS), RIKEN, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Dong Won Kim

    Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Seth Blackshaw

    The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Simon R Schultz

    Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6794-5813
  12. Stephen Brickley

    Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Tomomi Shimogori

    Laboratory for Molecular Mechanism of Brain Development, Centor for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Alessio Delogu

    Basic and Clinical Neuroscience, King's College London, London, United Kingdom
    For correspondence
    alessio.delogu@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-4714

Funding

Biotechnology and Biological Sciences Research Council (BB/L020068/1)

  • Alessio Delogu

Biotechnology and Biological Sciences Research Council (BB/R007020/1)

  • Alessio Delogu

Biotechnology and Biological Sciences Research Council (BB/R007659/1)

  • Stephen Brickley

Engineering and Physical Sciences Research Council (EP/J021199/1)

  • Simon R Schultz

Engineering and Physical Sciences Research Council (EP/L016737/1)

  • Gerald Moore

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice: Housing and experimental procedures were approved by the King's College London Ethical Committee and conformed to the regulations of the UK Home Office personal and project licences under the UK Animals (Scientific Procedures) 1986 Act.Marmoset: All experiments were conducted in accordance with the guidelines approved by the RIKEN Institutional Animal Care (W2020-2-022).

Copyright

© 2021, Jager et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,132
    views
  • 466
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Polona Jager
  2. Gerald Moore
  3. Padraic Calpin
  4. Xhuljana Durmishi
  5. Irene Salgarella
  6. Lucy Menage
  7. Yoshiaki Kita
  8. Yan Wang
  9. Dong Won Kim
  10. Seth Blackshaw
  11. Simon R Schultz
  12. Stephen Brickley
  13. Tomomi Shimogori
  14. Alessio Delogu
(2021)
Dual midbrain and forebrain origins of thalamic inhibitory interneurons
eLife 10:e59272.
https://doi.org/10.7554/eLife.59272

Share this article

https://doi.org/10.7554/eLife.59272

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.